Skip to main content
Top
Published in: Intelligent Industrial Systems 3/2015

01-10-2015 | Original Paper

Flatness-Based Adaptive Fuzzy Control of Autonomous Submarines

Authors: G. Rigatos, P. Siano

Published in: Intelligent Industrial Systems | Issue 3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The paper proposes adaptive fuzzy control based on differential flatness theory for autonomous submarines. It is proven that the dynamic model of the submarine, having as state variables the vessel’s depth and its pitch angle, is a differentially flat one. This means that all its state variables and its control inputs can be written as differential functions of the flat output and its derivatives. By exploiting differential flatness properties the system’s dynamic model is written in the multivariable linear canonical (Brunovsky) form, for which the design of a state feedback controller becomes possible. After this transformation, the new control inputs of the system contain unknown nonlinear parts, which are identified with the use of neurofuzzy approximators. The learning procedure for these estimators is determined by the requirement the first derivative of the closed-loop’s Lyapunov function to be a negative one. Moreover, the Lyapunov stability analysis shows that H-infinity tracking performance is succeeded for the feedback control loop and this assures improved robustness to the aforementioned model uncertainty as well as to external perturbations. The efficiency of the proposed adaptive fuzzy control scheme is confirmed through simulation experiments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Do, K.D., Pan, J.: Global tracking control of underactuated ships with nonzero off-diagonal terms in their system matrices. Automatica 41, 87–95 (2005). ElsevierMATHMathSciNet Do, K.D., Pan, J.: Global tracking control of underactuated ships with nonzero off-diagonal terms in their system matrices. Automatica 41, 87–95 (2005). ElsevierMATHMathSciNet
2.
3.
go back to reference Refsnes, J.B., Sorensen, A.J., Petersen, K.Y.: Model-based output feedback control of slender-body underactuated AUVs: theory and experiments. IEEE Trans. Control Syst. Technol. 16(5), 930–946 (2008)CrossRef Refsnes, J.B., Sorensen, A.J., Petersen, K.Y.: Model-based output feedback control of slender-body underactuated AUVs: theory and experiments. IEEE Trans. Control Syst. Technol. 16(5), 930–946 (2008)CrossRef
4.
go back to reference Fischer, N., Hughes, D., Walters, P., Swartz, E.M., Dixon, W.E.: Nonlinear RISE-based control of an autonomous underwater vehicle. IEEE Trans. Robot. 30(4), 845–852 (2014)CrossRef Fischer, N., Hughes, D., Walters, P., Swartz, E.M., Dixon, W.E.: Nonlinear RISE-based control of an autonomous underwater vehicle. IEEE Trans. Robot. 30(4), 845–852 (2014)CrossRef
5.
go back to reference He, B., Wang, B.R., Yan, T.H., Han, Y.Y.: A distributed parallel motion control for the multithruster autonomous underwater vehicle. Mech Based Des Struct Mach 41(2), 236–257 (2013). Taylor and FrancisCrossRef He, B., Wang, B.R., Yan, T.H., Han, Y.Y.: A distributed parallel motion control for the multithruster autonomous underwater vehicle. Mech Based Des Struct Mach 41(2), 236–257 (2013). Taylor and FrancisCrossRef
6.
go back to reference Arslan, M.S., Fukushima, N., Hagiwara, J.: Nonlinear optimal control of an AUV and its actuator failure compensation. In: 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam (2008) Arslan, M.S., Fukushima, N., Hagiwara, J.: Nonlinear optimal control of an AUV and its actuator failure compensation. In: 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam (2008)
7.
go back to reference Fishcer, N., Bhasin, S., Dixon, W.E.: Nonlinear control of an autonomous underwater vehicle: a RISE-based approach. In: 2011 American Control Conference, San Francisco (2011) Fishcer, N., Bhasin, S., Dixon, W.E.: Nonlinear control of an autonomous underwater vehicle: a RISE-based approach. In: 2011 American Control Conference, San Francisco (2011)
8.
go back to reference Petersen, K.Y., Egeland, O.: Time-varying exponential stabilization of the position and attitude of an underactuated autonomous unerwater vehicle. IEEE Trans. Autom. Control 44(1), 112–115 (1999)CrossRef Petersen, K.Y., Egeland, O.: Time-varying exponential stabilization of the position and attitude of an underactuated autonomous unerwater vehicle. IEEE Trans. Autom. Control 44(1), 112–115 (1999)CrossRef
9.
go back to reference Rigatos, G.G.: Sensor fusion-based dynamic positioning of ships using extended Kalman and particle filtering. Robot. Camb. Univ. Press 31(3), 389–403 (2013)MathSciNet Rigatos, G.G.: Sensor fusion-based dynamic positioning of ships using extended Kalman and particle filtering. Robot. Camb. Univ. Press 31(3), 389–403 (2013)MathSciNet
10.
go back to reference Soltun, R.A., Ashrafiuon, H., Muske, K.R.: ODE-based obstacle avoidance and trajectory planning for unmanned surface vessels. Robotica 29, 691–703 (2010)CrossRef Soltun, R.A., Ashrafiuon, H., Muske, K.R.: ODE-based obstacle avoidance and trajectory planning for unmanned surface vessels. Robotica 29, 691–703 (2010)CrossRef
11.
go back to reference Lapierre, L., Saetanto, D.: Nonlinear path-following control of an AUV. Ocean Eng. 34, 1734–1744 (2007). ElsevierCrossRef Lapierre, L., Saetanto, D.: Nonlinear path-following control of an AUV. Ocean Eng. 34, 1734–1744 (2007). ElsevierCrossRef
12.
go back to reference Lapierre, L.: Robust diving control of an AUV. Ocean Eng. 36, 92–104 (2009). ElsevierCrossRef Lapierre, L.: Robust diving control of an AUV. Ocean Eng. 36, 92–104 (2009). ElsevierCrossRef
13.
go back to reference Moreira, L., Gueda Soares, C.: H2 and H1 design for diving and course control of an autonomous underwater vehicle in presence of waves. IEEE J. Ocean. Eng. 33(2), 69–88 (2008)CrossRef Moreira, L., Gueda Soares, C.: H2 and H1 design for diving and course control of an autonomous underwater vehicle in presence of waves. IEEE J. Ocean. Eng. 33(2), 69–88 (2008)CrossRef
14.
go back to reference Liceaga-Castro, E., van der Molen, G.M.: Submarine H1 depth control under wave disturbances. IEEE Trans. Control Syst. Technol. 3(3), 338–346 (1995)CrossRef Liceaga-Castro, E., van der Molen, G.M.: Submarine H1 depth control under wave disturbances. IEEE Trans. Control Syst. Technol. 3(3), 338–346 (1995)CrossRef
15.
go back to reference Sira-Ramirez, H.: Dynamic second-order sliding-mode control of the hovercraft vessel. IEEE Trans. Control Syst. Technol. 10(6), 860–865 (2002)CrossRef Sira-Ramirez, H.: Dynamic second-order sliding-mode control of the hovercraft vessel. IEEE Trans. Control Syst. Technol. 10(6), 860–865 (2002)CrossRef
16.
go back to reference Lee, K.W., Singh, S.N.: Multi-input submarine control via L2 adaptive feedback despite uncertainties. J. Syst. Control Eng. 228(5), 330–347 (2014). Sage Publications Lee, K.W., Singh, S.N.: Multi-input submarine control via L2 adaptive feedback despite uncertainties. J. Syst. Control Eng. 228(5), 330–347 (2014). Sage Publications
17.
go back to reference Pan, C.Z., Lai, X.Z., Yang, S.X., Wu, M.: An efficient neural network approach to tracking control of an autonomous surface vehicle with unknown dynamics. Expert Syst. Appl. 40, 1629–1635 (2013)CrossRef Pan, C.Z., Lai, X.Z., Yang, S.X., Wu, M.: An efficient neural network approach to tracking control of an autonomous surface vehicle with unknown dynamics. Expert Syst. Appl. 40, 1629–1635 (2013)CrossRef
18.
go back to reference Zhang, L.J., Qi, X., Peng, Y.J.: Adaptive output feedback control based on DFRNN for AUV. Ocean Eng. 36, 716–722 (2009). ElsevierCrossRef Zhang, L.J., Qi, X., Peng, Y.J.: Adaptive output feedback control based on DFRNN for AUV. Ocean Eng. 36, 716–722 (2009). ElsevierCrossRef
19.
go back to reference Rigatos, G.G., Tzafestas, S.G.: Adaptive fuzzy control for the ship steering problem. J. Mechatron. 16(6), 479–489 (2006). ElsevierCrossRef Rigatos, G.G., Tzafestas, S.G.: Adaptive fuzzy control for the ship steering problem. J. Mechatron. 16(6), 479–489 (2006). ElsevierCrossRef
20.
go back to reference Li, H.X., Tong, S.: A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems. IEEE Trans. Fuzzy Syst. 11(1), 24–35 (2003)CrossRef Li, H.X., Tong, S.: A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems. IEEE Trans. Fuzzy Syst. 11(1), 24–35 (2003)CrossRef
21.
go back to reference Song, T., Bin, C., Wang, Y.: Fuzzy adaptive output feedback control for MIMO nonlinear systems. Fuzzy Sets Syst. 156, 285–299 (2005). ElsevierCrossRef Song, T., Bin, C., Wang, Y.: Fuzzy adaptive output feedback control for MIMO nonlinear systems. Fuzzy Sets Syst. 156, 285–299 (2005). ElsevierCrossRef
22.
go back to reference Chen, C.S.: Dynamic structure adaptive neural fuzzy control for MIMO uncertain nonlinear systems. Inf. Sci. 179, 2676–2688 (2009). ElsevierMATHCrossRef Chen, C.S.: Dynamic structure adaptive neural fuzzy control for MIMO uncertain nonlinear systems. Inf. Sci. 179, 2676–2688 (2009). ElsevierMATHCrossRef
23.
24.
go back to reference Chen, C.H., Lin, C.M., Chen, T.Y.: Intelligent adaptive control for MIMO uncertain nonlinear systems. Expert Syst. Appl. 35, 865–877 (2008)CrossRef Chen, C.H., Lin, C.M., Chen, T.Y.: Intelligent adaptive control for MIMO uncertain nonlinear systems. Expert Syst. Appl. 35, 865–877 (2008)CrossRef
25.
go back to reference Qi, R., Tao, G., Tan, C., Yao, X.: Adaptive control of discrete-time state-space TS fuzzy systems with general relative degree. Fuzzy Sets Syst. 217, 2240 (2013). ElsevierMathSciNetCrossRef Qi, R., Tao, G., Tan, C., Yao, X.: Adaptive control of discrete-time state-space TS fuzzy systems with general relative degree. Fuzzy Sets Syst. 217, 2240 (2013). ElsevierMathSciNetCrossRef
26.
go back to reference Yang, Y., Zhou, C., Jia, X.: Robust adaptive fuzzy control and its application to ship roll stabilization. Inf. Sci. 142(1–4), 177–194 (2002). ElsevierMATHCrossRef Yang, Y., Zhou, C., Jia, X.: Robust adaptive fuzzy control and its application to ship roll stabilization. Inf. Sci. 142(1–4), 177–194 (2002). ElsevierMATHCrossRef
27.
go back to reference Yousef, H.A., Hamdy, M., Shafiq, M.: Flatness-based adaptive fuzzy output tracking excitation control for power system generators. J. Frankl. Inst. 350(8), 2334–2353 (2013). ElsevierMATHMathSciNetCrossRef Yousef, H.A., Hamdy, M., Shafiq, M.: Flatness-based adaptive fuzzy output tracking excitation control for power system generators. J. Frankl. Inst. 350(8), 2334–2353 (2013). ElsevierMATHMathSciNetCrossRef
28.
go back to reference Rigatos, G.: Nonlinear Control and Filtering Approaches Using Differential Flatness Theory: Applications to Electromechanical Systems. Springer, New York (2015)CrossRef Rigatos, G.: Nonlinear Control and Filtering Approaches Using Differential Flatness Theory: Applications to Electromechanical Systems. Springer, New York (2015)CrossRef
29.
go back to reference Rigatos, G.: Modelling and Control for Intelligent Industrial Systems: Adaptive Algorithms in Robotics and Industrial Engineering. Springer, New York (2011)CrossRef Rigatos, G.: Modelling and Control for Intelligent Industrial Systems: Adaptive Algorithms in Robotics and Industrial Engineering. Springer, New York (2011)CrossRef
30.
go back to reference Rigatos, G.: Advanced Models of Neural Networks: Nonlinear Dynamics and Stochasticity of Biological Neurons. Springer, Berlin (2013) Rigatos, G.: Advanced Models of Neural Networks: Nonlinear Dynamics and Stochasticity of Biological Neurons. Springer, Berlin (2013)
31.
go back to reference Rudolph, J.: Flatness Based Control of Distributed Parameter Systems, Examples and Computer Exercises from Various Technological Domains. Shaker, Aachen (2003) Rudolph, J.: Flatness Based Control of Distributed Parameter Systems, Examples and Computer Exercises from Various Technological Domains. Shaker, Aachen (2003)
32.
go back to reference Sira-Ramirez, H., Agrawal, S.: Differentially Flat Systems. Marcel Dekker, New York (2004)MATH Sira-Ramirez, H., Agrawal, S.: Differentially Flat Systems. Marcel Dekker, New York (2004)MATH
33.
go back to reference Lévine, J.: On necessary and sufficient conditions for differential flatness. Appl. Algebra Eng. Commun. Comput. 22(1), 47–90 (2011). SpringerMATHCrossRef Lévine, J.: On necessary and sufficient conditions for differential flatness. Appl. Algebra Eng. Commun. Comput. 22(1), 47–90 (2011). SpringerMATHCrossRef
34.
go back to reference Fliess, M., Mounier, H.: Tracking control and \(\pi \)-freeness of infinite dimensional linear systems. In: Picci, G., Gilliam, D.S. (eds.) Dynamical Systems, Control, Coding and Computer Vision, vol. 258, pp. 41–68. Birkhauser, Berlin (1999) Fliess, M., Mounier, H.: Tracking control and \(\pi \)-freeness of infinite dimensional linear systems. In: Picci, G., Gilliam, D.S. (eds.) Dynamical Systems, Control, Coding and Computer Vision, vol. 258, pp. 41–68. Birkhauser, Berlin (1999)
35.
go back to reference Rouchon, P.: Flatness-based control of oscillators. J. Appl. Math. Mech. 85(6), 411–421 (2005). WileyMATHMathSciNet Rouchon, P.: Flatness-based control of oscillators. J. Appl. Math. Mech. 85(6), 411–421 (2005). WileyMATHMathSciNet
36.
go back to reference Martin, Ph., Rouchon, P.: Syst‘emes plats: planification et suivi des trajectoires, Journees XUPS, Ecole des Mines de Paris, Centre Automatique et Syst‘emes, Mai (1999) Martin, Ph., Rouchon, P.: Syst‘emes plats: planification et suivi des trajectoires, Journees XUPS, Ecole des Mines de Paris, Centre Automatique et Syst‘emes, Mai (1999)
37.
go back to reference Bououden, S., Boutat, D., Zheng, G., Barbot, J.P., Kratz, F.: A triangular canonical form for a class of 0-flat nonlinear systems. Int. J. Control 84(2), 261–269 (2011). Taylor and FrancisMATHMathSciNetCrossRef Bououden, S., Boutat, D., Zheng, G., Barbot, J.P., Kratz, F.: A triangular canonical form for a class of 0-flat nonlinear systems. Int. J. Control 84(2), 261–269 (2011). Taylor and FrancisMATHMathSciNetCrossRef
38.
go back to reference Laroche, B., Martin, P., Petit, N.: Commande par platitude: Equations différentielles ordinaires et aux derivées partielles. Ecole Nationale Superieure des Techniques Avancées, Paris (2007) Laroche, B., Martin, P., Petit, N.: Commande par platitude: Equations différentielles ordinaires et aux derivées partielles. Ecole Nationale Superieure des Techniques Avancées, Paris (2007)
39.
go back to reference Rigatos, G.: A differential flatness theory approach to observer-based adaptive fuzzy control of MIMO nonlinear dynamical systems. Nonlinear Dyn. 76(2), 1335–1354 (2014). SpringerMATHMathSciNetCrossRef Rigatos, G.: A differential flatness theory approach to observer-based adaptive fuzzy control of MIMO nonlinear dynamical systems. Nonlinear Dyn. 76(2), 1335–1354 (2014). SpringerMATHMathSciNetCrossRef
40.
go back to reference Rigatos, G.G., Tzafestas, S.G.: Extended Kalman filtering for fuzzy modelling and multi-sensor fusion. Math. Comput. Model. Dyn. Syst. 13, 251–266 (2007). Taylor & FrancisMATHMathSciNetCrossRef Rigatos, G.G., Tzafestas, S.G.: Extended Kalman filtering for fuzzy modelling and multi-sensor fusion. Math. Comput. Model. Dyn. Syst. 13, 251–266 (2007). Taylor & FrancisMATHMathSciNetCrossRef
41.
go back to reference Basseville, M., Nikiforov, I.: Detection of Abrupt Changes: Theory and Applications. Prentice-Hall, Englewood Cliffs (1993) Basseville, M., Nikiforov, I.: Detection of Abrupt Changes: Theory and Applications. Prentice-Hall, Englewood Cliffs (1993)
42.
go back to reference Rigatos, G., Zhang, Q.: Fuzzy model validation using the local statistical approach. Fuzzy Sets Syst. 60(7), 882–904 (2009). ElsevierMathSciNetCrossRef Rigatos, G., Zhang, Q.: Fuzzy model validation using the local statistical approach. Fuzzy Sets Syst. 60(7), 882–904 (2009). ElsevierMathSciNetCrossRef
43.
go back to reference Doyle, J.C., Glover, K., Khargonekar, P.P., Francis, B.A.: State-space solutions to standard H2 and H1 control problems. IEEE Trans. Autom. Control 34, 831–847 (1989)MATHMathSciNetCrossRef Doyle, J.C., Glover, K., Khargonekar, P.P., Francis, B.A.: State-space solutions to standard H2 and H1 control problems. IEEE Trans. Autom. Control 34, 831–847 (1989)MATHMathSciNetCrossRef
44.
go back to reference Kurylowicz, A., Jaworska, I., Tzafestas, S.G.: Robust stabilizing control : an overview. In: Tzafestas, S.G. (ed.) Applied Control: Current Trends and Modern Methodologies, pp. 289–324. Marcel Dekker, New York (1993) Kurylowicz, A., Jaworska, I., Tzafestas, S.G.: Robust stabilizing control : an overview. In: Tzafestas, S.G. (ed.) Applied Control: Current Trends and Modern Methodologies, pp. 289–324. Marcel Dekker, New York (1993)
45.
go back to reference Lublin, L., Athans, M.: An experimental comparison of and designs for interferometer testbed, Lectures Notes in Control and Information Sciences: Feedback Control. In: Francis, B., Tannenbaum, A. (eds.) Nonlinear Systems and Complexity, pp. 150–172. Springer, Berlin (1995) Lublin, L., Athans, M.: An experimental comparison of and designs for interferometer testbed, Lectures Notes in Control and Information Sciences: Feedback Control. In: Francis, B., Tannenbaum, A. (eds.) Nonlinear Systems and Complexity, pp. 150–172. Springer, Berlin (1995)
46.
go back to reference Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice Hall, Upper Saddle River (1996) Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice Hall, Upper Saddle River (1996)
Metadata
Title
Flatness-Based Adaptive Fuzzy Control of Autonomous Submarines
Authors
G. Rigatos
P. Siano
Publication date
01-10-2015
Publisher
Springer Singapore
Published in
Intelligent Industrial Systems / Issue 3/2015
Print ISSN: 2363-6912
Electronic ISSN: 2199-854X
DOI
https://doi.org/10.1007/s40903-015-0025-6

Other articles of this Issue 3/2015

Intelligent Industrial Systems 3/2015 Go to the issue