Skip to main content
Top
Published in: Autonomous Agents and Multi-Agent Systems 5/2015

01-09-2015

Flocking of partially-informed multi-agent systems avoiding obstacles with arbitrary shape

Authors: Jiaojie Li, Wei Zhang, Housheng Su, Yupu Yang

Published in: Autonomous Agents and Multi-Agent Systems | Issue 5/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we study the flocking problem of multi-agent systems with obstacle avoidance, in the situation when only a fraction of the agents have information on the obstacles. Obstacles of arbitrary shape are allowed, no matter if their boundary is smooth or non-smooth, and no matter it they are convex or non-convex. A novel geometry representation rule is proposed to transfer obstacles to a dense obstacle-agents lattice structure. Non-convex regions of the obstacles are detected and supplemented using a geometric rule. The uninformed agents can detect a section of the obstacles boundary using only a range position sensor. We prove that with the proposed protocol, uninformed agents which maintain a joint path with any informed agent can avoid obstacles that move uniformly and assemble around a point along with the informed agents. Eventually all the assembled agents reach consensus on their velocity. In the entire flocking process, no distinct pair of agents collide with each other, nor collide with obstacles. The assembled agents are guaranteed not to be lost in any non-convex region of the obstacles within a distance constraint. Numerical simulations demonstrate the flocking algorithm with obstacle avoidance both in 2D and 3D space. The situation when every agent is informed is considered as a special case.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shaw, E. (1975). Fish in schools. Natural History, 84, 40–45. Shaw, E. (1975). Fish in schools. Natural History, 84, 40–45.
2.
go back to reference Fujisaka, H., & Yamada, T. (1983). Stability theory of synchronized motion in coupled-oscillator systems. Progress of Theoretical Physics, 69, 32–47.MathSciNetCrossRefMATH Fujisaka, H., & Yamada, T. (1983). Stability theory of synchronized motion in coupled-oscillator systems. Progress of Theoretical Physics, 69, 32–47.MathSciNetCrossRefMATH
3.
go back to reference Bollobás, B. (1998). Modern graph theory (Vol. 184). New York: Springer.MATH Bollobás, B. (1998). Modern graph theory (Vol. 184). New York: Springer.MATH
4.
go back to reference Okubo, A. (1986). Dynamical aspects of animal grouping: Swarms, schools, flocks, and herds. Advances in Biophysics, 22, 1–94.CrossRef Okubo, A. (1986). Dynamical aspects of animal grouping: Swarms, schools, flocks, and herds. Advances in Biophysics, 22, 1–94.CrossRef
5.
go back to reference Rimon, E., & Koditschek, D. E. (1992). Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation, 8, 501–518.CrossRefMATH Rimon, E., & Koditschek, D. E. (1992). Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation, 8, 501–518.CrossRefMATH
6.
go back to reference Estrin, D., Govindan, R., Heidemann, J., & Kumar, S. (1999). Next century challenges: Scalable coordination in sensor networks. In Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, ACM (pp. 263–270). Estrin, D., Govindan, R., Heidemann, J., & Kumar, S. (1999). Next century challenges: Scalable coordination in sensor networks. In Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, ACM (pp. 263–270).
7.
go back to reference Song, Y., Li, Y., & Liao, X. (2005). Orthogonal transformation based robust adaptive close formation control of multi-uavs. In Proceedings of the 2005 American Control Conference, IEEE (pp. 2983–2988). Song, Y., Li, Y., & Liao, X. (2005). Orthogonal transformation based robust adaptive close formation control of multi-uavs. In Proceedings of the 2005 American Control Conference, IEEE (pp. 2983–2988).
8.
go back to reference Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. In: ACM SIGGRAPH Computer Graphics, ACM (Vol. 21, pp. 25–34). Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. In: ACM SIGGRAPH Computer Graphics, ACM (Vol. 21, pp. 25–34).
9.
go back to reference Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995). Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 75, 1226–1229.CrossRef Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995). Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 75, 1226–1229.CrossRef
10.
go back to reference Toner, J., & Tu, Y. (1998). Flocks, herds, and schools: A quantitative theory of flocking. Physical Review E, 58, 4828.MathSciNetCrossRef Toner, J., & Tu, Y. (1998). Flocks, herds, and schools: A quantitative theory of flocking. Physical Review E, 58, 4828.MathSciNetCrossRef
11.
go back to reference Jadbabaie, A., Lin, J., & Morse, A. S. (2003). Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 48, 988–1001.MathSciNetCrossRef Jadbabaie, A., Lin, J., & Morse, A. S. (2003). Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 48, 988–1001.MathSciNetCrossRef
12.
go back to reference Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2003). Stable flocking of mobile agents, part i: Fixed topology. In Proceedings of the 42nd IEEE Conference on Decision and Control, IEEE (Vol. 2, pp. 2010–2015). Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2003). Stable flocking of mobile agents, part i: Fixed topology. In Proceedings of the 42nd IEEE Conference on Decision and Control, IEEE (Vol. 2, pp. 2010–2015).
13.
go back to reference Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2003). Stable flocking of mobile agents part i: Dynamic topology. In Proceedings. 42nd IEEE Conference on Decision and Control, IEEE (Vol. 2, pp. 2016–2021). Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2003). Stable flocking of mobile agents part i: Dynamic topology. In Proceedings. 42nd IEEE Conference on Decision and Control, IEEE (Vol. 2, pp. 2016–2021).
14.
go back to reference Savkin, A. V. (2004). Coordinated collective motion of groups of autonomous mobile robots: Analysis of vicsek’s model. IEEE Transactions on Automatic Control, 49, 981–982.MathSciNetCrossRef Savkin, A. V. (2004). Coordinated collective motion of groups of autonomous mobile robots: Analysis of vicsek’s model. IEEE Transactions on Automatic Control, 49, 981–982.MathSciNetCrossRef
15.
go back to reference Leonard, N. E., & Fiorelli, E. (2001). Virtual leaders, artificial potentials and coordinated control of groups. In Proceedings of the 40th IEEE Conference on Decision and Control, IEEE (Vol. 3, pp. 2968–2973). Leonard, N. E., & Fiorelli, E. (2001). Virtual leaders, artificial potentials and coordinated control of groups. In Proceedings of the 40th IEEE Conference on Decision and Control, IEEE (Vol. 3, pp. 2968–2973).
16.
go back to reference Xi, X., & Abed, E. H. (2005). Formation control with virtual leaders and reduced communications. In Proceedings of 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference, CDC-ECC’05, IEEE, Seville (pp. 1854–1860). Xi, X., & Abed, E. H. (2005). Formation control with virtual leaders and reduced communications. In Proceedings of 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference, CDC-ECC’05, IEEE, Seville (pp. 1854–1860).
17.
go back to reference Su, H., Wang, X., & Yang, W. (2008). Flocking in multi-agent systems with multiple virtual leaders. Asian Journal of Control, 10, 238–245.MathSciNetCrossRef Su, H., Wang, X., & Yang, W. (2008). Flocking in multi-agent systems with multiple virtual leaders. Asian Journal of Control, 10, 238–245.MathSciNetCrossRef
18.
go back to reference Hou-Sheng, S. (2012). Flocking in multi-agent systems with multiple virtual leaders based only on position measurements. Communications in Theoretical Physics, 57, 801.CrossRefMATH Hou-Sheng, S. (2012). Flocking in multi-agent systems with multiple virtual leaders based only on position measurements. Communications in Theoretical Physics, 57, 801.CrossRefMATH
19.
go back to reference Zhang, H.-T., Zhai, C., & Chen, Z. (2011). A general alignment repulsion algorithm for flocking of multi-agent systems. IEEE Transactions on Automatic Control, 56, 430–435.MathSciNetCrossRef Zhang, H.-T., Zhai, C., & Chen, Z. (2011). A general alignment repulsion algorithm for flocking of multi-agent systems. IEEE Transactions on Automatic Control, 56, 430–435.MathSciNetCrossRef
20.
go back to reference Regmi, A., Sandoval, R., Byrne, R., Tanner, H., & Abdallah, C. (2005). Experimental implementation of flocking algorithms in wheeled mobile robots. In Proceedings of the 2005 American Control Conference, IEEE (pp. 4917–4922). Regmi, A., Sandoval, R., Byrne, R., Tanner, H., & Abdallah, C. (2005). Experimental implementation of flocking algorithms in wheeled mobile robots. In Proceedings of the 2005 American Control Conference, IEEE (pp. 4917–4922).
21.
go back to reference La, H. M., & Sheng, W. (2013a). Multi-agent motion control in cluttered and noisy environments. Journal of Communications, 8, 32–46.CrossRef La, H. M., & Sheng, W. (2013a). Multi-agent motion control in cluttered and noisy environments. Journal of Communications, 8, 32–46.CrossRef
22.
go back to reference La, H. M., & Sheng, W. (2013b). Distributed sensor fusion for scalar field mapping using mobile sensor networks. IEEE Transactions on Cybernetics, 43, 766–778.CrossRef La, H. M., & Sheng, W. (2013b). Distributed sensor fusion for scalar field mapping using mobile sensor networks. IEEE Transactions on Cybernetics, 43, 766–778.CrossRef
23.
go back to reference Tanner, H. G. (2004). Flocking with obstacle avoidance in switching networks of interconnected vehicles. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation (ICRA’04), IEEE (Vol. 3, pp. 3006–3011). Tanner, H. G. (2004). Flocking with obstacle avoidance in switching networks of interconnected vehicles. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation (ICRA’04), IEEE (Vol. 3, pp. 3006–3011).
24.
go back to reference Yang, Y., Xiong, N., Chong, N. Y., & Défago, X. (2008). A decentralized and adaptive flocking algorithm for autonomous mobile robots. In The 3rd International Conference on Grid and Pervasive Computing Workshops (GPC Workshops’ 08), IEEE (pp. 262–268). Yang, Y., Xiong, N., Chong, N. Y., & Défago, X. (2008). A decentralized and adaptive flocking algorithm for autonomous mobile robots. In The 3rd International Conference on Grid and Pervasive Computing Workshops (GPC Workshops’ 08), IEEE (pp. 262–268).
25.
go back to reference Yu, H., Zhang, T., & Jian, J. (2010). Flocking with obstacle avoidance based on fuzzy logic. In 2010, 8th IEEE International Conference on Control and Automation (ICCA), IEEE (pp. 1876–1881). Yu, H., Zhang, T., & Jian, J. (2010). Flocking with obstacle avoidance based on fuzzy logic. In 2010, 8th IEEE International Conference on Control and Automation (ICCA), IEEE (pp. 1876–1881).
26.
go back to reference Ghorbanian, P., Nersesov, S. G., & Ashrafiuon, H. (2011). Obstacle avoidance in multi-vehicle coordinated motion via stabilization of time-varying sets. In Proceedings of the 2011 American Control Conference (ACC), IEEE (pp. 3381–3386). Ghorbanian, P., Nersesov, S. G., & Ashrafiuon, H. (2011). Obstacle avoidance in multi-vehicle coordinated motion via stabilization of time-varying sets. In Proceedings of the 2011 American Control Conference (ACC), IEEE (pp. 3381–3386).
27.
go back to reference Yan, J., Guan, X., Luo, X., & Tan, F. (2011). Formation and obstacle avoidance control for multiagent systems. Journal of Control Theory and Applications, 9, 141–147.MathSciNetCrossRef Yan, J., Guan, X., Luo, X., & Tan, F. (2011). Formation and obstacle avoidance control for multiagent systems. Journal of Control Theory and Applications, 9, 141–147.MathSciNetCrossRef
28.
go back to reference La, H. M., & Sheng, W. (2012). Dynamic target tracking and observing in a mobile sensor network. Robotics and Autonomous Systems, 60, 996–1009.CrossRef La, H. M., & Sheng, W. (2012). Dynamic target tracking and observing in a mobile sensor network. Robotics and Autonomous Systems, 60, 996–1009.CrossRef
29.
go back to reference Kimmel, A., Dobson, A., & Bekris, K. (2012). Maintaining team coherence under the velocity obstacle framework. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems. International Foundation for Autonomous Agents and Multiagent Systems, (Vol. 1, pp. 247–256). Kimmel, A., Dobson, A., & Bekris, K. (2012). Maintaining team coherence under the velocity obstacle framework. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems. International Foundation for Autonomous Agents and Multiagent Systems, (Vol. 1, pp. 247–256).
30.
go back to reference Hu, N., & Wu, S. (2012). Flocking of multi-agents with conic obstacle avoidance. In 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE) (Vol. 1, pp. 126–132). Hu, N., & Wu, S. (2012). Flocking of multi-agents with conic obstacle avoidance. In 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE) (Vol. 1, pp. 126–132).
31.
go back to reference Saber, R. O., & Murray, R. M. (2003). Flocking with obstacle avoidance: Cooperation with limited communication in mobile networks. In Proceedings of the 42nd IEEE Conference on Decision and Control (Vol. 2, pp. 2022–2028). Saber, R. O., & Murray, R. M. (2003). Flocking with obstacle avoidance: Cooperation with limited communication in mobile networks. In Proceedings of the 42nd IEEE Conference on Decision and Control (Vol. 2, pp. 2022–2028).
32.
go back to reference Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control, 51, 401–420.MathSciNetCrossRef Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control, 51, 401–420.MathSciNetCrossRef
33.
go back to reference Su, H., Wang, X., & Lin, Z. (2009). Flocking of multi-agents with a virtual leader. IEEE Transactions on Automatic Control, 54, 293–307.MathSciNetCrossRef Su, H., Wang, X., & Lin, Z. (2009). Flocking of multi-agents with a virtual leader. IEEE Transactions on Automatic Control, 54, 293–307.MathSciNetCrossRef
Metadata
Title
Flocking of partially-informed multi-agent systems avoiding obstacles with arbitrary shape
Authors
Jiaojie Li
Wei Zhang
Housheng Su
Yupu Yang
Publication date
01-09-2015
Publisher
Springer US
Published in
Autonomous Agents and Multi-Agent Systems / Issue 5/2015
Print ISSN: 1387-2532
Electronic ISSN: 1573-7454
DOI
https://doi.org/10.1007/s10458-014-9272-2

Other articles of this Issue 5/2015

Autonomous Agents and Multi-Agent Systems 5/2015 Go to the issue

Premium Partner