Skip to main content
Top
Published in: Multimedia Systems 5/2022

01-04-2022 | Regular Paper

Fixed-resolution representation network for human pose estimation

Authors: Yongxiang Liu, Xiaorong Hou

Published in: Multimedia Systems | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Human pose estimation from a single image is a fundamental yet challenging task in computer vision. Most existing methods gradually generated multi-resolution from high-resolution to low-resolution, then recovered the higher resolution from the low resolution and used it to generate final pose heatmaps, such as Hourglass and HRNet and their variants. In this paper, we propose a novel architecture named fixed-resolution representation network for human pose estimation, which maintains fixed-resolution through the whole process to keep rich spatial-structural information. An Improved Pyramid Convolutional Bottleneck (IPCB) is firstly proposed to encode feature maps with multi receptive fields with the same resolution. Secondly, we introduce an efficient channel attention mechanism to enhance the feature extraction and information selection capability of IPCB, making the performance of IPCB better. Thirdly, considering the deviation from using the flip test of reasoning, we use an existing technology: Unbiased Data Processing. Fourthly, due to the change of the model structure and the limited computing resources, we introduce an iterative retraining strategy to solve the problem of pre-training. We empirically demonstrate the effectiveness of our method and achieve a competitive performance with 1.7M parameters and 3G FLOPs, 89.5 (PCKh@0.5) and 92.7 (PCK@0.2) respectively, compared with the state-of-the-art methods on the benchmark dataset: the MPII and LSP key points detection dataset.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang, C., Wang, Y., Yuille, A.L.: An approach to pose-based action recognition. In: CVPR, pp. 915–922 (2013) Wang, C., Wang, Y., Yuille, A.L.: An approach to pose-based action recognition. In: CVPR, pp. 915–922 (2013)
2.
go back to reference Zheng, L., Huang, Y., Lu, H., Yang, Y.: Pose invariant embedding for deep person re-identification. Proc. IEEE Trans. Image Process. 28, 4500–4509 (2019)MathSciNetCrossRef Zheng, L., Huang, Y., Lu, H., Yang, Y.: Pose invariant embedding for deep person re-identification. Proc. IEEE Trans. Image Process. 28, 4500–4509 (2019)MathSciNetCrossRef
3.
go back to reference Zhang, Z.: Microsoft kinect sensor and its effect. IEEE MultiMedia 19, 4–10 (2012)CrossRef Zhang, Z.: Microsoft kinect sensor and its effect. IEEE MultiMedia 19, 4–10 (2012)CrossRef
4.
go back to reference Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware Siamese networks for visual object tracking. In: ECCV, pp. 103–119 (2018) Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware Siamese networks for visual object tracking. In: ECCV, pp. 103–119 (2018)
5.
go back to reference Li, Y., Chen, X., Zhu, Z., Xie, L., Huang, G., Du, D., Wang, X.: Attention-guided unified network for panoptic segmentation. In: CVPR, pp. 7019–7028 (2019) Li, Y., Chen, X., Zhu, Z., Xie, L., Huang, G., Du, D., Wang, X.: Attention-guided unified network for panoptic segmentation. In: CVPR, pp. 7019–7028 (2019)
6.
go back to reference Zhu, J., Zou, W., Xu, L., Hu, Y., Zhu, Z., Chang, M., Huang, J., Huang, G., Du, D.: Action machine: rethinking action recognition in trimmed videos. In: arXiv (2018) Zhu, J., Zou, W., Xu, L., Hu, Y., Zhu, Z., Chang, M., Huang, J., Huang, G., Du, D.: Action machine: rethinking action recognition in trimmed videos. In: arXiv (2018)
7.
go back to reference Zhu, J., Zou, W., Zhu, Z., Hu, Y.: Convolutional relation network for skeleton-based action recognition. Neurocomputing 370, 109–117 (2019)CrossRef Zhu, J., Zou, W., Zhu, Z., Hu, Y.: Convolutional relation network for skeleton-based action recognition. Neurocomputing 370, 109–117 (2019)CrossRef
8.
go back to reference Zhu, J., Zou, W., Zhu, Z.: End-to-end video-live representation learning for action recognition. In: ICPR, pp. 645–650 (2018) Zhu, J., Zou, W., Zhu, Z.: End-to-end video-live representation learning for action recognition. In: ICPR, pp. 645–650 (2018)
9.
go back to reference Zhu, J., Zhou, W., Zhu, Z.: Two-stream gated fusion convnets for action recognition. In: ICPR, pp. 597–602 (2018) Zhu, J., Zhou, W., Zhu, Z.: Two-stream gated fusion convnets for action recognition. In: ICPR, pp. 597–602 (2018)
10.
go back to reference Tompson, J., Jain, A., LeCun, Y., Bregler, C.: Joint training of a convolutional network and a graphical model for human pose estimation. NIPS 27, 1799–1807 (2014) Tompson, J., Jain, A., LeCun, Y., Bregler, C.: Joint training of a convolutional network and a graphical model for human pose estimation. NIPS 27, 1799–1807 (2014)
11.
go back to reference Toshev, A., Szegedy DeepPose, C.: Human pose estimation via deep neural networks. CVPR 27, 1653–1660 (2014) Toshev, A., Szegedy DeepPose, C.: Human pose estimation via deep neural networks. CVPR 27, 1653–1660 (2014)
12.
go back to reference Newell, A., Yang, K.: Jia Deng Stacked hourglass networks for human pose estimation. ECCV 9912, 483–499 (2016) Newell, A., Yang, K.: Jia Deng Stacked hourglass networks for human pose estimation. ECCV 9912, 483–499 (2016)
13.
go back to reference Carreira, J., Agrawal, P., Fragkiadaki, K., Malik, J.: Human pose estimation with iterative error feedback. In: CVPR, pp. 4733–4742 (2016) Carreira, J., Agrawal, P., Fragkiadaki, K., Malik, J.: Human pose estimation with iterative error feedback. In: CVPR, pp. 4733–4742 (2016)
14.
go back to reference Wei, S., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. CVPR 9912, 4724–4732 (2016) Wei, S., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. CVPR 9912, 4724–4732 (2016)
15.
go back to reference Chen, Y., Yingli, T., Mingyi, H.: Monocular human pose estimation: a survey of deep learning-based methods. Comput. Vis. Image Understand. 192, 102897 (2020)CrossRef Chen, Y., Yingli, T., Mingyi, H.: Monocular human pose estimation: a survey of deep learning-based methods. Comput. Vis. Image Understand. 192, 102897 (2020)CrossRef
16.
go back to reference Yang, W., Li, S., Ouyang, W., Li, H., Wang, X.: Learning feature pyramids for human pose estimation. ICCV 27, 1799–1807 (2017) Yang, W., Li, S., Ouyang, W., Li, H., Wang, X.: Learning feature pyramids for human pose estimation. ICCV 27, 1799–1807 (2017)
17.
go back to reference Rafi, U., Leibe, B., Gall, J., Kostrikov, I.: An efficient convolutional network for human pose estimation. In: BMVC (2016) Rafi, U., Leibe, B., Gall, J., Kostrikov, I.: An efficient convolutional network for human pose estimation. In: BMVC (2016)
18.
go back to reference Belagiannis, V., Zisserman, A.: Recurrent human pose estimation. In: IEEE International Conference on Automatic Face and Gesture Recognition (FG 2017), pp. 468–475 (2017) Belagiannis, V., Zisserman, A.: Recurrent human pose estimation. In: IEEE International Conference on Automatic Face and Gesture Recognition (FG 2017), pp. 468–475 (2017)
19.
go back to reference Bulat, A., Tzimiropoulos, G.: Human pose estimation via convolutional part heatmap regression. ECCV 9911, 717–732 (2016) Bulat, A., Tzimiropoulos, G.: Human pose estimation via convolutional part heatmap regression. ECCV 9911, 717–732 (2016)
20.
go back to reference Nie, X., Feng, J., Zuo, Y., Yan, S.: Human pose estimation with parsing induced learner. In: CVPR (2018) Nie, X., Feng, J., Zuo, Y., Yan, S.: Human pose estimation with parsing induced learner. In: CVPR (2018)
21.
go back to reference Zhang, F., Zhu, X., Ye, M.: Fast human pose estimation. In: CVPR, pp. 3512–3521 (2019) Zhang, F., Zhu, X., Ye, M.: Fast human pose estimation. In: CVPR, pp. 3512–3521 (2019)
22.
go back to reference Lipeng, K., Ming Ching, C., Honggang, Q., Siwei, L.: Multi-scale structure-aware network for human pose estimation. In: ECCV (2018) Lipeng, K., Ming Ching, C., Honggang, Q., Siwei, L.: Multi-scale structure-aware network for human pose estimation. In: ECCV (2018)
23.
go back to reference Sun, K., xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR, pp. 5686–5696 (2019) Sun, K., xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR, pp. 5686–5696 (2019)
24.
go back to reference Cheng, B., Xiao, B., Wang, J., Shi, H., Huang, T.S., Zhang, L.: HigherHRNet: scale-aware representation learning for bottom-up human pose estimation. In: CVPR, pp. 5385–5394 (2020) Cheng, B., Xiao, B., Wang, J., Shi, H., Huang, T.S., Zhang, L.: HigherHRNet: scale-aware representation learning for bottom-up human pose estimation. In: CVPR, pp. 5385–5394 (2020)
25.
go back to reference Cai, Y., Wang, Z., Luo, Z., Yin, B., Angang, D., Wang, H., Zhang, X., Zhou, X., Zhou, E., Sun, J.: Learning delicate local representations for multi-person pose estimation. ECCV 12348, 455–472 (2020) Cai, Y., Wang, Z., Luo, Z., Yin, B., Angang, D., Wang, H., Zhang, X., Zhou, X., Zhou, E., Sun, J.: Learning delicate local representations for multi-person pose estimation. ECCV 12348, 455–472 (2020)
26.
go back to reference Kim, S.-T., Lee, H.J.: Lightweight stacked hourglass network for human pose estimation. In: Appl. Sci., 10 (2020) Kim, S.-T., Lee, H.J.: Lightweight stacked hourglass network for human pose estimation. In: Appl. Sci., 10 (2020)
27.
go back to reference Lianping, Y., Qin, Y., Xiangde, Z.: Lightweight densely connected residual network for human pose estimation. Real Time Image Process 18, 825–827 (2021)CrossRef Lianping, Y., Qin, Y., Xiangde, Z.: Lightweight densely connected residual network for human pose estimation. Real Time Image Process 18, 825–827 (2021)CrossRef
28.
go back to reference Xiao, Y., Yu, D., Wang, X., Lv, T., Fan, Y., Wu, L.: SPCNet: spatial preserve and content-aware network for human pose estimation. In: European Conference on Artificial Intelligence, pp. 2776–2783 (2020) Xiao, Y., Yu, D., Wang, X., Lv, T., Fan, Y., Wu, L.: SPCNet: spatial preserve and content-aware network for human pose estimation. In: European Conference on Artificial Intelligence, pp. 2776–2783 (2020)
29.
go back to reference Yu, C., Xiao, B., Gao, C.: et. Lite-HRNet: a lightweight high-resolution network. In: CVPR, pp. 10440–10450 (2021) Yu, C., Xiao, B., Gao, C.: et. Lite-HRNet: a lightweight high-resolution network. In: CVPR, pp. 10440–10450 (2021)
30.
go back to reference Zhang, F., Zhu, X., Ye, M.: Fast human pose estimation. In: CVPR, pp. 3517–3526 (2019) Zhang, F., Zhu, X., Ye, M.: Fast human pose estimation. In: CVPR, pp. 3517–3526 (2019)
31.
go back to reference Ren, Z., Zhou, Y., Chen, Y., et al.: Efficient human pose estimation by maximizing fusion and high-level spatial attention. In: arXiv (2021) Ren, Z., Zhou, Y., Chen, Y., et al.: Efficient human pose estimation by maximizing fusion and high-level spatial attention. In: arXiv (2021)
32.
go back to reference Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient object localization using convolutional networks. In: CVPR, pp. 648–656 (2015) Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient object localization using convolutional networks. In: CVPR, pp. 648–656 (2015)
33.
go back to reference Hou, L., Cao, J., Zhao, Y., et al.: \(P^{2}\) Net: augmented parallel-pyramid net for attention guided pose estimation. In: ICPR, pp. 9658–9665 (2020) Hou, L., Cao, J., Zhao, Y., et al.: \(P^{2}\) Net: augmented parallel-pyramid net for attention guided pose estimation. In: ICPR, pp. 9658–9665 (2020)
34.
go back to reference Yang, H., Guo, L., Wu, X., et al.: Scale-aware attention-based multi-resolution representation for multi-person pose estimation. In: Multimedia Systems (2021) Yang, H., Guo, L., Wu, X., et al.: Scale-aware attention-based multi-resolution representation for multi-person pose estimation. In: Multimedia Systems (2021)
35.
go back to reference Artacho, B., Savakis, A.: OmniPose: a multi-scale framework for multi-person pose estimation. In: arXiv (2021) Artacho, B., Savakis, A.: OmniPose: a multi-scale framework for multi-person pose estimation. In: arXiv (2021)
36.
go back to reference Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., Tang, X.: Residual attention network for image classification. In: CVPR, pp. 6450–6458 (2017) Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., Tang, X.: Residual attention network for image classification. In: CVPR, pp. 6450–6458 (2017)
37.
go back to reference Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018) Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)
38.
go back to reference Ba, J., Mnih, V., Kavukcuoglu, K.: Multiple object recognition with visual attention. In: arXiv, pp. 1412–7755 (2014) Ba, J., Mnih, V., Kavukcuoglu, K.: Multiple object recognition with visual attention. In: arXiv, pp. 1412–7755 (2014)
39.
go back to reference Yang, Z., He, X., Gao, J., Deng, L., Smola, A.: Stacked attention networks for image question answering. In: CVPR, pp. 21–29 (2016) Yang, Z., He, X., Gao, J., Deng, L., Smola, A.: Stacked attention networks for image question answering. In: CVPR, pp. 21–29 (2016)
40.
go back to reference Chu, X., Yang, W., Ouyang, W., Ma, C., Yuille, A.L., Wang, X.: Multi-context attention for human pose estimation. In: CVPR, pp. 5669–5678 (2017) Chu, X., Yang, W., Ouyang, W., Ma, C., Yuille, A.L., Wang, X.: Multi-context attention for human pose estimation. In: CVPR, pp. 5669–5678 (2017)
41.
go back to reference Su, K., Yu, D., Xu, Z., Geng, X., Wang, C.: Multi-person pose estimation with enhanced channel-wise and spatial information. In: CVPR, pp. 5674–5682 (2019) Su, K., Yu, D., Xu, Z., Geng, X., Wang, C.: Multi-person pose estimation with enhanced channel-wise and spatial information. In: CVPR, pp. 5674–5682 (2019)
42.
go back to reference Yuan, Y., Fu, R., Huang, L., et al.: HRFormer: high-resolution transformer for dense prediction. In: arXiv (2021) Yuan, Y., Fu, R., Huang, L., et al.: HRFormer: high-resolution transformer for dense prediction. In: arXiv (2021)
43.
go back to reference Huang, L., Yuan, Y., Guo, J., et al.: Interlaced sparse self-attention for semantic segmentation. In: arXiv (2019) Huang, L., Yuan, Y., Guo, J., et al.: Interlaced sparse self-attention for semantic segmentation. In: arXiv (2019)
44.
go back to reference Luo, Z., Wang, Z., Cai, Y., et al.: Efficient human pose estimation by learning deeply aggregated representations. In: arXiv (2020) Luo, Z., Wang, Z., Cai, Y., et al.: Efficient human pose estimation by learning deeply aggregated representations. In: arXiv (2020)
45.
go back to reference Wang, Q., Banggu, W., Zhu, P., Li, P., Zuo, W., Qinghua, H.: ECA-Net: efficient channel attention for deep convolutional neural network. CVPR 9912, 7132–7141 (2020) Wang, Q., Banggu, W., Zhu, P., Li, P., Zuo, W., Qinghua, H.: ECA-Net: efficient channel attention for deep convolutional neural network. CVPR 9912, 7132–7141 (2020)
46.
go back to reference Sun, X., Xiao, B., Wei, F., et al.: Integral human pose regression. In: ECCV, pp. 536–553 (2018) Sun, X., Xiao, B., Wei, F., et al.: Integral human pose regression. In: ECCV, pp. 536–553 (2018)
47.
go back to reference Zhang, F., Zhu, X., Dai, H., et al.: Distribution-aware coordinate representation for human pose estimation. In: CVPR, pp. 7091–7100 (2020) Zhang, F., Zhu, X., Dai, H., et al.: Distribution-aware coordinate representation for human pose estimation. In: CVPR, pp. 7091–7100 (2020)
48.
go back to reference Huang, J., Zhu, Z., Guo, F., Huang, G.: The devil is in the details: delving into unbiased data processing for human pose estimation. In: CVPR, pp. 5699–5708 (2020) Huang, J., Zhu, Z., Guo, F., Huang, G.: The devil is in the details: delving into unbiased data processing for human pose estimation. In: CVPR, pp. 5699–5708 (2020)
49.
go back to reference Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: ECCV, pp. 472–487 (2018) Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: ECCV, pp. 472–487 (2018)
50.
go back to reference Zhang, Z., Tang, J., Wu, G.: Simple and lightweight human pose estimation. In: arXiv (2020) Zhang, Z., Tang, J., Wu, G.: Simple and lightweight human pose estimation. In: arXiv (2020)
51.
go back to reference Yilun, C., Zhicheng, W., Yuxiang, P., Zhiqiang, Z., Gang, Y., Jian, S.: Cascaded pyramid network for multi-person pose estimation. In: CVPR, pp. 7103–7112 (2018) Yilun, C., Zhicheng, W., Yuxiang, P., Zhiqiang, Z., Gang, Y., Jian, S.: Cascaded pyramid network for multi-person pose estimation. In: CVPR, pp. 7103–7112 (2018)
52.
go back to reference Cosmin Duta, I., Liu, L., Zhu, F., Shao, L.: Pyramidal convolution: rethinking convolutional neural network for visual recognition. In: arXiv (2020) Cosmin Duta, I., Liu, L., Zhu, F., Shao, L.: Pyramidal convolution: rethinking convolutional neural network for visual recognition. In: arXiv (2020)
53.
go back to reference Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: arXiv (2020) Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: arXiv (2020)
54.
go back to reference Johnson, S., Everingham, M.: Clustered pose and nonlinear appearance models for human pose estimation. In: British Machine Vision Conference (2010) Johnson, S., Everingham, M.: Clustered pose and nonlinear appearance models for human pose estimation. In: British Machine Vision Conference (2010)
55.
go back to reference Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Computer Science, vol. 12 (2014) Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Computer Science, vol. 12 (2014)
56.
go back to reference Peng, X., Tang, Z., Yang, F., Feris, R., Metaxas, D.: Jointly optimize data augmentation and network training: adversarial data augmentation in human pose estimation. In: CVPR, pp. 2226–2234 (2018) Peng, X., Tang, Z., Yang, F., Feris, R., Metaxas, D.: Jointly optimize data augmentation and network training: adversarial data augmentation in human pose estimation. In: CVPR, pp. 2226–2234 (2018)
57.
go back to reference Su, Z., Ye, M., Zhang, G., Dai, L., Sheng, J.: Cascade feature aggregation for human pose estimation. In: arXiv, pp. 1902–07837 (2019) Su, Z., Ye, M., Zhang, G., Dai, L., Sheng, J.: Cascade feature aggregation for human pose estimation. In: arXiv, pp. 1902–07837 (2019)
58.
go back to reference Bin, Y., Cao, X., Chen, X., Ge, Y., Tai, Y., Wang, C., Li, J., Huang, F., Gao, C., Sang, N.: Adversarial semantic data augmentation for human pose estimation. In: ECCV (2020) Bin, Y., Cao, X., Chen, X., Ge, Y., Tai, Y., Wang, C., Li, J., Huang, F., Gao, C., Sang, N.: Adversarial semantic data augmentation for human pose estimation. In: ECCV (2020)
59.
go back to reference Chen, X., Yuille, A.L.: Articulated pose estimation by a graphical model with image dependent pairwise relations. In: Advances in neural information processing systems (2014) Chen, X., Yuille, A.L.: Articulated pose estimation by a graphical model with image dependent pairwise relations. In: Advances in neural information processing systems (2014)
60.
go back to reference Ning, G., Zhang, Z., He, Z.: Knowledge-guided deep fractal neural networks for human pose estimation. IEEE Trans. Multim. 20, 1246–1259 (2018)CrossRef Ning, G., Zhang, Z., He, Z.: Knowledge-guided deep fractal neural networks for human pose estimation. IEEE Trans. Multim. 20, 1246–1259 (2018)CrossRef
61.
go back to reference Bulat, D., Kossaifi, J., Tzimiropoulos, G., Pantic, M.: Toward fast and accurate human pose estimation via soft-gated skip connections. In: FG, pp. 8–15 (2020) Bulat, D., Kossaifi, J., Tzimiropoulos, G., Pantic, M.: Toward fast and accurate human pose estimation via soft-gated skip connections. In: FG, pp. 8–15 (2020)
Metadata
Title
Fixed-resolution representation network for human pose estimation
Authors
Yongxiang Liu
Xiaorong Hou
Publication date
01-04-2022
Publisher
Springer Berlin Heidelberg
Published in
Multimedia Systems / Issue 5/2022
Print ISSN: 0942-4962
Electronic ISSN: 1432-1882
DOI
https://doi.org/10.1007/s00530-022-00919-5

Other articles of this Issue 5/2022

Multimedia Systems 5/2022 Go to the issue