Skip to main content
Top
Published in: Flow, Turbulence and Combustion 4/2018

03-07-2018

Flame Curvature Distribution in High Pressure Turbulent Bunsen Premixed Flames

Authors: M. Klein, H. Nachtigal, M. Hansinger, M. Pfitzner, N. Chakraborty

Published in: Flow, Turbulence and Combustion | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The flame curvature statistics of turbulent premixed Bunsen flames have been analysed in this paper using a Direct Numerical Simulation (DNS) database of turbulent Bunsen flames at ambient and elevated pressures. In order to be able to perform a large parametric study in terms of pressure, heat release parameter, turbulence conditions and nozzle diameter, a single step Arrhenius type irreversible chemistry has been used for the purpose of computational economy, where thermo-chemical parameters are adjusted to match the behavior of stoichiometric methane-air flames. This analysis focuses on the characterization of the local flame geometry in response to turbulence and hydro-dynamic instability. The shape of the flame front is found to be consistent with existing experimental data. Although the Darrieus Landau instability promotes cusp formation, a qualitatively similar flame morphology can be observed for hydro-dynamically stable flames. A criterion has been suggested for the curvature PDF to become negatively skewed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kobayashi, H.: Experimental study of high-pressure turbulent premixed flames. Exp. Thermal Fluid Sci. 26, 375–387 (2002)CrossRef Kobayashi, H.: Experimental study of high-pressure turbulent premixed flames. Exp. Thermal Fluid Sci. 26, 375–387 (2002)CrossRef
2.
go back to reference Keppeler, R., Tangermann, E., Allaudin, A., Pfitzner, M.: LES of low to high turbulent combustion in an elevated pressure environment. Flow Turb. Combust. 92(3), 767–802 (2014)CrossRef Keppeler, R., Tangermann, E., Allaudin, A., Pfitzner, M.: LES of low to high turbulent combustion in an elevated pressure environment. Flow Turb. Combust. 92(3), 767–802 (2014)CrossRef
4.
go back to reference Creta, F., Matalon, M.: Propagation of wrinkled turbulent flames in the context of hydrodynamic theory. J. Fluid Mech. 680, 225–264 (2011)MathSciNetCrossRef Creta, F., Matalon, M.: Propagation of wrinkled turbulent flames in the context of hydrodynamic theory. J. Fluid Mech. 680, 225–264 (2011)MathSciNetCrossRef
5.
go back to reference Akkerman, V., Bychkov, V.: Velocity of weakly turbulent flames of finite thickness. Combust. Theory Mod. 9, 323–351 (2005)MathSciNetCrossRef Akkerman, V., Bychkov, V.: Velocity of weakly turbulent flames of finite thickness. Combust. Theory Mod. 9, 323–351 (2005)MathSciNetCrossRef
6.
go back to reference Fogla, N., Creta, F., Matalon, M.: The turbulent flame speed for low-to-moderate turbulence intensities: Hydrodynamic theory vs. experiments. Combust. Flame 175, 155–169 (2017)CrossRef Fogla, N., Creta, F., Matalon, M.: The turbulent flame speed for low-to-moderate turbulence intensities: Hydrodynamic theory vs. experiments. Combust. Flame 175, 155–169 (2017)CrossRef
7.
go back to reference Creta, F., Lamioni, R., Lapenna, P.E., Troiani, G.: Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation. Phys. Rev. E 94, 053102 (2016)MathSciNetCrossRef Creta, F., Lamioni, R., Lapenna, P.E., Troiani, G.: Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation. Phys. Rev. E 94, 053102 (2016)MathSciNetCrossRef
8.
go back to reference Creta, F., Matalon, M.: Strain rate effects on the nonlinear development of hydrodynamically unstable flames. Proc. Combust. Inst. 33, 1087–1094 (2011)CrossRef Creta, F., Matalon, M.: Strain rate effects on the nonlinear development of hydrodynamically unstable flames. Proc. Combust. Inst. 33, 1087–1094 (2011)CrossRef
9.
go back to reference Matalon, M., Matkowsky, B.J.: Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239–259 (1982)CrossRef Matalon, M., Matkowsky, B.J.: Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239–259 (1982)CrossRef
10.
go back to reference Pelce, P., Clavin, P.: Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219–237 (1982)CrossRef Pelce, P., Clavin, P.: Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219–237 (1982)CrossRef
11.
go back to reference Lipatnikov, A.N., Chomiak, J.: Molecular transport effects on turbulent flame propagation and structure. Prog. Energy Combust Sci. 31, 1–73 (2004)CrossRef Lipatnikov, A.N., Chomiak, J.: Molecular transport effects on turbulent flame propagation and structure. Prog. Energy Combust Sci. 31, 1–73 (2004)CrossRef
12.
go back to reference Shepherd, I.G., Ashurst, W.T.: Flame front geometry in premixed turbulent flames. Proc. Combust. Inst. 24, 485–491 (1992)CrossRef Shepherd, I.G., Ashurst, W.T.: Flame front geometry in premixed turbulent flames. Proc. Combust. Inst. 24, 485–491 (1992)CrossRef
13.
14.
go back to reference Law, C.K., Sung, C.J.: Structure, aerodynamics, and geometry of premixed flamelets. Prog. Energy Combust. Sci. 26, 459–505 (2000)CrossRef Law, C.K., Sung, C.J.: Structure, aerodynamics, and geometry of premixed flamelets. Prog. Energy Combust. Sci. 26, 459–505 (2000)CrossRef
15.
go back to reference Plessing, T., Kortschik, C., Mansour, M.S., Peters, N., Cheng, R.K.: Measurement of the turbulent burning velocity and the structure of premixed flames on a low swirl burner. Proc. Combust. Inst. 28, 359–368 (2000)CrossRef Plessing, T., Kortschik, C., Mansour, M.S., Peters, N., Cheng, R.K.: Measurement of the turbulent burning velocity and the structure of premixed flames on a low swirl burner. Proc. Combust. Inst. 28, 359–368 (2000)CrossRef
16.
go back to reference Troiani, G., Creta, F., Matalon, M.: Experimental investigation of Darrieus–Landau instability effects on turbulent premixed flames. Proc. Combust. Inst. 35, 1451–1459 (2015)CrossRef Troiani, G., Creta, F., Matalon, M.: Experimental investigation of Darrieus–Landau instability effects on turbulent premixed flames. Proc. Combust. Inst. 35, 1451–1459 (2015)CrossRef
17.
go back to reference Denet, B., Haldenwang, P.: A numerical study of premixed flames Darrieus-Landau instability. Combust. Sci. Tech. 104, 143–167 (1995)CrossRef Denet, B., Haldenwang, P.: A numerical study of premixed flames Darrieus-Landau instability. Combust. Sci. Tech. 104, 143–167 (1995)CrossRef
18.
go back to reference Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186, 652–665 (2003)CrossRef Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186, 652–665 (2003)CrossRef
19.
go back to reference Jenkins, K.W., Cant, R.S.: Direct numerical simulation of turbulent flame Kernel. In: Recent Advances in DNS and LES, pp. 191–202. Springer (1999) Jenkins, K.W., Cant, R.S.: Direct numerical simulation of turbulent flame Kernel. In: Recent Advances in DNS and LES, pp. 191–202. Springer (1999)
20.
go back to reference Klein, M., Chakraborty, N., Jenkins, K., Cant, R.S.: Effects of initial radius on the propagation of premixed flame kernels in a turbulent environment. Phys. Fluids 18, 055102 (2006)MathSciNetCrossRef Klein, M., Chakraborty, N., Jenkins, K., Cant, R.S.: Effects of initial radius on the propagation of premixed flame kernels in a turbulent environment. Phys. Fluids 18, 055102 (2006)MathSciNetCrossRef
21.
go back to reference Chakraborty, N., Klein, M., Cant, R.S.: Effects of turbulent Reynolds number on the displacement speed statistics in the thin reaction zones regime of turbulent premixed combustion. J. Combust., 473679 (2011) Chakraborty, N., Klein, M., Cant, R.S.: Effects of turbulent Reynolds number on the displacement speed statistics in the thin reaction zones regime of turbulent premixed combustion. J. Combust., 473679 (2011)
22.
go back to reference Chakraborty, N., Klein, M., Swaminathan, N.: Effects of Lewis number on the reactive scalar gradient alignment with local strain rate in turbulent premixed flames. Proc. Combust. Inst. 32, 1409–1417 (2009)CrossRef Chakraborty, N., Klein, M., Swaminathan, N.: Effects of Lewis number on the reactive scalar gradient alignment with local strain rate in turbulent premixed flames. Proc. Combust. Inst. 32, 1409–1417 (2009)CrossRef
23.
go back to reference Echekki, T., Chen, J.H.: Unsteady strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame 106, 184–202 (1996)CrossRef Echekki, T., Chen, J.H.: Unsteady strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame 106, 184–202 (1996)CrossRef
24.
go back to reference Peters, N., Terhoeven, P., Chen, J.H., Echekki, T.: Statistics of flame displacement speeds from computations of 2-D unsteady methane-air flames. Proc. Combust. Inst. 27, 833–839 (1998)CrossRef Peters, N., Terhoeven, P., Chen, J.H., Echekki, T.: Statistics of flame displacement speeds from computations of 2-D unsteady methane-air flames. Proc. Combust. Inst. 27, 833–839 (1998)CrossRef
25.
go back to reference Chakraborty, N., Cant, S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow–outflow configuration. Combust. Flame 137, 129–147 (2004)CrossRef Chakraborty, N., Cant, S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow–outflow configuration. Combust. Flame 137, 129–147 (2004)CrossRef
26.
go back to reference Chakraborty, N., Klein, M., Cant, R.S.: Stretch rate effects on displacement speed in turbulent premixed flame Kernels in the thin reaction zones regime. Proc. Combust. Inst. 31, 1385–1392 (2007)CrossRef Chakraborty, N., Klein, M., Cant, R.S.: Stretch rate effects on displacement speed in turbulent premixed flame Kernels in the thin reaction zones regime. Proc. Combust. Inst. 31, 1385–1392 (2007)CrossRef
28.
go back to reference Klein, M., Kasten, C., Chakraborty, N., Mukhadiyev, N., Im, H.G.: Turbulent scalar fluxes in Hydrogen-air premixed flames at low and high Karlovitz numbers. Combust. Theor. Modell accepted (2018) Klein, M., Kasten, C., Chakraborty, N., Mukhadiyev, N., Im, H.G.: Turbulent scalar fluxes in Hydrogen-air premixed flames at low and high Karlovitz numbers. Combust. Theor. Modell accepted (2018)
30.
go back to reference Lachaux, T., Halter, F., Chauveaua, C., Gökalp, I., Shepherd, I.G.: Flame front analysis of high-pressure turbulent lean premixed methane–air flames. Proc. Combust. Inst. 30, 819–826 (2005)CrossRef Lachaux, T., Halter, F., Chauveaua, C., Gökalp, I., Shepherd, I.G.: Flame front analysis of high-pressure turbulent lean premixed methane–air flames. Proc. Combust. Inst. 30, 819–826 (2005)CrossRef
31.
go back to reference Fragner, R., Halter, F., Mazellier, N., Chauveau, C., Gökalp, I.: Investigation of pressure effects on the small scale wrinkling of turbulent premixed Bunsen flames. Proc. Combust. Inst. 35, 1527–1535 (2015)CrossRef Fragner, R., Halter, F., Mazellier, N., Chauveau, C., Gökalp, I.: Investigation of pressure effects on the small scale wrinkling of turbulent premixed Bunsen flames. Proc. Combust. Inst. 35, 1527–1535 (2015)CrossRef
32.
go back to reference Tamadonfar, P., Gülder, Ö.L.: Effect of burner diameter on the burning velocity of premixed turbulent flames stabilized on Bunsen-type burners. Exp. Thermal Fluid Sci. 73, 42–48 (2016)CrossRef Tamadonfar, P., Gülder, Ö.L.: Effect of burner diameter on the burning velocity of premixed turbulent flames stabilized on Bunsen-type burners. Exp. Thermal Fluid Sci. 73, 42–48 (2016)CrossRef
33.
go back to reference Bradley, D., Lawes, M., Liu, K., Mansour, M.S.: Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures. Proc. Combust. Inst. 34, 1519–1526 (2013)CrossRef Bradley, D., Lawes, M., Liu, K., Mansour, M.S.: Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures. Proc. Combust. Inst. 34, 1519–1526 (2013)CrossRef
34.
go back to reference Chaudhuri, V.Y., Akkerman, C.K.: Law spectral formulation of turbulent flame speed with consideration of hydrodynamic instability. Phys. Rev. E 84, 026322 (2011)CrossRef Chaudhuri, V.Y., Akkerman, C.K.: Law spectral formulation of turbulent flame speed with consideration of hydrodynamic instability. Phys. Rev. E 84, 026322 (2011)CrossRef
35.
go back to reference Bray, K.N.C., Libby, P.A., Moss, J.B.: Unified modelling approach for premixed turbulent combustion – Part I: General formulation. Combust. Flame 61, 87–102 (1985)CrossRef Bray, K.N.C., Libby, P.A., Moss, J.B.: Unified modelling approach for premixed turbulent combustion – Part I: General formulation. Combust. Flame 61, 87–102 (1985)CrossRef
36.
go back to reference Cant, R.S., Rutland, C.J., Trouve, A.: Statistics for laminar flamelet modeling. In: Proceedings of the 1990 Summer Program. Stanford Univ (1990) Cant, R.S., Rutland, C.J., Trouve, A.: Statistics for laminar flamelet modeling. In: Proceedings of the 1990 Summer Program. Stanford Univ (1990)
37.
go back to reference Chakraborty, N., Cant, R.S.: Direct numerical simulation analysis of the flame surface density transport equation in the context of Large Eddy simulation. Proc. Combust. Inst. 32, 1445–1453 (2009)CrossRef Chakraborty, N., Cant, R.S.: Direct numerical simulation analysis of the flame surface density transport equation in the context of Large Eddy simulation. Proc. Combust. Inst. 32, 1445–1453 (2009)CrossRef
38.
go back to reference Gülder, Ö.L.: Contribution of small scale turbulence to burning velocity of flamelets in the thin reaction zone regime. Proc. Combust. Inst. 31, 1369–1375 (2007)CrossRef Gülder, Ö.L.: Contribution of small scale turbulence to burning velocity of flamelets in the thin reaction zone regime. Proc. Combust. Inst. 31, 1369–1375 (2007)CrossRef
Metadata
Title
Flame Curvature Distribution in High Pressure Turbulent Bunsen Premixed Flames
Authors
M. Klein
H. Nachtigal
M. Hansinger
M. Pfitzner
N. Chakraborty
Publication date
03-07-2018
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 4/2018
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-018-9951-1

Other articles of this Issue 4/2018

Flow, Turbulence and Combustion 4/2018 Go to the issue

Premium Partners