Skip to main content
Erschienen in: Journal of Materials Science 7/2014

01.04.2014

First-principles computational design and synthesis of hybrid carbon–silicon clathrates

verfasst von: Kwai S. Chan, Michael A. Miller, Wuwei Liang, Carol Ellis-Terrell, Xihong Peng

Erschienen in: Journal of Materials Science | Ausgabe 7/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Type I and Type II silicon clathrates (Si46 and Si136), which can be considered as analogs of carbon fullerene materials, are composed with face-sharing Si20, Si24, and Si28 cages linked through sp 3-covalent bonds. Besides silicon clathrates, theoretical computations have shown that both Type I carbon clathrate (C46) and Type II carbon clathrate (C136) may exist as metastable phases under high pressures. However, the energies of formation for the Type I and Type II carbon clathrates are extremely high and neither Type I nor Type II carbon clathrates have been synthesized. The objective of this investigation was to develop Type I hybrid carbon–silicon clathrates by substituting atoms on the silicon clathrate framework with C atoms. A first-principles computational approach was first utilized to design the framework structure and to identify appropriate guest atoms that are amenable to the formation of hybrid carbon–silicon clathrate compounds. A new class of Type I clathrates based on the carbon–silicon system was discovered as potential candidates. Some of the promising candidate clathrates were synthesized using an industrial arc-melting technique. The yield and stability of these newly discovered clathrates were evaluated. In addition, the electronic properties of selected clathrate materials were predicted using first-principles computations, which showed profound influences of the electronic properties by C atom substitution on the Si framework and insertion of guest atoms into the cage structure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rogl P (2006) Intermetallic clathrates: a challenge for thermoelectric. Institute of Physical Chemistry, University of Vienna, Vienna Rogl P (2006) Intermetallic clathrates: a challenge for thermoelectric. Institute of Physical Chemistry, University of Vienna, Vienna
2.
Zurück zum Zitat Rogl P (2005) Formation of clathrates, in thermoelectrics. In: Proceedings of the 24th International Conference on Thermoelectrics, pp 440–445 Rogl P (2005) Formation of clathrates, in thermoelectrics. In: Proceedings of the 24th International Conference on Thermoelectrics, pp 440–445
3.
Zurück zum Zitat San-Miguel A, Toulemonde P (2005) High-pressure properties of group IV clathrates. High Press Res 25(3):159–185CrossRef San-Miguel A, Toulemonde P (2005) High-pressure properties of group IV clathrates. High Press Res 25(3):159–185CrossRef
4.
Zurück zum Zitat Connetable D (2007) Structural and electronic properties of p-doped silicon clathrates. Phys Rev B 75(125202):1–10 Connetable D (2007) Structural and electronic properties of p-doped silicon clathrates. Phys Rev B 75(125202):1–10
5.
Zurück zum Zitat Nolas GS, Slack GA (2001) Thermoelectric clathrates. Am Sci 89:136–141 Nolas GS, Slack GA (2001) Thermoelectric clathrates. Am Sci 89:136–141
6.
Zurück zum Zitat Beckman M, Nolas GS (2008) Inorganic clathrate-II materials of group 14: synthetic routes and physical properties. J Mater Chem 18:842–851CrossRef Beckman M, Nolas GS (2008) Inorganic clathrate-II materials of group 14: synthetic routes and physical properties. J Mater Chem 18:842–851CrossRef
7.
Zurück zum Zitat Saramat A, Svensson G, Palmqvist AEC et al (2006) Large thermoelectric figure of merit at high temperature in czochralski-grown clathrate Ba8Ga16Ge30. J Appl Phys 99(023708):1–5 Saramat A, Svensson G, Palmqvist AEC et al (2006) Large thermoelectric figure of merit at high temperature in czochralski-grown clathrate Ba8Ga16Ge30. J Appl Phys 99(023708):1–5
8.
Zurück zum Zitat Kawaji H, Horie H-O, Yamanaka S, Ishikawa M (1995) Superconductivity in the silicon clathrate compound (Na, Ba) x Si46. Phys Rev Lett 74:1427–1429CrossRef Kawaji H, Horie H-O, Yamanaka S, Ishikawa M (1995) Superconductivity in the silicon clathrate compound (Na, Ba) x Si46. Phys Rev Lett 74:1427–1429CrossRef
9.
Zurück zum Zitat Yamanaka S (2010) Silicon clathrates and carbon analogs: high pressure synthesis, structure, and superconductivity. Dalton Trans 39:1901–1915CrossRef Yamanaka S (2010) Silicon clathrates and carbon analogs: high pressure synthesis, structure, and superconductivity. Dalton Trans 39:1901–1915CrossRef
10.
Zurück zum Zitat Li Y, Garcia J, Chen N et al (2013) Superconductivity in Al-substituted Ba8Si46 clathrates. J Appl Phy 113(203908):1–6 Li Y, Garcia J, Chen N et al (2013) Superconductivity in Al-substituted Ba8Si46 clathrates. J Appl Phy 113(203908):1–6
11.
Zurück zum Zitat Chan KS, Chan CK, Liang W (2012) Silicon clathrate anodes for lithium-ion batteries, United States Patent Application Publication, US 0021283 A1 Chan KS, Chan CK, Liang W (2012) Silicon clathrate anodes for lithium-ion batteries, United States Patent Application Publication, US 0021283 A1
12.
Zurück zum Zitat Langer T, Dupke S, Trill H et al (2012) Electrochemical lithiation of silicon clathrate-II. J Electrochem Soc 159(8):A1318–A1322CrossRef Langer T, Dupke S, Trill H et al (2012) Electrochemical lithiation of silicon clathrate-II. J Electrochem Soc 159(8):A1318–A1322CrossRef
13.
Zurück zum Zitat Yang J, Tse JS (2013) Silicon clathrates as anode materials for lithium ion batteries? J Mater Chem A 1:7782–7789CrossRef Yang J, Tse JS (2013) Silicon clathrates as anode materials for lithium ion batteries? J Mater Chem A 1:7782–7789CrossRef
14.
Zurück zum Zitat Wagner NA, Raghaven, R, Zhaoe R et al (2013) Electrochemical cycling of sodium-filled silicon clathrate, CHEMELECTROCHEM (published on-line). doi:10.1002/celc.201300104 Wagner NA, Raghaven, R, Zhaoe R et al (2013) Electrochemical cycling of sodium-filled silicon clathrate, CHEMELECTROCHEM (published on-line). doi:10.​1002/​celc.​201300104
15.
Zurück zum Zitat San-Miguel A, Melinon P, Blasé X et al (2002) A new class of low compressibility materials: clathrates of silicon and related materials. High Press Res 22:539–544CrossRef San-Miguel A, Melinon P, Blasé X et al (2002) A new class of low compressibility materials: clathrates of silicon and related materials. High Press Res 22:539–544CrossRef
16.
Zurück zum Zitat Pouchard M, Cros C, Hagenmuller P, Reny E et al (2002) A brief overview on low sodium content silicides: are they mainly clathrates, fullerenes, intercalation compounds or Zintl phases? Solid State Sci 4(5):723–729CrossRef Pouchard M, Cros C, Hagenmuller P, Reny E et al (2002) A brief overview on low sodium content silicides: are they mainly clathrates, fullerenes, intercalation compounds or Zintl phases? Solid State Sci 4(5):723–729CrossRef
17.
Zurück zum Zitat Bobev S, Sevov SC (2000) Clathrates of group 14 with alkali metals: an exploration. J Solid State Chem Acad Press 153:92–105CrossRef Bobev S, Sevov SC (2000) Clathrates of group 14 with alkali metals: an exploration. J Solid State Chem Acad Press 153:92–105CrossRef
18.
Zurück zum Zitat Shevelkov AV, Kovnir K (2011) Zintl Clathrates. Struc Bond 139:97–142CrossRef Shevelkov AV, Kovnir K (2011) Zintl Clathrates. Struc Bond 139:97–142CrossRef
19.
Zurück zum Zitat Nolas GS, Slacjk GA, Schujman SB (1966) Semiconductor clathrates: a phonon glass electron crystal material with potential for thermoelectric applications. In: Tritt TM (ed) Semiconductors and Semimetals, chap 6, vol 69. Academic Press, San Diego, pp 255–300 Nolas GS, Slacjk GA, Schujman SB (1966) Semiconductor clathrates: a phonon glass electron crystal material with potential for thermoelectric applications. In: Tritt TM (ed) Semiconductors and Semimetals, chap 6, vol 69. Academic Press, San Diego, pp 255–300
20.
Zurück zum Zitat Perottoni CA, da Jornada JAH (2001) The carbon analogues of type-I silicon clathrates. J Phys Condens Matter 13:5981–5998 Perottoni CA, da Jornada JAH (2001) The carbon analogues of type-I silicon clathrates. J Phys Condens Matter 13:5981–5998
21.
Zurück zum Zitat Wang J-T, Chen C, Wang D-S, Mizuseki H, Kawazoe Y (2010) Phase stability of carbon clathrates at high pressure. J Appl Phys 107(063507):1–4 Wang J-T, Chen C, Wang D-S, Mizuseki H, Kawazoe Y (2010) Phase stability of carbon clathrates at high pressure. J Appl Phys 107(063507):1–4
22.
Zurück zum Zitat Rey N, Muñoz A, Rodríquez-Hernández P, San-Miguel A (2008) First-principles study of lithium-doped carbon clathrates under pressure. J Phys Condens Matter 20:215218–215224CrossRef Rey N, Muñoz A, Rodríquez-Hernández P, San-Miguel A (2008) First-principles study of lithium-doped carbon clathrates under pressure. J Phys Condens Matter 20:215218–215224CrossRef
23.
Zurück zum Zitat Meng JF, Shekar VC, Badding JV, Nolas GS (2001) Threefold enhancement of the thermoelectric figure of merit for pressure tuned Sr8Ga16Ge30. J Appl Phys 89:1730–1733CrossRef Meng JF, Shekar VC, Badding JV, Nolas GS (2001) Threefold enhancement of the thermoelectric figure of merit for pressure tuned Sr8Ga16Ge30. J Appl Phys 89:1730–1733CrossRef
24.
Zurück zum Zitat Blake NP, Latturner S, Bryan JD, Stucky GD, Metiu H (2001) Band structure and thermoelectric properties of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga16Si30, and Ba8In16Sn30. J Chem Phys 115:8060–8073CrossRef Blake NP, Latturner S, Bryan JD, Stucky GD, Metiu H (2001) Band structure and thermoelectric properties of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga16Si30, and Ba8In16Sn30. J Chem Phys 115:8060–8073CrossRef
25.
Zurück zum Zitat Jung W, Lorincz J, Ramlau R, Borrmann H et al (2007) K7B7Si39, a borosilicide with the clathrate I structure. Angewandte Chem 46:6725–6728 Jung W, Lorincz J, Ramlau R, Borrmann H et al (2007) K7B7Si39, a borosilicide with the clathrate I structure. Angewandte Chem 46:6725–6728
26.
Zurück zum Zitat Adams GB, O’Keeffe M, Kemkov AA, Sankey OF, Huang Y-M (1994) Wide-band-gap Si in open fourfold-coordinated clathrate structures. Phys Rev B 49:8053–8084CrossRef Adams GB, O’Keeffe M, Kemkov AA, Sankey OF, Huang Y-M (1994) Wide-band-gap Si in open fourfold-coordinated clathrate structures. Phys Rev B 49:8053–8084CrossRef
27.
Zurück zum Zitat Melinon P, Keghelian P, Perez A, Champagnon B et al (1999) Phonon density of states of silicon clathrates: characteristic width narrowing effect with respect to the diamond phase. Phys Rev B 59:10099–10103CrossRef Melinon P, Keghelian P, Perez A, Champagnon B et al (1999) Phonon density of states of silicon clathrates: characteristic width narrowing effect with respect to the diamond phase. Phys Rev B 59:10099–10103CrossRef
28.
Zurück zum Zitat Car R, Parrinello M (2008) Molecular dynamics: an ab initio electronic structure and molecular dynamics program, Version 3.13.1, The CPMD Consortium, June 27, 2008. http://www.cpmd.org. Accessed 4 Jan 2014 Car R, Parrinello M (2008) Molecular dynamics: an ab initio electronic structure and molecular dynamics program, Version 3.13.1, The CPMD Consortium, June 27, 2008. http://​www.​cpmd.​org. Accessed 4 Jan 2014
29.
Zurück zum Zitat Car R, Parrinello M (1985) Unified approach for molecular dynamics and density functional theory. Phys Rev Lett 55(22):2471CrossRef Car R, Parrinello M (1985) Unified approach for molecular dynamics and density functional theory. Phys Rev Lett 55(22):2471CrossRef
30.
Zurück zum Zitat Perdew P, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef Perdew P, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef
31.
Zurück zum Zitat Blochl PE (1994) Projected augmented-wave method. Phys Rev B 50(24):17953–17979CrossRef Blochl PE (1994) Projected augmented-wave method. Phys Rev B 50(24):17953–17979CrossRef
32.
Zurück zum Zitat Kresse G, Joubert D (1999) From ultra soft pseudo potentials to projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRef Kresse G, Joubert D (1999) From ultra soft pseudo potentials to projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRef
33.
Zurück zum Zitat Kresse G, Marsman M, Furthmüller J (2012) Vienna ab initio simulation package—VASP the guide. Universität Wien, Wien Kresse G, Marsman M, Furthmüller J (2012) Vienna ab initio simulation package—VASP the guide. Universität Wien, Wien
34.
Zurück zum Zitat Tsujii N, Roudebush JH, Zevalkink A et al (2011) Phase stability and chemical composition dependence of the thermoelectric properties of the type-1 clathrate Ba8A1 x Si46−x (8 ≤ x ≤ 15). J Solid State Chem 184(5):1293–1303CrossRef Tsujii N, Roudebush JH, Zevalkink A et al (2011) Phase stability and chemical composition dependence of the thermoelectric properties of the type-1 clathrate Ba8A1 x Si46−x (8 ≤ x ≤ 15). J Solid State Chem 184(5):1293–1303CrossRef
35.
Zurück zum Zitat Kitano A, Moriguchi K, Yonemura M, Munetoh S, Shintani A (2001) Structural properties and thermodynamic stability of Ba-doped silicon type-I clathrates synthesized under high pressure. Phys Rev B 64(045206):1–9 Kitano A, Moriguchi K, Yonemura M, Munetoh S, Shintani A (2001) Structural properties and thermodynamic stability of Ba-doped silicon type-I clathrates synthesized under high pressure. Phys Rev B 64(045206):1–9
36.
Zurück zum Zitat Yamanaka S, Enishi E, Fukuoka H, Yasukawa M (2000) High-pressure synthesis of a new silicon clathrate superconductor, Ba8Si46. Inorg Chem 39:56–58CrossRef Yamanaka S, Enishi E, Fukuoka H, Yasukawa M (2000) High-pressure synthesis of a new silicon clathrate superconductor, Ba8Si46. Inorg Chem 39:56–58CrossRef
37.
Zurück zum Zitat Liang Y, Böhme B, Reibold M, Schnelle W, Schwarz U, Baitinger M (2011) Synthesis of the clathrate-1 phase Ba8−x Si46 via redox reactions. Inorg Chem 50:4523–4528CrossRef Liang Y, Böhme B, Reibold M, Schnelle W, Schwarz U, Baitinger M (2011) Synthesis of the clathrate-1 phase Ba8−x Si46 via redox reactions. Inorg Chem 50:4523–4528CrossRef
38.
Zurück zum Zitat Diamond Version 3.2 (2013) Crystal Impact, Bonn, Germany Diamond Version 3.2 (2013) Crystal Impact, Bonn, Germany
Metadaten
Titel
First-principles computational design and synthesis of hybrid carbon–silicon clathrates
verfasst von
Kwai S. Chan
Michael A. Miller
Wuwei Liang
Carol Ellis-Terrell
Xihong Peng
Publikationsdatum
01.04.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-013-7973-6

Weitere Artikel der Ausgabe 7/2014

Journal of Materials Science 7/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.