Skip to main content
Top
Published in: Journal of Materials Science 7/2014

01-04-2014

First-principles computational design and synthesis of hybrid carbon–silicon clathrates

Authors: Kwai S. Chan, Michael A. Miller, Wuwei Liang, Carol Ellis-Terrell, Xihong Peng

Published in: Journal of Materials Science | Issue 7/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Type I and Type II silicon clathrates (Si46 and Si136), which can be considered as analogs of carbon fullerene materials, are composed with face-sharing Si20, Si24, and Si28 cages linked through sp 3-covalent bonds. Besides silicon clathrates, theoretical computations have shown that both Type I carbon clathrate (C46) and Type II carbon clathrate (C136) may exist as metastable phases under high pressures. However, the energies of formation for the Type I and Type II carbon clathrates are extremely high and neither Type I nor Type II carbon clathrates have been synthesized. The objective of this investigation was to develop Type I hybrid carbon–silicon clathrates by substituting atoms on the silicon clathrate framework with C atoms. A first-principles computational approach was first utilized to design the framework structure and to identify appropriate guest atoms that are amenable to the formation of hybrid carbon–silicon clathrate compounds. A new class of Type I clathrates based on the carbon–silicon system was discovered as potential candidates. Some of the promising candidate clathrates were synthesized using an industrial arc-melting technique. The yield and stability of these newly discovered clathrates were evaluated. In addition, the electronic properties of selected clathrate materials were predicted using first-principles computations, which showed profound influences of the electronic properties by C atom substitution on the Si framework and insertion of guest atoms into the cage structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rogl P (2006) Intermetallic clathrates: a challenge for thermoelectric. Institute of Physical Chemistry, University of Vienna, Vienna Rogl P (2006) Intermetallic clathrates: a challenge for thermoelectric. Institute of Physical Chemistry, University of Vienna, Vienna
2.
go back to reference Rogl P (2005) Formation of clathrates, in thermoelectrics. In: Proceedings of the 24th International Conference on Thermoelectrics, pp 440–445 Rogl P (2005) Formation of clathrates, in thermoelectrics. In: Proceedings of the 24th International Conference on Thermoelectrics, pp 440–445
3.
go back to reference San-Miguel A, Toulemonde P (2005) High-pressure properties of group IV clathrates. High Press Res 25(3):159–185CrossRef San-Miguel A, Toulemonde P (2005) High-pressure properties of group IV clathrates. High Press Res 25(3):159–185CrossRef
4.
go back to reference Connetable D (2007) Structural and electronic properties of p-doped silicon clathrates. Phys Rev B 75(125202):1–10 Connetable D (2007) Structural and electronic properties of p-doped silicon clathrates. Phys Rev B 75(125202):1–10
5.
go back to reference Nolas GS, Slack GA (2001) Thermoelectric clathrates. Am Sci 89:136–141 Nolas GS, Slack GA (2001) Thermoelectric clathrates. Am Sci 89:136–141
6.
go back to reference Beckman M, Nolas GS (2008) Inorganic clathrate-II materials of group 14: synthetic routes and physical properties. J Mater Chem 18:842–851CrossRef Beckman M, Nolas GS (2008) Inorganic clathrate-II materials of group 14: synthetic routes and physical properties. J Mater Chem 18:842–851CrossRef
7.
go back to reference Saramat A, Svensson G, Palmqvist AEC et al (2006) Large thermoelectric figure of merit at high temperature in czochralski-grown clathrate Ba8Ga16Ge30. J Appl Phys 99(023708):1–5 Saramat A, Svensson G, Palmqvist AEC et al (2006) Large thermoelectric figure of merit at high temperature in czochralski-grown clathrate Ba8Ga16Ge30. J Appl Phys 99(023708):1–5
8.
go back to reference Kawaji H, Horie H-O, Yamanaka S, Ishikawa M (1995) Superconductivity in the silicon clathrate compound (Na, Ba) x Si46. Phys Rev Lett 74:1427–1429CrossRef Kawaji H, Horie H-O, Yamanaka S, Ishikawa M (1995) Superconductivity in the silicon clathrate compound (Na, Ba) x Si46. Phys Rev Lett 74:1427–1429CrossRef
9.
go back to reference Yamanaka S (2010) Silicon clathrates and carbon analogs: high pressure synthesis, structure, and superconductivity. Dalton Trans 39:1901–1915CrossRef Yamanaka S (2010) Silicon clathrates and carbon analogs: high pressure synthesis, structure, and superconductivity. Dalton Trans 39:1901–1915CrossRef
10.
go back to reference Li Y, Garcia J, Chen N et al (2013) Superconductivity in Al-substituted Ba8Si46 clathrates. J Appl Phy 113(203908):1–6 Li Y, Garcia J, Chen N et al (2013) Superconductivity in Al-substituted Ba8Si46 clathrates. J Appl Phy 113(203908):1–6
11.
go back to reference Chan KS, Chan CK, Liang W (2012) Silicon clathrate anodes for lithium-ion batteries, United States Patent Application Publication, US 0021283 A1 Chan KS, Chan CK, Liang W (2012) Silicon clathrate anodes for lithium-ion batteries, United States Patent Application Publication, US 0021283 A1
12.
go back to reference Langer T, Dupke S, Trill H et al (2012) Electrochemical lithiation of silicon clathrate-II. J Electrochem Soc 159(8):A1318–A1322CrossRef Langer T, Dupke S, Trill H et al (2012) Electrochemical lithiation of silicon clathrate-II. J Electrochem Soc 159(8):A1318–A1322CrossRef
13.
go back to reference Yang J, Tse JS (2013) Silicon clathrates as anode materials for lithium ion batteries? J Mater Chem A 1:7782–7789CrossRef Yang J, Tse JS (2013) Silicon clathrates as anode materials for lithium ion batteries? J Mater Chem A 1:7782–7789CrossRef
14.
15.
go back to reference San-Miguel A, Melinon P, Blasé X et al (2002) A new class of low compressibility materials: clathrates of silicon and related materials. High Press Res 22:539–544CrossRef San-Miguel A, Melinon P, Blasé X et al (2002) A new class of low compressibility materials: clathrates of silicon and related materials. High Press Res 22:539–544CrossRef
16.
go back to reference Pouchard M, Cros C, Hagenmuller P, Reny E et al (2002) A brief overview on low sodium content silicides: are they mainly clathrates, fullerenes, intercalation compounds or Zintl phases? Solid State Sci 4(5):723–729CrossRef Pouchard M, Cros C, Hagenmuller P, Reny E et al (2002) A brief overview on low sodium content silicides: are they mainly clathrates, fullerenes, intercalation compounds or Zintl phases? Solid State Sci 4(5):723–729CrossRef
17.
go back to reference Bobev S, Sevov SC (2000) Clathrates of group 14 with alkali metals: an exploration. J Solid State Chem Acad Press 153:92–105CrossRef Bobev S, Sevov SC (2000) Clathrates of group 14 with alkali metals: an exploration. J Solid State Chem Acad Press 153:92–105CrossRef
18.
19.
go back to reference Nolas GS, Slacjk GA, Schujman SB (1966) Semiconductor clathrates: a phonon glass electron crystal material with potential for thermoelectric applications. In: Tritt TM (ed) Semiconductors and Semimetals, chap 6, vol 69. Academic Press, San Diego, pp 255–300 Nolas GS, Slacjk GA, Schujman SB (1966) Semiconductor clathrates: a phonon glass electron crystal material with potential for thermoelectric applications. In: Tritt TM (ed) Semiconductors and Semimetals, chap 6, vol 69. Academic Press, San Diego, pp 255–300
20.
go back to reference Perottoni CA, da Jornada JAH (2001) The carbon analogues of type-I silicon clathrates. J Phys Condens Matter 13:5981–5998 Perottoni CA, da Jornada JAH (2001) The carbon analogues of type-I silicon clathrates. J Phys Condens Matter 13:5981–5998
21.
go back to reference Wang J-T, Chen C, Wang D-S, Mizuseki H, Kawazoe Y (2010) Phase stability of carbon clathrates at high pressure. J Appl Phys 107(063507):1–4 Wang J-T, Chen C, Wang D-S, Mizuseki H, Kawazoe Y (2010) Phase stability of carbon clathrates at high pressure. J Appl Phys 107(063507):1–4
22.
go back to reference Rey N, Muñoz A, Rodríquez-Hernández P, San-Miguel A (2008) First-principles study of lithium-doped carbon clathrates under pressure. J Phys Condens Matter 20:215218–215224CrossRef Rey N, Muñoz A, Rodríquez-Hernández P, San-Miguel A (2008) First-principles study of lithium-doped carbon clathrates under pressure. J Phys Condens Matter 20:215218–215224CrossRef
23.
go back to reference Meng JF, Shekar VC, Badding JV, Nolas GS (2001) Threefold enhancement of the thermoelectric figure of merit for pressure tuned Sr8Ga16Ge30. J Appl Phys 89:1730–1733CrossRef Meng JF, Shekar VC, Badding JV, Nolas GS (2001) Threefold enhancement of the thermoelectric figure of merit for pressure tuned Sr8Ga16Ge30. J Appl Phys 89:1730–1733CrossRef
24.
go back to reference Blake NP, Latturner S, Bryan JD, Stucky GD, Metiu H (2001) Band structure and thermoelectric properties of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga16Si30, and Ba8In16Sn30. J Chem Phys 115:8060–8073CrossRef Blake NP, Latturner S, Bryan JD, Stucky GD, Metiu H (2001) Band structure and thermoelectric properties of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga16Si30, and Ba8In16Sn30. J Chem Phys 115:8060–8073CrossRef
25.
go back to reference Jung W, Lorincz J, Ramlau R, Borrmann H et al (2007) K7B7Si39, a borosilicide with the clathrate I structure. Angewandte Chem 46:6725–6728 Jung W, Lorincz J, Ramlau R, Borrmann H et al (2007) K7B7Si39, a borosilicide with the clathrate I structure. Angewandte Chem 46:6725–6728
26.
go back to reference Adams GB, O’Keeffe M, Kemkov AA, Sankey OF, Huang Y-M (1994) Wide-band-gap Si in open fourfold-coordinated clathrate structures. Phys Rev B 49:8053–8084CrossRef Adams GB, O’Keeffe M, Kemkov AA, Sankey OF, Huang Y-M (1994) Wide-band-gap Si in open fourfold-coordinated clathrate structures. Phys Rev B 49:8053–8084CrossRef
27.
go back to reference Melinon P, Keghelian P, Perez A, Champagnon B et al (1999) Phonon density of states of silicon clathrates: characteristic width narrowing effect with respect to the diamond phase. Phys Rev B 59:10099–10103CrossRef Melinon P, Keghelian P, Perez A, Champagnon B et al (1999) Phonon density of states of silicon clathrates: characteristic width narrowing effect with respect to the diamond phase. Phys Rev B 59:10099–10103CrossRef
28.
go back to reference Car R, Parrinello M (2008) Molecular dynamics: an ab initio electronic structure and molecular dynamics program, Version 3.13.1, The CPMD Consortium, June 27, 2008. http://www.cpmd.org. Accessed 4 Jan 2014 Car R, Parrinello M (2008) Molecular dynamics: an ab initio electronic structure and molecular dynamics program, Version 3.13.1, The CPMD Consortium, June 27, 2008. http://​www.​cpmd.​org. Accessed 4 Jan 2014
29.
go back to reference Car R, Parrinello M (1985) Unified approach for molecular dynamics and density functional theory. Phys Rev Lett 55(22):2471CrossRef Car R, Parrinello M (1985) Unified approach for molecular dynamics and density functional theory. Phys Rev Lett 55(22):2471CrossRef
30.
go back to reference Perdew P, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef Perdew P, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef
31.
go back to reference Blochl PE (1994) Projected augmented-wave method. Phys Rev B 50(24):17953–17979CrossRef Blochl PE (1994) Projected augmented-wave method. Phys Rev B 50(24):17953–17979CrossRef
32.
go back to reference Kresse G, Joubert D (1999) From ultra soft pseudo potentials to projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRef Kresse G, Joubert D (1999) From ultra soft pseudo potentials to projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRef
33.
go back to reference Kresse G, Marsman M, Furthmüller J (2012) Vienna ab initio simulation package—VASP the guide. Universität Wien, Wien Kresse G, Marsman M, Furthmüller J (2012) Vienna ab initio simulation package—VASP the guide. Universität Wien, Wien
34.
go back to reference Tsujii N, Roudebush JH, Zevalkink A et al (2011) Phase stability and chemical composition dependence of the thermoelectric properties of the type-1 clathrate Ba8A1 x Si46−x (8 ≤ x ≤ 15). J Solid State Chem 184(5):1293–1303CrossRef Tsujii N, Roudebush JH, Zevalkink A et al (2011) Phase stability and chemical composition dependence of the thermoelectric properties of the type-1 clathrate Ba8A1 x Si46−x (8 ≤ x ≤ 15). J Solid State Chem 184(5):1293–1303CrossRef
35.
go back to reference Kitano A, Moriguchi K, Yonemura M, Munetoh S, Shintani A (2001) Structural properties and thermodynamic stability of Ba-doped silicon type-I clathrates synthesized under high pressure. Phys Rev B 64(045206):1–9 Kitano A, Moriguchi K, Yonemura M, Munetoh S, Shintani A (2001) Structural properties and thermodynamic stability of Ba-doped silicon type-I clathrates synthesized under high pressure. Phys Rev B 64(045206):1–9
36.
go back to reference Yamanaka S, Enishi E, Fukuoka H, Yasukawa M (2000) High-pressure synthesis of a new silicon clathrate superconductor, Ba8Si46. Inorg Chem 39:56–58CrossRef Yamanaka S, Enishi E, Fukuoka H, Yasukawa M (2000) High-pressure synthesis of a new silicon clathrate superconductor, Ba8Si46. Inorg Chem 39:56–58CrossRef
37.
go back to reference Liang Y, Böhme B, Reibold M, Schnelle W, Schwarz U, Baitinger M (2011) Synthesis of the clathrate-1 phase Ba8−x Si46 via redox reactions. Inorg Chem 50:4523–4528CrossRef Liang Y, Böhme B, Reibold M, Schnelle W, Schwarz U, Baitinger M (2011) Synthesis of the clathrate-1 phase Ba8−x Si46 via redox reactions. Inorg Chem 50:4523–4528CrossRef
38.
go back to reference Diamond Version 3.2 (2013) Crystal Impact, Bonn, Germany Diamond Version 3.2 (2013) Crystal Impact, Bonn, Germany
Metadata
Title
First-principles computational design and synthesis of hybrid carbon–silicon clathrates
Authors
Kwai S. Chan
Michael A. Miller
Wuwei Liang
Carol Ellis-Terrell
Xihong Peng
Publication date
01-04-2014
Publisher
Springer US
Published in
Journal of Materials Science / Issue 7/2014
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-013-7973-6

Other articles of this Issue 7/2014

Journal of Materials Science 7/2014 Go to the issue

Premium Partners