Skip to main content
Top
Published in: Geotechnical and Geological Engineering 2/2019

25-07-2018 | Original Paper

Finite Element Evaluation of Vertical Bearing Capacity Factors\(N_{c}^{\prime }\), \(N_{q}^{\prime }\) and \(N_{\gamma }^{\prime }\) for Ring Footings

Authors: Jitesh T. Chavda, G. R. Dodagoudar

Published in: Geotechnical and Geological Engineering | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, the vertical bearing capacity factors \(N_{c}^{\prime }\), \(N_{q}^{\prime }\) and \(N_{\gamma }^{\prime }\) are evaluated for smooth and rough base ring footings resting on c–ϕ soil using the finite element method. The radii ratio, (ri/ro), is the ratio of internal radius to the external radius of the ring footing, is varied from 0 to 0.75 with an increment of 0.25. The friction angle of the soil is varied from 5° to 35°, dilation angle is zero and the Mohr–Coulomb yield criterion and non-associative flow rule are used. The study is extended for the soil having a friction angle of 35° considering the non-associative flow rule with a dilation angle of 5°. The bearing capacity factors are evaluated considering cohesion, surcharge and unit weight as three separate components. Then the superposition of the three components of the bearing capacity equation is analysed. A numerical example is considered to illustrate the applicability of the finite element analysis by comparing the bearing capacities with those of the Terzaghi’s classical equation. The finite element results are presented in the form of design charts and tables for practical use.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Benmebarek S, Remadna MS, Benmebarek N, Belounar L (2012) Numerical evaluation of bearing capacity factor Nγ ′ of ring footings. Comput Geotech 44:132–138CrossRef Benmebarek S, Remadna MS, Benmebarek N, Belounar L (2012) Numerical evaluation of bearing capacity factor Nγ of ring footings. Comput Geotech 44:132–138CrossRef
go back to reference Benmebarek S, Saifi I, Benmebarek N (2017) Undrained vertical bearing capacity factors for ring shallow footings. Geotech Geol Eng 35(1):355–364CrossRef Benmebarek S, Saifi I, Benmebarek N (2017) Undrained vertical bearing capacity factors for ring shallow footings. Geotech Geol Eng 35(1):355–364CrossRef
go back to reference Boushehrian JH, Hataf N (2003) Experimental and numerical investigation of the bearing capacity of model circular and ring footings on reinforced sand. Geotext Geomembr 21(4):241–256CrossRef Boushehrian JH, Hataf N (2003) Experimental and numerical investigation of the bearing capacity of model circular and ring footings on reinforced sand. Geotext Geomembr 21(4):241–256CrossRef
go back to reference Burd HJ, Yu H, Houlsby GT (1989) Finite element implementation of friction plasticity models with dilation. In: Proceedings of international conference on constitutive laws for engineering materials, vol 2. Academic Publishers, pp 783–788 Burd HJ, Yu H, Houlsby GT (1989) Finite element implementation of friction plasticity models with dilation. In: Proceedings of international conference on constitutive laws for engineering materials, vol 2. Academic Publishers, pp 783–788
go back to reference Caquot A, Kérisel J (1953) Sur le terme de surface dans le calcul des fondations en milieu pulvérulent. In: 3rd international conference on soil mechanics foundation engineering, vol 1. Zurich, pp 336–337 Caquot A, Kérisel J (1953) Sur le terme de surface dans le calcul des fondations en milieu pulvérulent. In: 3rd international conference on soil mechanics foundation engineering, vol 1. Zurich, pp 336–337
go back to reference Choobbasti AJ, Hesami S, Najafi A, Pirzadeh S, Farrokhzad F, Zahmatkesh A (2010) Numerical evaluation of bearing capacity and settlement of ring footing; case study of Kazeroon cooling towers. Int J Res Rev Appl Sci 4(3):263–271 Choobbasti AJ, Hesami S, Najafi A, Pirzadeh S, Farrokhzad F, Zahmatkesh A (2010) Numerical evaluation of bearing capacity and settlement of ring footing; case study of Kazeroon cooling towers. Int J Res Rev Appl Sci 4(3):263–271
go back to reference Clark JI (1998) The settlement and bearing capacity of very large foundations on strong soils: 1996 RM Hardy keynote address. Can Geotech J 35(1):131–145CrossRef Clark JI (1998) The settlement and bearing capacity of very large foundations on strong soils: 1996 RM Hardy keynote address. Can Geotech J 35(1):131–145CrossRef
go back to reference de Beer EE (1970) Experimental determination of the shape factors and the bearing capacity factors of sand. Géotechnique 20(4):387–411CrossRef de Beer EE (1970) Experimental determination of the shape factors and the bearing capacity factors of sand. Géotechnique 20(4):387–411CrossRef
go back to reference Drescher A, Detournay E (1993) Limit load in translational failure mechanisms for associative and non-associative materials. Geotechnique 43(3):443–456CrossRef Drescher A, Detournay E (1993) Limit load in translational failure mechanisms for associative and non-associative materials. Geotechnique 43(3):443–456CrossRef
go back to reference Erickson HL, Drescher A (2002) Bearing capacity of circular footings. J Geotech Geoenviron Eng 128(1):38–43CrossRef Erickson HL, Drescher A (2002) Bearing capacity of circular footings. J Geotech Geoenviron Eng 128(1):38–43CrossRef
go back to reference Frydman S, Burd HJ (1997) Numerical studies of bearing capacity factor Nγ. J Geotech Geoenviron Eng 123(1):20–29CrossRef Frydman S, Burd HJ (1997) Numerical studies of bearing capacity factor Nγ. J Geotech Geoenviron Eng 123(1):20–29CrossRef
go back to reference Griffiths DV (1982) Computation of bearing capacity factors using finite elements. Geotechnique 32(3):195–202CrossRef Griffiths DV (1982) Computation of bearing capacity factors using finite elements. Geotechnique 32(3):195–202CrossRef
go back to reference Griffiths DV (1989) Computation of collapse loads in geomechanics by finite elements. Ing Arch 59(3):237–244CrossRef Griffiths DV (1989) Computation of collapse loads in geomechanics by finite elements. Ing Arch 59(3):237–244CrossRef
go back to reference Haghbin M, Ghazavi M (2013) Bearing capacity of footings on pile stabilized slopes. Iran J Sci Tech Trans Civ Eng 37(2):257–269 Haghbin M, Ghazavi M (2013) Bearing capacity of footings on pile stabilized slopes. Iran J Sci Tech Trans Civ Eng 37(2):257–269
go back to reference Hansen JB (1961) A general formula for bearing capacity. B 11, B Geoteknisk Institut, The Danish Geotechnical Institute, Copenhagen Hansen JB (1961) A general formula for bearing capacity. B 11, B Geoteknisk Institut, The Danish Geotechnical Institute, Copenhagen
go back to reference Hataf N, Razavi MR (2003) Behavior of ring footing on sand. Iran J Sci Tech Trans B Eng 27:47–56 Hataf N, Razavi MR (2003) Behavior of ring footing on sand. Iran J Sci Tech Trans B Eng 27:47–56
go back to reference Hosseininia ES (2016) Bearing capacity factors of ring footings. Iran J Sci Tech Trans Civ Eng 40(2):121–132CrossRef Hosseininia ES (2016) Bearing capacity factors of ring footings. Iran J Sci Tech Trans Civ Eng 40(2):121–132CrossRef
go back to reference Keshavarz A, Jahanandish M, Ghahramani A (2011) Seismic bearing capacity analysis of reinforced soils by the method of stress characteristics. Iran J Sci Tech Trans Civ Eng 35(2):185–197 Keshavarz A, Jahanandish M, Ghahramani A (2011) Seismic bearing capacity analysis of reinforced soils by the method of stress characteristics. Iran J Sci Tech Trans Civ Eng 35(2):185–197
go back to reference Kumar J, Chakraborty M (2015) Bearing capacity factors for ring foundations. J Geotech Geoenviron Eng 141(10):06015007-1-7CrossRef Kumar J, Chakraborty M (2015) Bearing capacity factors for ring foundations. J Geotech Geoenviron Eng 141(10):06015007-1-7CrossRef
go back to reference Kumar J, Ghosh P (2005) Bearing capacity factor Nγ for ring footings using the method of characteristics. Can Geotech J 40(3):1474–1484CrossRef Kumar J, Ghosh P (2005) Bearing capacity factor Nγ for ring footings using the method of characteristics. Can Geotech J 40(3):1474–1484CrossRef
go back to reference Kumar J, Khatri VN (2011) Bearing capacity factors of circular foundations for a general c–ϕ soil using lower bound finite elements limit analysis. Int J Numer Anal Method Geomech 35(3):393–405CrossRef Kumar J, Khatri VN (2011) Bearing capacity factors of circular foundations for a general c–ϕ soil using lower bound finite elements limit analysis. Int J Numer Anal Method Geomech 35(3):393–405CrossRef
go back to reference Majidi AR, Mirghasemi AA (2008) Seismic 3D bearing capacity analysis of shallow foundations. Iran J Sci Tech Trans Civ Eng 32(2):175–179 Majidi AR, Mirghasemi AA (2008) Seismic 3D bearing capacity analysis of shallow foundations. Iran J Sci Tech Trans Civ Eng 32(2):175–179
go back to reference Manoharan N, Dasgupta SP (1995) Bearing capacity of surface footings by finite elements. Comput Struct 54(4):563–586CrossRef Manoharan N, Dasgupta SP (1995) Bearing capacity of surface footings by finite elements. Comput Struct 54(4):563–586CrossRef
go back to reference Meyerhof GG (1951) The ultimate bearing capacity of footings. Geotechnique 2(4):301–332CrossRef Meyerhof GG (1951) The ultimate bearing capacity of footings. Geotechnique 2(4):301–332CrossRef
go back to reference Meyerhof GG (1963) Some recent research on the bearing capacity of foundations. Can Geotech J 1(1):16–26CrossRef Meyerhof GG (1963) Some recent research on the bearing capacity of foundations. Can Geotech J 1(1):16–26CrossRef
go back to reference Ohri ML, Purhit DGM, Dubey ML (1997) Behavior of ring footings on dune sand overlaying dense sand. In: Proceedings of international conference on civil engineering, Tehran, pp 4–6 Ohri ML, Purhit DGM, Dubey ML (1997) Behavior of ring footings on dune sand overlaying dense sand. In: Proceedings of international conference on civil engineering, Tehran, pp 4–6
go back to reference Remadna MS, Benmebarek S, Benmebarek N (2016) Numerical evaluation of the bearing capacity factor Nc′ of circular and ring footings. Geomech Geoeng 12(1):1–13CrossRef Remadna MS, Benmebarek S, Benmebarek N (2016) Numerical evaluation of the bearing capacity factor Nc′ of circular and ring footings. Geomech Geoeng 12(1):1–13CrossRef
go back to reference Rostami V, Ghazavi M (2015) Analytical solution for calculation of bearing capacity of shallow foundations on geogrid-reinforced sand slope. Iran J Sci Tech Trans Civ Eng 39(C1):167–182 Rostami V, Ghazavi M (2015) Analytical solution for calculation of bearing capacity of shallow foundations on geogrid-reinforced sand slope. Iran J Sci Tech Trans Civ Eng 39(C1):167–182
go back to reference Saha MC (1978) Ultimate bearing capacity of ring footings on sand. M.Eng. thesis, University of Roorkee, Roorkee Saha MC (1978) Ultimate bearing capacity of ring footings on sand. M.Eng. thesis, University of Roorkee, Roorkee
go back to reference Saran S, Bhandari NM, Al Smadi MMA (2003) Analysis of eccentrically obliquely loaded ring footings on sand. Ind Geotech J 33(4):422–446 Saran S, Bhandari NM, Al Smadi MMA (2003) Analysis of eccentrically obliquely loaded ring footings on sand. Ind Geotech J 33(4):422–446
go back to reference Sloan SW, Randolph MF (1982) Numerical prediction of collapse loads using finite elements method. Int J Numer Anal Metheod Geomech 6(1):47–76CrossRef Sloan SW, Randolph MF (1982) Numerical prediction of collapse loads using finite elements method. Int J Numer Anal Metheod Geomech 6(1):47–76CrossRef
go back to reference Vesic AA (1973) Analysis of ultimate loads of shallow foundations. J Soil Mech Found Div 99(1):45–73 Vesic AA (1973) Analysis of ultimate loads of shallow foundations. J Soil Mech Found Div 99(1):45–73
go back to reference Zhao L, Wang JH (2008) Vertical bearing capacity for ring footings. Comput Geotech 35(2):292–304CrossRef Zhao L, Wang JH (2008) Vertical bearing capacity for ring footings. Comput Geotech 35(2):292–304CrossRef
Metadata
Title
Finite Element Evaluation of Vertical Bearing Capacity Factors, and for Ring Footings
Authors
Jitesh T. Chavda
G. R. Dodagoudar
Publication date
25-07-2018
Publisher
Springer International Publishing
Published in
Geotechnical and Geological Engineering / Issue 2/2019
Print ISSN: 0960-3182
Electronic ISSN: 1573-1529
DOI
https://doi.org/10.1007/s10706-018-0645-1

Other articles of this Issue 2/2019

Geotechnical and Geological Engineering 2/2019 Go to the issue