Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 7/2017

31-05-2017

Flow Softening Index for Assessment of Dynamic Recrystallization in an Austenitic Stainless Steel

Authors: B. Aashranth, Dipti Samantaray, Santosh Kumar, Arup Dasgupta, Utpal Borah, Shaju K. Albert, A. K. Bhaduri

Published in: Journal of Materials Engineering and Performance | Issue 7/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present study proposes a novel technique to assess dynamic recrystallization (DRX) and related microstructural phenomena during hot deformation of austenite. A ‘Flow Softening Index (FSI)’ has been identified on the basis of investigations on elevated temperature deformation behaviour of austenitic stainless steel. This index corresponds to dominant microstructural phenomena at different deformation conditions. For this investigation, experimental results obtained from isothermal, constant true strain rate compression tests in a temperature range of 1173 (900)-1473 K (1200 °C) and strain rate range of 0.01-100 s−1 have been used. Resultant microstructures have been quantified using average grain size and grain size distributions. The dominant microstructural phenomena have been identified at different conditions using electron backscatter diffraction. Low FSI values are associated with the grain growth, intermediate values with DRX, and high values with the work-hardening and flow localisation phenomena. FSI also quantitatively indexes the average grain size and grain size distributions at different temperature-strain rate combinations. Analysis of the specific deformation conditions, particularly where 3.4 < FSI < 3.5, indicates a common thermo-mechanical origin of flow localisation and DRX. The potential technological implications thereof are discussed and a semi-empirical model of microstructural evolution is developed for the studied material.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H.J. McQueen, Metal Forming: Industrial, Mechanical, Computational and Microstructural, J. Mater. Proc. Technol., 1993, 37, p 3–36CrossRef H.J. McQueen, Metal Forming: Industrial, Mechanical, Computational and Microstructural, J. Mater. Proc. Technol., 1993, 37, p 3–36CrossRef
2.
go back to reference D. Ponge and G. Gottstein, Necklace Formation During Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior, Acta Mater., 1998, 46(1), p 69–80CrossRef D. Ponge and G. Gottstein, Necklace Formation During Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior, Acta Mater., 1998, 46(1), p 69–80CrossRef
3.
go back to reference T. Sakai, M. Akben, and J. Jonas, Dynamic Recrystallization During the Transient Deformation of a Vanadium Microalloyed Steel, Acta Metall., 1983, 31(4), p 631–641CrossRef T. Sakai, M. Akben, and J. Jonas, Dynamic Recrystallization During the Transient Deformation of a Vanadium Microalloyed Steel, Acta Metall., 1983, 31(4), p 631–641CrossRef
4.
go back to reference C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–32CrossRef C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–32CrossRef
5.
go back to reference B. Derby, The Dependence of Grain Size on Stress During Dynamic Recrystallisation, Acta Metall. Mater., 1991, 39(5), p 955–962CrossRef B. Derby, The Dependence of Grain Size on Stress During Dynamic Recrystallisation, Acta Metall. Mater., 1991, 39(5), p 955–962CrossRef
6.
go back to reference A. Belyakov, H. Miura, and T. Sakai, Dynamic Recrystallization Under Warm Deformation of a 304 Type Austenitic Stainless Steel, Mater. Sci. Eng. A, 1998, 255(1), p 139–147CrossRef A. Belyakov, H. Miura, and T. Sakai, Dynamic Recrystallization Under Warm Deformation of a 304 Type Austenitic Stainless Steel, Mater. Sci. Eng. A, 1998, 255(1), p 139–147CrossRef
7.
go back to reference H. Mirzadeh, A. Najafizadeh, and M. Moazeny, Flow Curve Analysis of 17-4 PH Stainless Steel Under Hot Compression Test, Metall. Mater. Trans. A, 2009, 40(12), p 2950CrossRef H. Mirzadeh, A. Najafizadeh, and M. Moazeny, Flow Curve Analysis of 17-4 PH Stainless Steel Under Hot Compression Test, Metall. Mater. Trans. A, 2009, 40(12), p 2950CrossRef
8.
go back to reference A. Fernández, P. Uranga, B. López, and J. Rodriguez-Ibabe, Dynamic Recrystallization Behavior Covering a Wide Austenite Grain Size Range in Nb and Nb-Ti Microalloyed Steels, Mater. Sci. Eng. A, 2003, 361(1), p 367–376CrossRef A. Fernández, P. Uranga, B. López, and J. Rodriguez-Ibabe, Dynamic Recrystallization Behavior Covering a Wide Austenite Grain Size Range in Nb and Nb-Ti Microalloyed Steels, Mater. Sci. Eng. A, 2003, 361(1), p 367–376CrossRef
9.
go back to reference S. Semiatin and G. Lahoti, The Occurrence of Shear Bands in Isothermal, Hot Forging, Metall. Trans. A, 1982, 13(2), p 275–288CrossRef S. Semiatin and G. Lahoti, The Occurrence of Shear Bands in Isothermal, Hot Forging, Metall. Trans. A, 1982, 13(2), p 275–288CrossRef
10.
go back to reference S. Osovski, D. Rittel, and A. Venkert, The Respective Influence of Microstructural and Thermal Softening on Adiabatic Shear Localization, Mech. Mater., 2013, 56, p 11–22CrossRef S. Osovski, D. Rittel, and A. Venkert, The Respective Influence of Microstructural and Thermal Softening on Adiabatic Shear Localization, Mech. Mater., 2013, 56, p 11–22CrossRef
11.
go back to reference J. Rodríguez-Martínez, G. Vadillo, R. Zaera, J. Fernández-Sáez, and D. Rittel, An Analysis of Microstructural and Thermal Softening Effects in Dynamic Necking, Mech. Mater., 2015, 80, p 298–310CrossRef J. Rodríguez-Martínez, G. Vadillo, R. Zaera, J. Fernández-Sáez, and D. Rittel, An Analysis of Microstructural and Thermal Softening Effects in Dynamic Necking, Mech. Mater., 2015, 80, p 298–310CrossRef
12.
go back to reference S.N. Murty, B.N. Rao, and B. Kashyap, Identification of Flow Instabilities in the Processing Maps of AISI, 304 Stainless Steel, J. Mater. Process. Technol., 2005, 166(2), p 268–278CrossRef S.N. Murty, B.N. Rao, and B. Kashyap, Identification of Flow Instabilities in the Processing Maps of AISI, 304 Stainless Steel, J. Mater. Process. Technol., 2005, 166(2), p 268–278CrossRef
13.
go back to reference D.D. Chen, Y.C. Lin, Y. Zhou, M.S. Chen, and D.X. Wen, Dislocation Substructures Evolution and an Adaptive-Network-Based Fuzzy Inference System Model for Constitutive Behavior of a Ni-Based Superalloy During Hot Deformation, J. Alloys Compd., 2017, 708, p 938–946CrossRef D.D. Chen, Y.C. Lin, Y. Zhou, M.S. Chen, and D.X. Wen, Dislocation Substructures Evolution and an Adaptive-Network-Based Fuzzy Inference System Model for Constitutive Behavior of a Ni-Based Superalloy During Hot Deformation, J. Alloys Compd., 2017, 708, p 938–946CrossRef
14.
go back to reference Y.X. Liu, Y.C. Lin, and Y. Zhou, A 2D Cellular Automaton Simulation of Hot Deformation Behavior in a Ni-Based Superalloy Under Varying Thermal-Mechanical Conditions, Mater. Sci. Eng. A, 2017, 691, p 88–99CrossRef Y.X. Liu, Y.C. Lin, and Y. Zhou, A 2D Cellular Automaton Simulation of Hot Deformation Behavior in a Ni-Based Superalloy Under Varying Thermal-Mechanical Conditions, Mater. Sci. Eng. A, 2017, 691, p 88–99CrossRef
15.
go back to reference Y.C. Lin, Y.J. Liang, M.S. Chen, and X.M. Chen, A Comparative Study on Phenomenon and Deep Belief Models for Hot Deformation Behaviour of an Al-Zn-Mg-Cu Alloy, Appl. Phys. A, 2017, 123, p 68–74CrossRef Y.C. Lin, Y.J. Liang, M.S. Chen, and X.M. Chen, A Comparative Study on Phenomenon and Deep Belief Models for Hot Deformation Behaviour of an Al-Zn-Mg-Cu Alloy, Appl. Phys. A, 2017, 123, p 68–74CrossRef
16.
go back to reference Y.X. Liu, Y.C. Lin, H.B. Li, D.X. Wen, X.M. Chen, and M.S. Chen, Study of Dynamic Recrystallization in a Ni-Based Superalloy by Experiments and Cellular Automaton Model, Mater. Sci. Eng. A, 2015, 626, p 432–440CrossRef Y.X. Liu, Y.C. Lin, H.B. Li, D.X. Wen, X.M. Chen, and M.S. Chen, Study of Dynamic Recrystallization in a Ni-Based Superalloy by Experiments and Cellular Automaton Model, Mater. Sci. Eng. A, 2015, 626, p 432–440CrossRef
17.
go back to reference S. Latha, M. Mathew, P. Parameswaran, M. Nandagopal, and S. Mannan, Effect of Titanium on the Creep Deformation Behaviour of 14Cr-15Ni-Ti Stainless Steel, J. Nucl. Mater., 2011, 409(3), p 214–220CrossRef S. Latha, M. Mathew, P. Parameswaran, M. Nandagopal, and S. Mannan, Effect of Titanium on the Creep Deformation Behaviour of 14Cr-15Ni-Ti Stainless Steel, J. Nucl. Mater., 2011, 409(3), p 214–220CrossRef
18.
go back to reference D. Samantaray, S. Mandal, and A. Bhaduri, A Critical Comparison of Various Data Processing Methods in Simple Uni-Axial Compression Testing, Mater. Des., 2011, 32(5), p 2797–2802CrossRef D. Samantaray, S. Mandal, and A. Bhaduri, A Critical Comparison of Various Data Processing Methods in Simple Uni-Axial Compression Testing, Mater. Des., 2011, 32(5), p 2797–2802CrossRef
19.
go back to reference M. Vaziri, M. Mashayekhi, and M. Salimi, The Contribution of History in Plastic Behavior of Metals in Machining, J. Eng. Mater. Technol., 2012, 134(2), p 021007CrossRef M. Vaziri, M. Mashayekhi, and M. Salimi, The Contribution of History in Plastic Behavior of Metals in Machining, J. Eng. Mater. Technol., 2012, 134(2), p 021007CrossRef
20.
go back to reference L.-E. Lindgren, K. Domkin, and S. Hansson, Dislocations, Vacancies and Solute Diffusion in Physical Based Plasticity Model for AISI, 316L, Mech. Mater., 2008, 40(11), p 907–919CrossRef L.-E. Lindgren, K. Domkin, and S. Hansson, Dislocations, Vacancies and Solute Diffusion in Physical Based Plasticity Model for AISI, 316L, Mech. Mater., 2008, 40(11), p 907–919CrossRef
21.
go back to reference D. Samantaray, A. Patel, U. Borah, S. Albert, and A. Bhaduri, Constitutive Flow Behavior of IFAC-1 Austenitic Stainless Steel Depicting Strain Saturation Over a Wide Range of Strain Rates and Temperatures, Mater. Des., 2014, 56, p 565–571CrossRef D. Samantaray, A. Patel, U. Borah, S. Albert, and A. Bhaduri, Constitutive Flow Behavior of IFAC-1 Austenitic Stainless Steel Depicting Strain Saturation Over a Wide Range of Strain Rates and Temperatures, Mater. Des., 2014, 56, p 565–571CrossRef
22.
go back to reference D. Samantaray, S. Mandal, V. Kumar, S. Albert, A. Bhaduri, and T. Jayakumar, Optimization of Processing Parameters Based on High Temperature Flow Behavior and Microstructural Evolution of a Nitrogen Enhanced 316L (N) Stainless Steel, Mater. Sci. Eng. A, 2012, 552, p 236–244CrossRef D. Samantaray, S. Mandal, V. Kumar, S. Albert, A. Bhaduri, and T. Jayakumar, Optimization of Processing Parameters Based on High Temperature Flow Behavior and Microstructural Evolution of a Nitrogen Enhanced 316L (N) Stainless Steel, Mater. Sci. Eng. A, 2012, 552, p 236–244CrossRef
23.
go back to reference H. Tripathy, S. Raju, A.K. Rai, G. Panneerselvam, and T. Jayakumar, Thermal Stability and Thermal Property Characterisation of Fe-14.4 Cr-15.4 Ni-2.4 Mo-2.36 Mn-0.25 Ti-1.02 Si-0.042 C-0.04 P-0.005 B (Mass%) Austenitic Stainless Steel (Alloy D9I), Nucl. Eng. Des., 2013, 255, p 86–96CrossRef H. Tripathy, S. Raju, A.K. Rai, G. Panneerselvam, and T. Jayakumar, Thermal Stability and Thermal Property Characterisation of Fe-14.4 Cr-15.4 Ni-2.4 Mo-2.36 Mn-0.25 Ti-1.02 Si-0.042 C-0.04 P-0.005 B (Mass%) Austenitic Stainless Steel (Alloy D9I), Nucl. Eng. Des., 2013, 255, p 86–96CrossRef
24.
go back to reference Q. Zhan, T. Suo, C. Wang, K. Xie, and Z. Tang, Temperature Sensitivity and Prediction of the Mechanical Behaviors of Ultrafine Grained Aluminum Under Uniaxial Compression, Acta Mech. Solida Sin., 2014, 27(4), p 373–382CrossRef Q. Zhan, T. Suo, C. Wang, K. Xie, and Z. Tang, Temperature Sensitivity and Prediction of the Mechanical Behaviors of Ultrafine Grained Aluminum Under Uniaxial Compression, Acta Mech. Solida Sin., 2014, 27(4), p 373–382CrossRef
25.
go back to reference Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, and L.T. Li, EBSD Study of a Hot Deformed Nickel-Based Superalloy, J. Alloys Compd., 2015, 640, p 101–113CrossRef Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, and L.T. Li, EBSD Study of a Hot Deformed Nickel-Based Superalloy, J. Alloys Compd., 2015, 640, p 101–113CrossRef
26.
go back to reference J. Mackenzie, The Distribution of Rotation Axes in a Random Aggregate of Cubic Crystals, Acta Metall., 1964, 12(2), p 223–225CrossRef J. Mackenzie, The Distribution of Rotation Axes in a Random Aggregate of Cubic Crystals, Acta Metall., 1964, 12(2), p 223–225CrossRef
27.
go back to reference V. Randle, G. Rohrer, and Y. Hu, Five-Parameter Grain Boundary Analysis of a Titanium Alloy Before and After Low-Temperature Annealing, Scr. Mater., 2008, 58(3), p 183–186CrossRef V. Randle, G. Rohrer, and Y. Hu, Five-Parameter Grain Boundary Analysis of a Titanium Alloy Before and After Low-Temperature Annealing, Scr. Mater., 2008, 58(3), p 183–186CrossRef
28.
go back to reference A. Dasgupta, S. Murugesan, S. Saroja, M. Vijayalakshmi, M. Luysberg, M. Veron, E. Rauch, and T. Jayakumar, Structure of Grains and Grain Boundaries in Cryo-Mechanically Processed Ti Alloy, J. Mater. Sci., 2013, 48(13), p 4592–4598CrossRef A. Dasgupta, S. Murugesan, S. Saroja, M. Vijayalakshmi, M. Luysberg, M. Veron, E. Rauch, and T. Jayakumar, Structure of Grains and Grain Boundaries in Cryo-Mechanically Processed Ti Alloy, J. Mater. Sci., 2013, 48(13), p 4592–4598CrossRef
29.
go back to reference S. Mandal, A. Bhaduri, and V.S. Sarma, A Study on Microstructural Evolution and Dynamic Recrystallization During Isothermal Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2011, 42(4), p 1062–1072CrossRef S. Mandal, A. Bhaduri, and V.S. Sarma, A Study on Microstructural Evolution and Dynamic Recrystallization During Isothermal Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2011, 42(4), p 1062–1072CrossRef
30.
go back to reference F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004 F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004
31.
go back to reference D. Field, L. Bradford, M. Nowell, and T. Lillo, The Role of Annealing Twins During Recrystallization of Cu, Acta Mater., 2007, 55(12), p 4233–4241CrossRef D. Field, L. Bradford, M. Nowell, and T. Lillo, The Role of Annealing Twins During Recrystallization of Cu, Acta Mater., 2007, 55(12), p 4233–4241CrossRef
32.
go back to reference Y. Wang, W. Shao, L. Zhen, L. Yang, and X. Zhang, Flow Behavior and Microstructures of Superalloy 718 During High Temperature Deformation, Mater. Sci. Eng. A, 2008, 497(1), p 479–486CrossRef Y. Wang, W. Shao, L. Zhen, L. Yang, and X. Zhang, Flow Behavior and Microstructures of Superalloy 718 During High Temperature Deformation, Mater. Sci. Eng. A, 2008, 497(1), p 479–486CrossRef
33.
go back to reference Y. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43(6), p 243–258CrossRef Y. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43(6), p 243–258CrossRef
34.
go back to reference E. Poliak and J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation Of Dynamic Recrystallization, Acta Mater., 1996, 44(1), p 127–136CrossRef E. Poliak and J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation Of Dynamic Recrystallization, Acta Mater., 1996, 44(1), p 127–136CrossRef
35.
go back to reference M. Mataya, M. Carr, and G. Krauss, Flow Localization and Shear Band Formation in a Precipitation Strengthened Austenitic Stainless Steel, Metall. Trans. A, 1982, 13(7), p 1263–1274CrossRef M. Mataya, M. Carr, and G. Krauss, Flow Localization and Shear Band Formation in a Precipitation Strengthened Austenitic Stainless Steel, Metall. Trans. A, 1982, 13(7), p 1263–1274CrossRef
36.
go back to reference D. Rittel, P. Landau, and A. Venkert, Dynamic Recrystallization as a Potential Cause for Adiabatic Shear Failure, Phys. Rev. Lett., 2008, 101(16), p 165501CrossRef D. Rittel, P. Landau, and A. Venkert, Dynamic Recrystallization as a Potential Cause for Adiabatic Shear Failure, Phys. Rev. Lett., 2008, 101(16), p 165501CrossRef
37.
go back to reference S. Osovski, D. Rittel, P. Landau, and A. Venkert, Microstructural Effects on Adiabatic Shear Band Formation, Scr. Mater., 2012, 66(1), p 9–12CrossRef S. Osovski, D. Rittel, P. Landau, and A. Venkert, Microstructural Effects on Adiabatic Shear Band Formation, Scr. Mater., 2012, 66(1), p 9–12CrossRef
38.
go back to reference T. Al-Samman, K.D. Molodov, D.A. Molodov, G. Gottstein, and S. Suwas, Softening and Dynamic Recrystallization in Magnesium Single Crystals During C-Axis Compression, Acta Mater., 2012, 60(2), p 537–545CrossRef T. Al-Samman, K.D. Molodov, D.A. Molodov, G. Gottstein, and S. Suwas, Softening and Dynamic Recrystallization in Magnesium Single Crystals During C-Axis Compression, Acta Mater., 2012, 60(2), p 537–545CrossRef
39.
go back to reference D. Rittel and Z. Wang, Thermo-Mechanical Aspects of Adiabatic Shear Failure of AM50 and Ti6Al4 V Alloys, Mech. Mater., 2008, 40(8), p 629–635CrossRef D. Rittel and Z. Wang, Thermo-Mechanical Aspects of Adiabatic Shear Failure of AM50 and Ti6Al4 V Alloys, Mech. Mater., 2008, 40(8), p 629–635CrossRef
40.
go back to reference G. Gottstein and L. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, 2nd ed., CRC Press, Boca Raton, 1999 G. Gottstein and L. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, 2nd ed., CRC Press, Boca Raton, 1999
41.
go back to reference D. Molodov, G. Gottstein, F. Heringhaus, and L. Shvindlerman, Motion of Planar Grain Boundaries in Bismuthbicrystals Driven by a Magnetic Field, Scr. Mater., 1997, 37(8), p 1207–1213CrossRef D. Molodov, G. Gottstein, F. Heringhaus, and L. Shvindlerman, Motion of Planar Grain Boundaries in Bismuthbicrystals Driven by a Magnetic Field, Scr. Mater., 1997, 37(8), p 1207–1213CrossRef
42.
go back to reference S. Biswas, S.S. Dhinwal, and S. Suwas, Room-Temperature Equal Channel Angular Extrusion of Pure Magnesium, Acta Mater., 2010, 58(9), p 3247–3261CrossRef S. Biswas, S.S. Dhinwal, and S. Suwas, Room-Temperature Equal Channel Angular Extrusion of Pure Magnesium, Acta Mater., 2010, 58(9), p 3247–3261CrossRef
Metadata
Title
Flow Softening Index for Assessment of Dynamic Recrystallization in an Austenitic Stainless Steel
Authors
B. Aashranth
Dipti Samantaray
Santosh Kumar
Arup Dasgupta
Utpal Borah
Shaju K. Albert
A. K. Bhaduri
Publication date
31-05-2017
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 7/2017
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2757-9

Other articles of this Issue 7/2017

Journal of Materials Engineering and Performance 7/2017 Go to the issue

Premium Partners