Skip to main content
Top
Published in: Metallurgist 9-10/2022

01-02-2022

Fire Refining of Rough Antimony from Impurities for Obtaining High-Grade Antimony

Authors: A. O. Sydykov, A. A. Zharmenov, E. A. Mazulevsky, N. M. Seidakhmetova, A. Mnadzharova

Published in: Metallurgist | Issue 9-10/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Results of an investigation aimed at optimizing the fire refining process for purification and extraction of antimony into a high-grade commercial metallic product are presented. Various refining agents were used for refining from lead, tin, iron, and arsenic. As a result of research, a method for fire refining of rough antimony was developed to obtain a high-grade metal with a content of not less than 99.65% Sb and not more than 2000 ppm Pb versus (1.4–2.6)⋅104 ppm, 1000 ppm As versus (1–3)⋅104 ppm, 20 ppm Sn versus (1.2–4)⋅104 ppm, and 50 ppm Fe versus (0.6–1.4)⋅104 ppm. In order to reveal the chemical mechanism of rough antimony refining by phosphorus compounds, the thermal behavior of model samples was studied. Lead oxide was shown to interact with phosphorus compounds though the formation of stable phosphates. Tin is oxidized in the system to form refining compounds and slagged in the oxide form. A loss of antimony with the slag phase was determined to be a consequence of complex phosphate formation. A close to optimal ratio of P2O5/Na2O in the refining mixture, equal to six or higher, was determined. The melt based on sodium dihydrogen phosphate NaH2PO4 and orthophosphoric acid was found to be the most suitable in terms of flux consumption, refining efficiency, availability, cost, and practicality.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. G. Anderson, “The metallurgy of antimony,” Chemie der Erde, 72, S4, 3–8 (2012).CrossRef G. G. Anderson, “The metallurgy of antimony,” Chemie der Erde, 72, S4, 3–8 (2012).CrossRef
2.
go back to reference A. G. Shiyanov, Antimony Production [in Russian], Metallurgiya, Moscow (1961). A. G. Shiyanov, Antimony Production [in Russian], Metallurgiya, Moscow (1961).
3.
go back to reference S. M. Mel’nikov (editor), Antimony [in Russian], Metallurgiya, Moscow (1977). S. M. Mel’nikov (editor), Antimony [in Russian], Metallurgiya, Moscow (1977).
4.
go back to reference A. A. Zharmenov, A. Zh. Terlikbaeva et al., Pat. 27811 Р1С, IPC С22В30/00. Method for Processing Sodium Antimonate [in Russian], Publ. 12/18/2013, Bul. No. 12. A. A. Zharmenov, A. Zh. Terlikbaeva et al., Pat. 27811 Р1С, IPC С22В30/00. Method for Processing Sodium Antimonate [in Russian], Publ. 12/18/2013, Bul. No. 12.
5.
go back to reference E. Mazulevsky, A. Sydykov, F. Berdikulova, T. Kovzalenko, T. Tulenkova, and B. Seitkhanov, “Technological studies of the process for obtaining antimony from sodium antimonate,” Promyshlennost’ Kazakhstana, No. 4(79), 92–95 (2013). E. Mazulevsky, A. Sydykov, F. Berdikulova, T. Kovzalenko, T. Tulenkova, and B. Seitkhanov, “Technological studies of the process for obtaining antimony from sodium antimonate,” Promyshlennost’ Kazakhstana, No. 4(79), 92–95 (2013).
6.
go back to reference A. Sydykov, E. Mazulevsky, F. Berdikulova, T. Kovzalenko, M. Chukmanova, and B. Seitkhanov, “Obtaining metallic antimony from antimonate raw materials of lead-zinc production in the Republic of Kazakhstan,” Promyshlennost’ Kazakhstana, No. 1-2, 50–54 (2013). A. Sydykov, E. Mazulevsky, F. Berdikulova, T. Kovzalenko, M. Chukmanova, and B. Seitkhanov, “Obtaining metallic antimony from antimonate raw materials of lead-zinc production in the Republic of Kazakhstan,” Promyshlennost’ Kazakhstana, No. 1-2, 50–54 (2013).
7.
go back to reference W. Liu, T. Yang, D. Zhang, L. Chen, and Y. A. Liu, “A new pyro- metallurgical process for producing antimony white from by-product of lead smelting,” The Minerals, Metals & Materials Society JOM, 66, No. 9. 1694–1700 (2014). W. Liu, T. Yang, D. Zhang, L. Chen, and Y. A. Liu, “A new pyro- metallurgical process for producing antimony white from by-product of lead smelting,” The Minerals, Metals & Materials Society JOM, 66, No. 9. 1694–1700 (2014).
8.
go back to reference B. Liu, L. Jun-Ming, and R. Li, Pat. 95110632. 5 CN. Purifying Leading Removing Method by Antimony Pyro-Refining and Its Liquid Lead Removing Agent, 12/15/1999. B. Liu, L. Jun-Ming, and R. Li, Pat. 95110632. 5 CN. Purifying Leading Removing Method by Antimony Pyro-Refining and Its Liquid Lead Removing Agent, 12/15/1999.
9.
go back to reference Y. Wang and Sh. Chen, “Research on removal of lead from rough antimony during fire refining,” J. of Guangdong Non-Ferrous Metals, 14, No. 2, 111–113 (2004). Y. Wang and Sh. Chen, “Research on removal of lead from rough antimony during fire refining,” J. of Guangdong Non-Ferrous Metals, 14, No. 2, 111–113 (2004).
10.
go back to reference J. Yang, C. Tang, M. Tang, Y. Chen, J. He, S. Yang, and L. Ye, Pat. 103290236 CN. Method for Deep Deleading and Lead Regeneration by Fire Refining of Crude Antimony and Applications of Metaphosphate, Publ. 11/26/2014. J. Yang, C. Tang, M. Tang, Y. Chen, J. He, S. Yang, and L. Ye, Pat. 103290236 CN. Method for Deep Deleading and Lead Regeneration by Fire Refining of Crude Antimony and Applications of Metaphosphate, Publ. 11/26/2014.
11.
go back to reference Y. Dai, T. Shan, W. Deng, F. Gong, J. Li, Z. Li, G. Liao, Y. Tan, W. Wang , X. Yao, and Q. Zeng, Pat. CN102296185-A. An Efficient Multi-Agent and Its Application in Antimony Impurity Fire Refining Law, Publ. 12/28/2012. Y. Dai, T. Shan, W. Deng, F. Gong, J. Li, Z. Li, G. Liao, Y. Tan, W. Wang , X. Yao, and Q. Zeng, Pat. CN102296185-A. An Efficient Multi-Agent and Its Application in Antimony Impurity Fire Refining Law, Publ. 12/28/2012.
12.
go back to reference B. Wang, J. Wang, T. Zhang, and X. Zhang, Pat. 102041399 CN. Antimony Fire Refining Lead-Removal Agent and Application Thereof, Publ. 2011. B. Wang, J. Wang, T. Zhang, and X. Zhang, Pat. 102041399 CN. Antimony Fire Refining Lead-Removal Agent and Application Thereof, Publ. 2011.
13.
go back to reference L. Chao and Q. Keqiang, “Separating lead-antimony alloy by fractional crystallization using directional lifting process,” J. of Alloys and Compounds, 636, No. 5. 282–287 (2015). L. Chao and Q. Keqiang, “Separating lead-antimony alloy by fractional crystallization using directional lifting process,” J. of Alloys and Compounds, 636, No. 5. 282–287 (2015).
14.
go back to reference E. A. Mazulevsky, A. O. Sydykov, F. A. Berdikulova, B. A. Seitkhanov, et al., “Fire refining of rough antimony,” Vestn. KazNTU, No. 5, 320–324 (2014). E. A. Mazulevsky, A. O. Sydykov, F. A. Berdikulova, B. A. Seitkhanov, et al., “Fire refining of rough antimony,” Vestn. KazNTU, No. 5, 320–324 (2014).
15.
go back to reference A. Zh. Terlikbaeva, A. O. Sydykov, F. A. Berdikulova, E. A. Mazulevsky, and B. A. Seitkhanov, “Investigation of the reagent mode of fire refining rough antimony from lead, tin, and iron,” Sb. Mater. IX Mezhd. Konf. “Effektivnoe Ispol’zovanie Resursov i Okhrana Okruzhayushchei Sredy. Klyuchevye Voprosy Razvitiya Gorno-Metallurgicheskogo Kompleksa”, Ust-Kamenogorsk, 4, 283–285 (2015). A. Zh. Terlikbaeva, A. O. Sydykov, F. A. Berdikulova, E. A. Mazulevsky, and B. A. Seitkhanov, “Investigation of the reagent mode of fire refining rough antimony from lead, tin, and iron,” Sb. Mater. IX Mezhd. Konf. “Effektivnoe Ispol’zovanie Resursov i Okhrana Okruzhayushchei Sredy. Klyuchevye Voprosy Razvitiya Gorno-Metallurgicheskogo Kompleksa”, Ust-Kamenogorsk, 4, 283–285 (2015).
16.
go back to reference F. Berdikulova, A. Zharmenov, A. Terlikbayeva, A. Sydykov, and Y. Mazulevskiy, “Reduction smelting of antimony concentrate obtained in the course of lead production,” J. of Chemical Technology and Metallurgy, 53, No. 5. 1001–1008 (2018). F. Berdikulova, A. Zharmenov, A. Terlikbayeva, A. Sydykov, and Y. Mazulevskiy, “Reduction smelting of antimony concentrate obtained in the course of lead production,” J. of Chemical Technology and Metallurgy, 53, No. 5. 1001–1008 (2018).
17.
go back to reference F. Berdikulova, A. Zharmenov, A. Terlikbayeva, A. Sydykov, and Y. Mazulevskiy, “Thermal studies of the process of interaction of tin oxide, lead and antimony with sodium phosphates,” in: 17th Int. Multidisciplinary Sci. Geoconf. SGEM 2017 (Bulgaria, 2017), Issue 11 (2017), pp. 1133–1144. F. Berdikulova, A. Zharmenov, A. Terlikbayeva, A. Sydykov, and Y. Mazulevskiy, “Thermal studies of the process of interaction of tin oxide, lead and antimony with sodium phosphates,” in: 17th Int. Multidisciplinary Sci. Geoconf. SGEM 2017 (Bulgaria, 2017), Issue 11 (2017), pp. 1133–1144.
18.
go back to reference A. Zh. Terlikbayeva, A. O. Sydykov, F. A. Berdikulova, and E. A. Mazulevsky, “Producing metallic antimony with low arsenic content from antimony concentrate,” Russian J. of Non-Ferrous Metals, 59, No. 3. 256–260 (2018). A. Zh. Terlikbayeva, A. O. Sydykov, F. A. Berdikulova, and E. A. Mazulevsky, “Producing metallic antimony with low arsenic content from antimony concentrate,” Russian J. of Non-Ferrous Metals, 59, No. 3. 256–260 (2018).
19.
go back to reference A. A. Zharmenov, A. Zh. Terlikbaeva, E. A. Mazulevsky, and F. A. Berdikulova, Eurasian Pat. 029375. Reagent for Refining Antimony from Lead and Tin [in Russian], Publ. 03/30/2018, Derwent Main Identification Number 2019-21384N. A. A. Zharmenov, A. Zh. Terlikbaeva, E. A. Mazulevsky, and F. A. Berdikulova, Eurasian Pat. 029375. Reagent for Refining Antimony from Lead and Tin [in Russian], Publ. 03/30/2018, Derwent Main Identification Number 2019-21384N.
20.
go back to reference A. O. Sydykov, E. A. Mazulevsky, T. V. Kovzalenko, and F. A. Berdikulova, “Refining of rough antimony with phosphorus compounds,” in: Mater. Mezhd. Nauch.-Prakt. Konf. Abishevskie Chteniya-2016 “Innovatsii v Kompleksnoi Pererabotke Mineral’nogo Syr’ya” [in Russian], Almaty (2016), pp. 363–368. A. O. Sydykov, E. A. Mazulevsky, T. V. Kovzalenko, and F. A. Berdikulova, “Refining of rough antimony with phosphorus compounds,” in: Mater. Mezhd. Nauch.-Prakt. Konf. Abishevskie Chteniya-2016 “Innovatsii v Kompleksnoi Pererabotke Mineral’nogo Syr’ya” [in Russian], Almaty (2016), pp. 363–368.
21.
go back to reference F. A. Berdikulova, Zh. U. Sadetova, N. M. Seidakhmetova, E. A. Mazulevsky, and B. A. Seitkhanov, “Choice of optimal conditions for leaching slags from crude antimony refining,” Vestn. Kazakhstansko-Britanskogo Tekhn. Un-ta, 14, Issue 4, 68–74 (2017). F. A. Berdikulova, Zh. U. Sadetova, N. M. Seidakhmetova, E. A. Mazulevsky, and B. A. Seitkhanov, “Choice of optimal conditions for leaching slags from crude antimony refining,” Vestn. Kazakhstansko-Britanskogo Tekhn. Un-ta, 14, Issue 4, 68–74 (2017).
Metadata
Title
Fire Refining of Rough Antimony from Impurities for Obtaining High-Grade Antimony
Authors
A. O. Sydykov
A. A. Zharmenov
E. A. Mazulevsky
N. M. Seidakhmetova
A. Mnadzharova
Publication date
01-02-2022
Publisher
Springer US
Published in
Metallurgist / Issue 9-10/2022
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-022-01262-w

Other articles of this Issue 9-10/2022

Metallurgist 9-10/2022 Go to the issue

Premium Partners