Skip to main content
Top
Published in: Optical Memory and Neural Networks 2/2023

01-06-2023

Filters Based on Defect Modes by 1D Star Waveguides Defective System

Authors: Y. Ben-Ali, Y. Errouas, I. El Kadmiri, Z. Rahou, A. Hallaoui, D. Bria

Published in: Optical Memory and Neural Networks | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we present a theoretical study of the properties of defect modes in one-dimensional defective photonic star waveguides (SWGs). Both symmetrically and asymmetrically stacked defective SWGs are considered in the analysis. The properties of the defect modes are studied through the calculation of the frequency-dependent transmittance. We have also explored the effects of defect length and permittivity, as well as the position of the defect and the number of resonators grafted onto the SWGs on the number of defect modes, their transmission, and their quality factor. The findings demonstrate that geometric defects result in two modes of maximum transmission with a high-quality factor (\({{Q}_{1}} = 358\) and \({{Q}_{2}} = 1550\)). However, when there are both geometric and material defects, the quality factor of the second filter \({{Q}_{2}}\) improved from 1550 to 2203, while the quality factor of the first filter \({{Q}_{1}}\)remains almost unchanged. Moreover, when only material defects are present, two electromagnetic filters with maximum transmission and high-quality factor (\({{Q}_{1}} = 1708\) and \({{Q}_{2}} = 9085\)) can be obtained.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Vijay Laxmi Kalyani and Varsha Sharma, Different types of optical filters and their realistic application, J. Manage. Eng. Inf. Technol. (JMEIT), 2016, vol. 3, pp. 12–17. Vijay Laxmi Kalyani and Varsha Sharma, Different types of optical filters and their realistic application, J. Manage. Eng. Inf. Technol. (JMEIT), 2016, vol. 3, pp. 12–17.
2.
go back to reference Hu, L., Mouraux, A., Hu, Y., and Iannetti, G.D., A novel approach for enhancing the signal-to-noise ratio and detecting automatically event-related potentials (ERPs) in single trials, NeuroImage, 2010, vol. 50, pp. 99–111.CrossRef Hu, L., Mouraux, A., Hu, Y., and Iannetti, G.D., A novel approach for enhancing the signal-to-noise ratio and detecting automatically event-related potentials (ERPs) in single trials, NeuroImage, 2010, vol. 50, pp. 99–111.CrossRef
3.
go back to reference Tian, Y. and Li, Y., Spatial filter selection for EEG-based communication, Electroencephalogr. Clin. Neurophysiol., 1997, vol. 103, pp. 386–394.CrossRef Tian, Y. and Li, Y., Spatial filter selection for EEG-based communication, Electroencephalogr. Clin. Neurophysiol., 1997, vol. 103, pp. 386–394.CrossRef
4.
go back to reference Han, X., Xu, E., and Yao, J., Tunable single bandpass microwave photonic filter with an improved dynamic range, IEEE Photonics Technol. Lett., 2016, vol. 28, pp. 11–14.CrossRef Han, X., Xu, E., and Yao, J., Tunable single bandpass microwave photonic filter with an improved dynamic range, IEEE Photonics Technol. Lett., 2016, vol. 28, pp. 11–14.CrossRef
5.
go back to reference Zamani, M., Photonic crystal-based optical filters for operating in second and third optical fiber windows, Superlattices Microstruct., 2016, vol. 92, pp. 157–165.CrossRef Zamani, M., Photonic crystal-based optical filters for operating in second and third optical fiber windows, Superlattices Microstruct., 2016, vol. 92, pp. 157–165.CrossRef
6.
go back to reference Tian, Y. and Li, Y., Parabolic-trace time-frequency peak filtering for seismic random noise attenuation, IEEE Gosci. Remote Sens. Lett., 2014, vol. 11, pp. 158–162.CrossRef Tian, Y. and Li, Y., Parabolic-trace time-frequency peak filtering for seismic random noise attenuation, IEEE Gosci. Remote Sens. Lett., 2014, vol. 11, pp. 158–162.CrossRef
7.
go back to reference Canfield-Dafilou, K.E. and Jonathan, S., Extensions and applications of modal dispersive filters, Proc. 22nd Int. Conf. on Digital Audio Effects (DAFx-19), 2019, pp. 1–7. Canfield-Dafilou, K.E. and Jonathan, S., Extensions and applications of modal dispersive filters, Proc. 22nd Int. Conf. on Digital Audio Effects (DAFx-19), 2019, pp. 1–7.
8.
go back to reference Tarkoma, S., Rothenberg, C.E., and Lagerspetz, E., Theory and practice of bloom filters for distributed systems, IEEE Communivation Serv. Tutorials, 2012, vol. 14, pp. 131–155.CrossRef Tarkoma, S., Rothenberg, C.E., and Lagerspetz, E., Theory and practice of bloom filters for distributed systems, IEEE Communivation Serv. Tutorials, 2012, vol. 14, pp. 131–155.CrossRef
9.
go back to reference Zhan, Y., Li, J., Qin, W., and Chen, J.X., Low-loss differential bandpass filter using TE01δ-mode dielectric resonators, Electron. Lett., 2015, vol. 51, pp. 1001–1003.CrossRef Zhan, Y., Li, J., Qin, W., and Chen, J.X., Low-loss differential bandpass filter using TE01δ-mode dielectric resonators, Electron. Lett., 2015, vol. 51, pp. 1001–1003.CrossRef
10.
go back to reference Mora, J., Ortega, B., Díez, A., Cruz, J.L., Andrés, M.V., Capmany, J., and Pastor, D., Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer, J. Lightwave Technol., 2006, vol. 24, pp. 2500–2509.CrossRef Mora, J., Ortega, B., Díez, A., Cruz, J.L., Andrés, M.V., Capmany, J., and Pastor, D., Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer, J. Lightwave Technol., 2006, vol. 24, pp. 2500–2509.CrossRef
11.
go back to reference Palací, J., Villanueva, G.E., Galán, J.V., Martí, J., and Vidal, B., Single bandpass photonic microwave filter based on a notch ring resonator, IEEE Photonics Technol. Lett., 2010, vol. 22, pp. 1276–1278.CrossRef Palací, J., Villanueva, G.E., Galán, J.V., Martí, J., and Vidal, B., Single bandpass photonic microwave filter based on a notch ring resonator, IEEE Photonics Technol. Lett., 2010, vol. 22, pp. 1276–1278.CrossRef
12.
go back to reference Zhang, W. and Minasian, R.A., Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering, IEEE Photonics Technol. Lett., 2011, vol. 23, pp. 1775–1777.CrossRef Zhang, W. and Minasian, R.A., Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering, IEEE Photonics Technol. Lett., 2011, vol. 23, pp. 1775–1777.CrossRef
13.
go back to reference Song, M., Long, C.M., Wu, R., Seo, D., Leaird, D.E., and Weiner, A.M., Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs, IEEE Photonics Technol. Lett., 2011, vol. 23, pp. 1618–1620.CrossRef Song, M., Long, C.M., Wu, R., Seo, D., Leaird, D.E., and Weiner, A.M., Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs, IEEE Photonics Technol. Lett., 2011, vol. 23, pp. 1618–1620.CrossRef
14.
go back to reference Chen, J.X., Zhan, Y., and Xue, Q., Novel LTCC distributed-element wideband bandpass filter based on the dual-mode stepped-impedance resonator, IEEE Trans. Compon., Packag., Manuf. Technol., 2015, vol. 5, pp. 372–380.CrossRef Chen, J.X., Zhan, Y., and Xue, Q., Novel LTCC distributed-element wideband bandpass filter based on the dual-mode stepped-impedance resonator, IEEE Trans. Compon., Packag., Manuf. Technol., 2015, vol. 5, pp. 372–380.CrossRef
15.
go back to reference Chen, H., Fang, A.W., Peters, J.D., Wang, Z., Bovington, J., Liang, D., and Bowers, J.E., Integrated microwave photonic filter on a hybrid silicon platform, IEEE Trans. Microwave Theory Tech., 2010, vol. 58, pp. 3213–3219.CrossRef Chen, H., Fang, A.W., Peters, J.D., Wang, Z., Bovington, J., Liang, D., and Bowers, J.E., Integrated microwave photonic filter on a hybrid silicon platform, IEEE Trans. Microwave Theory Tech., 2010, vol. 58, pp. 3213–3219.CrossRef
16.
go back to reference Ghadban, A., Ghoumid, K., Bouzidi, A., and Bria, D., Coupled selective electromagnetic waves in 1D photonic crystal with two planar cavities, 5th Int. Conf. on Multimedia Computing and Systems (ICMCS), IEEE, 2018, pp. 753–756. Ghadban, A., Ghoumid, K., Bouzidi, A., and Bria, D., Coupled selective electromagnetic waves in 1D photonic crystal with two planar cavities, 5th Int. Conf. on Multimedia Computing and Systems (ICMCS), IEEE, 2018, pp. 753–756.
17.
go back to reference Vasseur, J.O., Deymier, P.A., Dobrzynski, L., Djafari-Rouhani, B., and Akjouj, A., Absolute band gaps and electromagnetic transmission in quasi-one-dimensional comb structures, Phys. Rev. B, 1997, vol. 55, pp. 10434–10442.CrossRef Vasseur, J.O., Deymier, P.A., Dobrzynski, L., Djafari-Rouhani, B., and Akjouj, A., Absolute band gaps and electromagnetic transmission in quasi-one-dimensional comb structures, Phys. Rev. B, 1997, vol. 55, pp. 10434–10442.CrossRef
18.
go back to reference Ben-Ali, Y., Tahri, Z., Falyouni, F., and Bria, D., Study about a filter using a resonator defect in a one-dimensional photonic comb containing a left-hand material, Proc. 1st Int. Conf. on Electronic Engineering and Renewable Energy (ICEERE), 2018, Ch. 19, pp. 146–156. Ben-Ali, Y., Tahri, Z., Falyouni, F., and Bria, D., Study about a filter using a resonator defect in a one-dimensional photonic comb containing a left-hand material, Proc. 1st Int. Conf. on Electronic Engineering and Renewable Energy (ICEERE), 2018, Ch. 19, pp. 146–156.
19.
go back to reference Srivastava, S.K. and Ojha, S.P., Photonic band gaps in one-dimensional metallic star waveguide structure, Prog. Electromagn. Res., 2008, vol. 84, pp. 349–362.CrossRef Srivastava, S.K. and Ojha, S.P., Photonic band gaps in one-dimensional metallic star waveguide structure, Prog. Electromagn. Res., 2008, vol. 84, pp. 349–362.CrossRef
20.
go back to reference Joannopoulos, J.D., Johnson, S.G., Winn, J.N., and Meade, R.D., Photonic Crystals: Molding the Flow of Light, Oxford: Princeton University, 2008).MATH Joannopoulos, J.D., Johnson, S.G., Winn, J.N., and Meade, R.D., Photonic Crystals: Molding the Flow of Light, Oxford: Princeton University, 2008).MATH
21.
go back to reference Dolorzynski, L., Akjouj, A., Djafari-Rouhani, B., Vasseur, J.O., and Zemmouri, J., Giant gaps in photonic band structures, Phys. Rev. B, 1998, vol. 57, pp. 9388–9391.CrossRef Dolorzynski, L., Akjouj, A., Djafari-Rouhani, B., Vasseur, J.O., and Zemmouri, J., Giant gaps in photonic band structures, Phys. Rev. B, 1998, vol. 57, pp. 9388–9391.CrossRef
22.
go back to reference Vasseur, J.O., Deymier, P.A., Dolorzynski, L., Djafari-Rouhani, B., and Akjouj, A., Defect modes in one-dimensional comblike photonic waveguides, Phys. Rev. B, 1999, vol. 59, pp. 13446–13452.CrossRef Vasseur, J.O., Deymier, P.A., Dolorzynski, L., Djafari-Rouhani, B., and Akjouj, A., Defect modes in one-dimensional comblike photonic waveguides, Phys. Rev. B, 1999, vol. 59, pp. 13446–13452.CrossRef
23.
go back to reference Djafari Rouhani, B., Vasseur, J.O., Akjouj, A., Dobrzynski, L., Kushwaha, M.S., Deymier, P.A., and Zemmouri, J., Giant stop bands and defect modes in one-dimensional waveguide with dangling side branches, Prog. Surf. Sci., 1998, vol. 59, no. 1–4, pp. 255–264.CrossRef Djafari Rouhani, B., Vasseur, J.O., Akjouj, A., Dobrzynski, L., Kushwaha, M.S., Deymier, P.A., and Zemmouri, J., Giant stop bands and defect modes in one-dimensional waveguide with dangling side branches, Prog. Surf. Sci., 1998, vol. 59, no. 1–4, pp. 255–264.CrossRef
24.
go back to reference Djafari-Rouhani, B., El Boudouti, E.H., Akjouj, A., Dobrzynski, L., Vasseur, J.O., Mir, A., Fettouhi, N., and Zemmouri, J., Surface states in one-dimensional photonic band gap structures, Vacuum, 2001, vol. 63, pp. 177–183.CrossRef Djafari-Rouhani, B., El Boudouti, E.H., Akjouj, A., Dobrzynski, L., Vasseur, J.O., Mir, A., Fettouhi, N., and Zemmouri, J., Surface states in one-dimensional photonic band gap structures, Vacuum, 2001, vol. 63, pp. 177–183.CrossRef
25.
go back to reference Akjouj, A., Al-Wahsh, H., Sylla, B., Djafari-Rouhani, B., and Dobrzynski, L., Stopping and filtering waves in phononic circuits, J. Phys.: Condens. Matter, 2004, vol. 16, pp. 37–44. Akjouj, A., Al-Wahsh, H., Sylla, B., Djafari-Rouhani, B., and Dobrzynski, L., Stopping and filtering waves in phononic circuits, J. Phys.: Condens. Matter, 2004, vol. 16, pp. 37–44.
26.
go back to reference Ben-Ali, Y., Tahri, Z., Ouariach, A., and Bria, D., Double frequency filtering by photonic comb-like, Int. Symposium on Advanced Electrical and Communication Technologies (ISAECT), IEEE, 2018, pp. 1–6. Ben-Ali, Y., Tahri, Z., Ouariach, A., and Bria, D., Double frequency filtering by photonic comb-like, Int. Symposium on Advanced Electrical and Communication Technologies (ISAECT), IEEE, 2018, pp. 1–6.
27.
go back to reference Ben-Ali, Y., Tahri, Z., Bouzidi, A., Jeffali, F., Azizi, M., Bria, D., Khettabi, A., and Nougaoui, A., Propagation of electromagnetic waves in a one-dimensional photonic crystal containing two defects, J. Mater. Environ. Sci., 2017, vol. 8, pp. 870–876. Ben-Ali, Y., Tahri, Z., Bouzidi, A., Jeffali, F., Azizi, M., Bria, D., Khettabi, A., and Nougaoui, A., Propagation of electromagnetic waves in a one-dimensional photonic crystal containing two defects, J. Mater. Environ. Sci., 2017, vol. 8, pp. 870–876.
28.
go back to reference Liu, J., Sun, J., Huang, C., Hu, W., and Huang, D., Optimizing the spectral efficiency of photonic quantum well structures, Optik, 2009, vol. 120, pp. 35–39.CrossRef Liu, J., Sun, J., Huang, C., Hu, W., and Huang, D., Optimizing the spectral efficiency of photonic quantum well structures, Optik, 2009, vol. 120, pp. 35–39.CrossRef
29.
go back to reference Qiao, F., Zhang, C., and Wan, J., Photonic quantum-well structure: Multiple channeled filtering phenomena, Appl. Phys. Lett., 2000, vol. 77, pp. 3698–3700.CrossRef Qiao, F., Zhang, C., and Wan, J., Photonic quantum-well structure: Multiple channeled filtering phenomena, Appl. Phys. Lett., 2000, vol. 77, pp. 3698–3700.CrossRef
Metadata
Title
Filters Based on Defect Modes by 1D Star Waveguides Defective System
Authors
Y. Ben-Ali
Y. Errouas
I. El Kadmiri
Z. Rahou
A. Hallaoui
D. Bria
Publication date
01-06-2023
Publisher
Pleiades Publishing
Published in
Optical Memory and Neural Networks / Issue 2/2023
Print ISSN: 1060-992X
Electronic ISSN: 1934-7898
DOI
https://doi.org/10.3103/S1060992X23020029

Other articles of this Issue 2/2023

Optical Memory and Neural Networks 2/2023 Go to the issue

Premium Partner