Skip to main content
Top

2020 | OriginalPaper | Chapter

6. Flow Fields and Heat Transfer Associated with an Acoustically Levitated Droplet

Author : Koji Hasegawa

Published in: Acoustic Levitation

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Considering the potential applications, a better understanding of the flow fields in an acoustically levitated droplet is of great significance in scientific fields. The flow generated by a nonlinear acoustic field is known as acoustic streaming. Using acoustic levitation, multi-scale acoustic streaming can be induced both inside and outside the droplet. In the internal flow field, the streaming configuration is affected by the physical properties of the droplet, i.e., the droplet diameter and rotation. The external flow field can be characterized by the applied sound pressure, physical properties of the droplet, and surrounding gas. These flow fields play an important role in the heat and mass transfer of the levitated droplet. This chapter provides a comprehensive review of the flow fields, the general theory of acoustic streaming, and an understanding of the heat transfer/mixing enhancement.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference R. Green, M. Ohlin, M. Wiklund, T. Laurell, A. Lenshof, Applications of Acoustic Streaming (Royal Society of Chemistry, London, 2014), pp. 312–336 R. Green, M. Ohlin, M. Wiklund, T. Laurell, A. Lenshof, Applications of Acoustic Streaming (Royal Society of Chemistry, London, 2014), pp. 312–336
3.
go back to reference S.K. Chung, E.H. Trinh, Containerless protein crystal growth in rotating levitated drops. J. Cryst. Growth 194(3–4), 384–397 (1998)CrossRef S.K. Chung, E.H. Trinh, Containerless protein crystal growth in rotating levitated drops. J. Cryst. Growth 194(3–4), 384–397 (1998)CrossRef
4.
go back to reference E.H. Trinh, J.L. Robey, Experimental study of streaming flows associated with ultrasonic levitators. Phys. Fluids 6(11), 3567–3579 (1994)CrossRef E.H. Trinh, J.L. Robey, Experimental study of streaming flows associated with ultrasonic levitators. Phys. Fluids 6(11), 3567–3579 (1994)CrossRef
5.
go back to reference A. Rednikov, N. Riley, A simulation of streaming flows associated with acoustic levitators. Phys. Fluids 14(4), 1502–1510 (2002)CrossRef A. Rednikov, N. Riley, A simulation of streaming flows associated with acoustic levitators. Phys. Fluids 14(4), 1502–1510 (2002)CrossRef
6.
go back to reference A.Y. Rednikov, H. Zhao, S.S. Sadhal, E.H. Trinh, Steady streaming around a spherical drop displaced from the velocity antinode in an acoustic levitation field. Q. J. Mech. Appl. Math. 59(3), 377–397 (2006)MathSciNetCrossRef A.Y. Rednikov, H. Zhao, S.S. Sadhal, E.H. Trinh, Steady streaming around a spherical drop displaced from the velocity antinode in an acoustic levitation field. Q. J. Mech. Appl. Math. 59(3), 377–397 (2006)MathSciNetCrossRef
7.
go back to reference A.Y. Rednikov, S.S. Sadhal, Steady streaming from an oblate spheroid due to vibrations along its axis. J. Fluid Mech. 499, 345–380 (2004)MathSciNetCrossRef A.Y. Rednikov, S.S. Sadhal, Steady streaming from an oblate spheroid due to vibrations along its axis. J. Fluid Mech. 499, 345–380 (2004)MathSciNetCrossRef
8.
go back to reference H. Zhao, S.S. Sadhal, E.H. Trinh, Singular perturbation analysis of an acoustically levitated sphere: flow about the velocity node. J. Acoust. Soc. Am. 106(2), 589–595 (1999)CrossRef H. Zhao, S.S. Sadhal, E.H. Trinh, Singular perturbation analysis of an acoustically levitated sphere: flow about the velocity node. J. Acoust. Soc. Am. 106(2), 589–595 (1999)CrossRef
9.
go back to reference H. Zhao, S.S. Sadhal, E.H. Trinh, Internal circulation in a drop in an acoustic field. J. Acoust. Soc. Am. 106(6), 3289–3295 (1999)CrossRef H. Zhao, S.S. Sadhal, E.H. Trinh, Internal circulation in a drop in an acoustic field. J. Acoust. Soc. Am. 106(6), 3289–3295 (1999)CrossRef
10.
go back to reference A.L. Yarin, G. Brenn, O. Kastner, D. Rensink, C. Tropea, Evaporation of acoustically levitated droplets. J. Fluid Mech. 399, 151–204 (1999)CrossRef A.L. Yarin, G. Brenn, O. Kastner, D. Rensink, C. Tropea, Evaporation of acoustically levitated droplets. J. Fluid Mech. 399, 151–204 (1999)CrossRef
11.
go back to reference A.L. Yarin, G. Brenn, D. Rensink, Evaporation of acoustically levitated droplets of binary liquid mixtures. Int. J. Heat Fluid Flow 23(4), 471–486 (2002)CrossRef A.L. Yarin, G. Brenn, D. Rensink, Evaporation of acoustically levitated droplets of binary liquid mixtures. Int. J. Heat Fluid Flow 23(4), 471–486 (2002)CrossRef
12.
go back to reference K. Hasegawa, Y. Abe, A. Fujiwara, Y. Yamamoto, K. Aoki, External flow of an acoustically levitated droplet. Microgravity Sci. Technol. 20(3–4), 261 (2008)CrossRef K. Hasegawa, Y. Abe, A. Fujiwara, Y. Yamamoto, K. Aoki, External flow of an acoustically levitated droplet. Microgravity Sci. Technol. 20(3–4), 261 (2008)CrossRef
13.
go back to reference Y. Yamamoto, Y. Abe, A. Fujiwara, K. Hasegawa, K. Aoki, Internal flow of acoustically levitated droplet. Microgravity Sci. Technol. 20(3–4), 277 (2008)CrossRef Y. Yamamoto, Y. Abe, A. Fujiwara, K. Hasegawa, K. Aoki, Internal flow of acoustically levitated droplet. Microgravity Sci. Technol. 20(3–4), 277 (2008)CrossRef
14.
go back to reference K. Hasegawa, Y. Abe, A. Kaneko, Y. Yamamoto, K. Aoki, Visualization measurement of streaming flows associated with a single-acoustic levitator. Microgravity Sci. Technol. 21(1), 9 (2009)CrossRef K. Hasegawa, Y. Abe, A. Kaneko, Y. Yamamoto, K. Aoki, Visualization measurement of streaming flows associated with a single-acoustic levitator. Microgravity Sci. Technol. 21(1), 9 (2009)CrossRef
15.
go back to reference K. Hasegawa, Y. Abe, A. Goda, Microlayered flow structure around an acoustically levitated droplet under a phase-change process. npj Microgravity 2, 16004 (2016) K. Hasegawa, Y. Abe, A. Goda, Microlayered flow structure around an acoustically levitated droplet under a phase-change process. npj Microgravity 2, 16004 (2016)
16.
go back to reference S. Santesson, S. Nilsson, Airborne chemistry: acoustic levitation in chemical analysis. Anal. Bioanal. Chem. 378(7), 1704–1709 (2004)CrossRef S. Santesson, S. Nilsson, Airborne chemistry: acoustic levitation in chemical analysis. Anal. Bioanal. Chem. 378(7), 1704–1709 (2004)CrossRef
17.
go back to reference V. Vandaele, P. Lambert, A. Delchambre, Non-contact handling in microassembly: acoustical levitation. Precis. Eng. 29(4), 491–505 (2005)CrossRef V. Vandaele, P. Lambert, A. Delchambre, Non-contact handling in microassembly: acoustical levitation. Precis. Eng. 29(4), 491–505 (2005)CrossRef
18.
go back to reference F. Priego-Capote, L. de Castro, Ultrasound-assisted levitation: lab-on-a-drop. TrAC Trends Anal. Chem. 25(9), 856–867 (2006)CrossRef F. Priego-Capote, L. de Castro, Ultrasound-assisted levitation: lab-on-a-drop. TrAC Trends Anal. Chem. 25(9), 856–867 (2006)CrossRef
19.
go back to reference L. Puskar, R. Tuckermann, T. Frosch, J. Popp, V. Ly, D. McNaughton, B.R. Wood, Raman acoustic levitation spectroscopy of red blood cells and Plasmodium falciparum trophozoites. Lab Chip 7(9), 1125–1131 (2007)CrossRef L. Puskar, R. Tuckermann, T. Frosch, J. Popp, V. Ly, D. McNaughton, B.R. Wood, Raman acoustic levitation spectroscopy of red blood cells and Plasmodium falciparum trophozoites. Lab Chip 7(9), 1125–1131 (2007)CrossRef
20.
go back to reference A. Scheeline, R.L. Behrens, Potential of levitated drops to serve as microreactors for biophysical measurements. Biophys. Chem. 165, 1–2 (2012)CrossRef A. Scheeline, R.L. Behrens, Potential of levitated drops to serve as microreactors for biophysical measurements. Biophys. Chem. 165, 1–2 (2012)CrossRef
21.
go back to reference D. Foresti, M. Nabavi, M. Klingauf, A. Ferrari, D. Poulikakos, Acoustophoretic contactless transport and handling of matter in air. Proc. Nat. Acad. Sci. 110(31), 12549–12554 (2013)CrossRef D. Foresti, M. Nabavi, M. Klingauf, A. Ferrari, D. Poulikakos, Acoustophoretic contactless transport and handling of matter in air. Proc. Nat. Acad. Sci. 110(31), 12549–12554 (2013)CrossRef
22.
go back to reference E.T. Chainani, W.H. Choi, K.T. Ngo, A. Scheeline, Mixing in colliding, ultrasonically levitated drops. Anal. Chem. 86(4), 2229–2237 (2014)CrossRef E.T. Chainani, W.H. Choi, K.T. Ngo, A. Scheeline, Mixing in colliding, ultrasonically levitated drops. Anal. Chem. 86(4), 2229–2237 (2014)CrossRef
23.
go back to reference C. Bouyer, P. Chen, S. Güven, T.T. Demirtaş, T.J. Nieland, F. Padilla, U. Demirci, A bio-acoustic levitational (BAL) assembly method for engineering of multilayered, 3D brain-like constructs, using human embryonic stem cell derived neuro-progenitors. Adv. Mater. 1, 161–167 (2016)CrossRef C. Bouyer, P. Chen, S. Güven, T.T. Demirtaş, T.J. Nieland, F. Padilla, U. Demirci, A bio-acoustic levitational (BAL) assembly method for engineering of multilayered, 3D brain-like constructs, using human embryonic stem cell derived neuro-progenitors. Adv. Mater. 1, 161–167 (2016)CrossRef
24.
go back to reference T. Vasileiou, D. Foresti, A. Bayram, D. Poulikakos, A. Ferrari, Toward contactless biology: Acoustophoretic DNA transfection. Sci. Rep. 6, 20023 (2016)CrossRef T. Vasileiou, D. Foresti, A. Bayram, D. Poulikakos, A. Ferrari, Toward contactless biology: Acoustophoretic DNA transfection. Sci. Rep. 6, 20023 (2016)CrossRef
25.
go back to reference A. Marzo, B.W. Drinkwater, Holographic acoustic tweezers. Proc. Nat. Acad. Sci. 116(1), 84–89 (2019)CrossRef A. Marzo, B.W. Drinkwater, Holographic acoustic tweezers. Proc. Nat. Acad. Sci. 116(1), 84–89 (2019)CrossRef
26.
go back to reference L. Rayleigh, On the circulation of air observed in Kundt’s tubes, and on some allied acoustical problems. Philos. Trans. R. Soc. Lond. 175, 1–21 (1884)MATH L. Rayleigh, On the circulation of air observed in Kundt’s tubes, and on some allied acoustical problems. Philos. Trans. R. Soc. Lond. 175, 1–21 (1884)MATH
27.
go back to reference S.S. Sadhal, Acoustofluidics 13: analysis of acoustic streaming by perturbation methods. Lab Chip 12(13), 2292–2300 (2012)CrossRef S.S. Sadhal, Acoustofluidics 13: analysis of acoustic streaming by perturbation methods. Lab Chip 12(13), 2292–2300 (2012)CrossRef
28.
go back to reference Tatsuno M (1982) Secondary streaming induced by an oscillating cylinder, in An Album of Fluid Motion, vol. 31 Tatsuno M (1982) Secondary streaming induced by an oscillating cylinder, in An Album of Fluid Motion, vol. 31
29.
go back to reference H. Schlichting, Berechnung ebener periodischer Grenzschichtstromungen. Phys. z. 33, 327–335 (1932)MATH H. Schlichting, Berechnung ebener periodischer Grenzschichtstromungen. Phys. z. 33, 327–335 (1932)MATH
30.
go back to reference S.S. Sadhal, Acoustofluidics 15: streaming with sound waves interacting with solid particles. Lab Chip 12(15), 2600–2611 (2012)CrossRef S.S. Sadhal, Acoustofluidics 15: streaming with sound waves interacting with solid particles. Lab Chip 12(15), 2600–2611 (2012)CrossRef
31.
go back to reference S.S. Sadhal, Acoustofluidics 16: acoustics streaming near liquid–gas interfaces: drops and bubbles. Lab Chip 12(16), 2771–2781 (2012)CrossRef S.S. Sadhal, Acoustofluidics 16: acoustics streaming near liquid–gas interfaces: drops and bubbles. Lab Chip 12(16), 2771–2781 (2012)CrossRef
32.
go back to reference K. Hasegawa, Y. Abe, A. Kaneko, K. Aoki, PIV measurement of internal and external flow of an acoustically levitated droplet. Int. J. Transp. Phenom. 12(3–4), 151–160 (2011) K. Hasegawa, Y. Abe, A. Kaneko, K. Aoki, PIV measurement of internal and external flow of an acoustically levitated droplet. Int. J. Transp. Phenom. 12(3–4), 151–160 (2011)
33.
go back to reference K. Shitanishi, K. Hasegawa, A. Kaneko, Y. Abe, Study on heat transfer and flow characteristic under phase-change process of an acoustically levitated droplet. Microgravity Sci. Technol. 26(5), 305–312 (2014)CrossRef K. Shitanishi, K. Hasegawa, A. Kaneko, Y. Abe, Study on heat transfer and flow characteristic under phase-change process of an acoustically levitated droplet. Microgravity Sci. Technol. 26(5), 305–312 (2014)CrossRef
34.
go back to reference A. Gopinath, A.F. Mills, Convective heat transfer from a sphere due to acoustic streaming. J. Heat Transf. 115, 332–341 (1993)CrossRef A. Gopinath, A.F. Mills, Convective heat transfer from a sphere due to acoustic streaming. J. Heat Transf. 115, 332–341 (1993)CrossRef
35.
go back to reference Y. Niimura, K. Hasegawa, Evaporation of droplet in mid-air: pure and binary droplets in single-axis acoustic levitator. PLoS ONE 14(2), e0212074 (2019)CrossRef Y. Niimura, K. Hasegawa, Evaporation of droplet in mid-air: pure and binary droplets in single-axis acoustic levitator. PLoS ONE 14(2), e0212074 (2019)CrossRef
36.
go back to reference W.E. Ranz, W.R. Marshall, Evaporation from drops. Chem. Eng. Prog. 48(3), 141–146 (1952) W.E. Ranz, W.R. Marshall, Evaporation from drops. Chem. Eng. Prog. 48(3), 141–146 (1952)
37.
go back to reference S. Whitaker, Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles. AIChE J. 18(2), 361–371 (1972)CrossRef S. Whitaker, Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles. AIChE J. 18(2), 361–371 (1972)CrossRef
38.
go back to reference A. Watanabe, K. Hasegawa, Y. Abe, Contactless fluid manipulation in air: droplet coalescence and active mixing by acoustic levitation. Sci. Rep. 8(1), 10221 (2018)CrossRef A. Watanabe, K. Hasegawa, Y. Abe, Contactless fluid manipulation in air: droplet coalescence and active mixing by acoustic levitation. Sci. Rep. 8(1), 10221 (2018)CrossRef
39.
go back to reference C.L. Shen, W.J. Xie, B. Wei, Parametrically excited sectorial oscillation of liquid drops floating in ultrasound. Phys. Rev. E 81(4), 046305 (2010)CrossRef C.L. Shen, W.J. Xie, B. Wei, Parametrically excited sectorial oscillation of liquid drops floating in ultrasound. Phys. Rev. E 81(4), 046305 (2010)CrossRef
40.
go back to reference B. Carroll, C. Hidrovo, Droplet collision mixing diagnostics using single fluorophore LIF. Exp. Fluids 53(5), 1301–1316 (2012)CrossRef B. Carroll, C. Hidrovo, Droplet collision mixing diagnostics using single fluorophore LIF. Exp. Fluids 53(5), 1301–1316 (2012)CrossRef
41.
go back to reference C.L. Shen, W.J. Xie, Z.L. Yan, B. Wei, Internal flow of acoustically levitated drops undergoing sectorial oscillations. Phys. Lett. A 374(39), 4045–4048 (2010)CrossRef C.L. Shen, W.J. Xie, Z.L. Yan, B. Wei, Internal flow of acoustically levitated drops undergoing sectorial oscillations. Phys. Lett. A 374(39), 4045–4048 (2010)CrossRef
42.
go back to reference C.T. Culbertson, S.C. Jacobson, J.M. Ramsey, Diffusion coefficient measurements in microfluidic devices. Talanta 56(2), 365–373 (2002)CrossRef C.T. Culbertson, S.C. Jacobson, J.M. Ramsey, Diffusion coefficient measurements in microfluidic devices. Talanta 56(2), 365–373 (2002)CrossRef
43.
go back to reference J.M. Ottino, The kinematics of mixing: stretching, chaos, and transport (Cambridge University Press, 1989) J.M. Ottino, The kinematics of mixing: stretching, chaos, and transport (Cambridge University Press, 1989)
Metadata
Title
Flow Fields and Heat Transfer Associated with an Acoustically Levitated Droplet
Author
Koji Hasegawa
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9065-5_6

Premium Partners