Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 21/2017

15-07-2017

Flip-chip assembly: is the bi-material model acceptable?

Author: Ephraim Suhir

Published in: Journal of Materials Science: Materials in Electronics | Issue 21/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The bonding layer in flip-chip assembly designs is characterized, unlike in epoxy bonded assemblies, by a relatively high effective Young’s modulus of its composite material, which is comprised of high-modulus solder and low-modulus epoxy encapsulant (underfill). Simple, easy-to-use and physically meaningful tri- and bi-material analytical stress models are developed for the evaluation of the thermally induced interfacial shearing stresses, as well as normal stresses acting in the cross-sections of the assembly components. While in a tri-material model all the three materials, the chip, the substrate and the bonding layer, are treated as “equal partners”, in a bi-material model a significant simplification is made, assuming that the bonding layer is much thinner than the bonded components, the chip and the substrate, and/or that its effective Young’s modulus is significantly lower than the moduli of the chip and the substrate materials. In the carried out numerical example based on the application of the tri-material model, the highest shearing stress occurs at the chip-bond interface and is significantly, by the factor of about 2.45, higher than the stress at the substrate-bond interface, but even the latter stress is about twice as high as the maximum shearing stress predicted on the basis of the bi-material model. As to the normal stresses acting in the cross-sections of the assembly components, the tri-material model predicts that the highest stresses occur in the chip, the lowest—in the substrate, and that the stresses in the bond are rather high, about 59% of the stresses in the chip. The bi-material model, however, simply assumes that the normal stresses in the bond are zero. The normal stresses in the chip predicted on the basis of this model are only about 78% of the stress predicted by the tri-material model. The normal stresses in the substrate evaluated on the basis of the bi-material model are almost twice as high as the tri-material model predicts, but these stresses are low anyway: it is the state of stress in the chip and in the bonding layer, and the interfacial stress at the chip-bond interface that should be of the primary concern to the device designer. It is concluded that while a simple bi-material model can be successfully used for adhesively bonded assemblies, characterized by a thin and/or low modulus bonding layer, a tri-material model should be employed for flip-chip assemblies, when high-modulus solders are used. Future work should include finite-element analyses and experimental evaluations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. Suhir, Avoiding low-cycle fatigue in solder material using inhomogeneous column-grid-array (CGA) design. ChipScale Rev. March–April 2016 E. Suhir, Avoiding low-cycle fatigue in solder material using inhomogeneous column-grid-array (CGA) design. ChipScale Rev. March–April 2016
2.
go back to reference E. Suhir, J.M. Segelken, Mechanical behavior of flip-chip encapsulants. ASME J. Electron. Packag. (JEP) 112(No. 4), 327–332 1990CrossRef E. Suhir, J.M. Segelken, Mechanical behavior of flip-chip encapsulants. ASME J. Electron. Packag. (JEP) 112(No. 4), 327–332 1990CrossRef
3.
go back to reference S.C. Machuga, S.E. Lindsey, K.D. Moore, A.F. Skipor, Encapsulant of flip-chip structures. Proceedings of IEEE/CHMT International Electronic Manufacturing and Technology Symposium, Baltimore, MD, 1992, pp. 53–58 S.C. Machuga, S.E. Lindsey, K.D. Moore, A.F. Skipor, Encapsulant of flip-chip structures. Proceedings of IEEE/CHMT International Electronic Manufacturing and Technology Symposium, Baltimore, MD, 1992, pp. 53–58
4.
go back to reference C.P. Yeh, W.X. Zhou, K. Wyatt, Parametric finite-element analysis of flip-chip structures. Int. J. Microcircuits Electron. Packag. 19, 120–127 (1996) C.P. Yeh, W.X. Zhou, K. Wyatt, Parametric finite-element analysis of flip-chip structures. Int. J. Microcircuits Electron. Packag. 19, 120–127 (1996)
5.
go back to reference D.W. Peterson, J.N. Sweet, S.N. Burchett, A. Hsia, Stresses from flip-chip assembly and underfill; measurements with ATC 4.1 assembly test chip and analysis by finite element method. Proceedings of 47th Electronic Components and Technology Conference, San Jose, CA, 1997, pp. 134–143 D.W. Peterson, J.N. Sweet, S.N. Burchett, A. Hsia, Stresses from flip-chip assembly and underfill; measurements with ATC 4.1 assembly test chip and analysis by finite element method. Proceedings of 47th Electronic Components and Technology Conference, San Jose, CA, 1997, pp. 134–143
6.
go back to reference J.H. Zhao, X. Dai, P.S. Ho, Analysis and modeling verification for thermal-mechanical deformation in flip-chip packages. Proceedings of 48th Electronic Components and Technology Conference, Seattle, WA, 1998, pp. 336–344 J.H. Zhao, X. Dai, P.S. Ho, Analysis and modeling verification for thermal-mechanical deformation in flip-chip packages. Proceedings of 48th Electronic Components and Technology Conference, Seattle, WA, 1998, pp. 336–344
7.
go back to reference X. Yan, R.K. Agarwal, Two test specimens for determining the interfacial fracture toughness in flip-chip assemblies. ASME J. Electron. Packag. 120, 150–155 (1998)CrossRef X. Yan, R.K. Agarwal, Two test specimens for determining the interfacial fracture toughness in flip-chip assemblies. ASME J. Electron. Packag. 120, 150–155 (1998)CrossRef
8.
go back to reference J. Wang, M. Lu, D. Zou, S. Liu, Investigation of interfacial fracture behavior of a flip-chip package under a constant concentrated load. IEEE Trans. Compon. Packag. Manuf. Technol. Part B 21, 79–85 (1998)CrossRef J. Wang, M. Lu, D. Zou, S. Liu, Investigation of interfacial fracture behavior of a flip-chip package under a constant concentrated load. IEEE Trans. Compon. Packag. Manuf. Technol. Part B 21, 79–85 (1998)CrossRef
9.
go back to reference S. Michaelides, S.K. Sitaraman, Die cracking and reliable die design for flip-chip assemblies. IEEE Trans. Adv. Packag. 22, 602–613 (1999)CrossRef S. Michaelides, S.K. Sitaraman, Die cracking and reliable die design for flip-chip assemblies. IEEE Trans. Adv. Packag. 22, 602–613 (1999)CrossRef
10.
go back to reference C.E. Hanna, S.K. Sitaraman, Role of underfill materials and thermal cycling on die stresses. Proc. InterPACK 99., Hawaii. 26–1, 795–801 (1999) C.E. Hanna, S.K. Sitaraman, Role of underfill materials and thermal cycling on die stresses. Proc. InterPACK 99., Hawaii. 26–1, 795–801 (1999)
11.
go back to reference W. Xie, S.K. Sitaraman, Interfacial thermal stress analysis of anisotropic multi-layered electronic packaging structures. ASME J. Electron. Packag. 122, 61–66 (2000)CrossRef W. Xie, S.K. Sitaraman, Interfacial thermal stress analysis of anisotropic multi-layered electronic packaging structures. ASME J. Electron. Packag. 122, 61–66 (2000)CrossRef
12.
go back to reference E. Suhir, Stresses in bi-metal thermostats. ASME J. Appl. Mech. 53(No. 3), 657–660 (1986)CrossRef E. Suhir, Stresses in bi-metal thermostats. ASME J. Appl. Mech. 53(No. 3), 657–660 (1986)CrossRef
13.
go back to reference E. Suhir, Analysis of interfacial thermal stresses in a tri-material assembly. J. Appl. Phys. 89(7), 3685–3694 (2001)CrossRef E. Suhir, Analysis of interfacial thermal stresses in a tri-material assembly. J. Appl. Phys. 89(7), 3685–3694 (2001)CrossRef
14.
go back to reference E. Suhir, Structural Analysis in Microelectronic and Fiber Optic Systems. (Van Nostrand Reinhold, New York, 1991)CrossRef E. Suhir, Structural Analysis in Microelectronic and Fiber Optic Systems. (Van Nostrand Reinhold, New York, 1991)CrossRef
Metadata
Title
Flip-chip assembly: is the bi-material model acceptable?
Author
Ephraim Suhir
Publication date
15-07-2017
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 21/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-7471-8

Other articles of this Issue 21/2017

Journal of Materials Science: Materials in Electronics 21/2017 Go to the issue