Skip to main content
Top

2020 | OriginalPaper | Chapter

5. Fluid Dynamics of Earth’s Core: Geodynamo, Inner Core Dynamics, Core Formation

Authors : Renaud Deguen, Marine Lasbleis

Published in: Fluid Mechanics of Planets and Stars

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter is built from three 1.5 h lectures given in Udine in April 2018 on various aspects of Earth’s core dynamics. The chapter starts with a short historical note on the discovery of Earth’s magnetic field and core (section “Introduction”). We then turn to an introduction of magnetohydrodynamics (section “A Short Introduction to Magnetohydrodynamics”), introducing and discussing the induction equation and the form and effects of the Lorentz force. Section “The Geometry of Earth’s Magnetic Field” is devoted to the description of Earth’s magnetic field, introducing its spherical harmonics description and showing how it can be used to demonstrate the internal origin of the geomagnetic field. We then move to an introduction of the convection-driven model of the geodynamo (section “Basics of Planetary Core Dynamics”), discussing our current understanding of the dynamics of Earth’s core, obtaining heuristically the Ekman dependency of the critical Rayleigh number for natural rotating convection, and introducing the equations and non-dimensional parameters used to model a convectively driven dynamo. The following section deals with the energetics of the geodynamo (section “Energetics of the Geodynamo”). The final two section deal with the dynamics of the inner core, focusing on the effect of the magnetic field (section “Inner Core Dynamics”), and with the formation of the core (section “Core Formation”). Given the wide scope of this chapter and the limited time available, this introduction to Earth’s core dynamics is by no means intended to be comprehensive. For more informations, the interested reader may refer to Jones (2011), Olson (2013), or Christensen and Wicht (2015) on the geomagnetic field and the geodynamo, to Sumita and Bergman (2015), Deguen (2012) and Lasbleis and Deguen (2015) on the dynamics of the inner core, and to Rubie et al. (2015) on core formation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The temperature actually does not reach the melting temperature because (i) the melting temperature increases with pressure; and (ii) the high-temperature gradient observed in mines is limited to depth of \({\sim } 30\) km or less, the temperature gradient becoming much less pronounced at deeper depth because of convective motions in the mantle.
 
2
Compression waves, called P-waves, and shear waves, called S-waves.
 
3
Proof: consider a small vector \(\varvec{\delta } \) having material end-points, advected by the flow. At time \(t+dt\) this small vector will be equal to
$$\begin{aligned} \varvec{\delta } (t+dt)&= - \mathbf {u}(\mathbf {x},t)dt + \varvec{\delta } (t) + \mathbf {u}(\mathbf {x}+\varvec{\delta } ,t)dt, \end{aligned}$$
(5.31)
$$\begin{aligned}&= \varvec{\delta } (t) + \varvec{\delta } \cdot \varvec{\nabla } \mathbf {u}\,dt + \mathcal {O}(\varvec{\delta } ^{2}). \end{aligned}$$
(5.32)
Taking the \(dt \rightarrow 0\), \(\varvec{\delta } \rightarrow 0\) limit gives
$$\begin{aligned} \frac{D \varvec{\delta } }{Dt} = \left( \varvec{\delta } \cdot \varvec{\nabla } \right) \mathbf {u}. \end{aligned}$$
(5.33)
\(\varvec{\delta } \) therefore evolves according to the same equation as \(\mathbf {B}\) [Eq. (5.25)].
 
4
Proof: The fact that a magnetic tube is material follows directly from Helmholtz theorem. To show that its magnetic flux does not vary with time, write its time derivative as
$$\begin{aligned} \frac{d}{dt} \int _{S} \mathbf {B}\cdot d\mathbf {S} = \int _{S} \frac{\partial \mathbf {B}}{\partial t}\cdot d\mathbf {S} + \oint \limits _{\mathcal {C}} \mathbf {B} \cdot \mathbf {u}\times d\mathbf {l}, \end{aligned}$$
(5.34)
use the diffusion-free induction equation to write the first term on the RHS as
$$\begin{aligned} \int _{S} \frac{\partial \mathbf {B}}{\partial t}\cdot d\mathbf {S} = \int _{S} \varvec{\nabla } \times (\mathbf {u}\times \mathbf {B})\cdot d\mathbf {S}, \end{aligned}$$
(5.35)
and the identity \((\mathbf {A}\times \mathbf {B})\cdot \mathbf {C}=-\mathbf {B}\cdot (\mathbf {A}\times \mathbf {C})\) plus Stokes’ theorem to write the second term as which is equal to the opposite of the first term on the RHS of Eq. (5.34).
 
5
To show this, consider a plane wave propagating in the z-direction, with fluid velocity where \(\mathcal {R}\) indicates the real part. If the fluid is incompressible, \(\varvec{\nabla }\cdot \mathbf {u}=0\), and hence which is equal to 0 since the plane wave assumption implies that the velocity field is a function of z and t only. This implies that the component \(u_{z}\) of the velocity field must be spatially uniform. In other words, only the component of the velocity field perpendicular to the propagation direction can oscillate spatially: the wave must be transverse.
 
6
Consider small perturbations of the velocity and magnetic fields, linearise the Navier–Stokes and induction equations, take the curl of these two equations, and combine them after taking the time derivative of the curled Navier–Stokes equation (vorticity equation).
 
7
The evolution of the parcel is actually even an isentropic process, since the parcel’s evolution is both adiabatic (no transfer of heat and mass with its surrounding) and reversible (no friction).
 
8
Alternatively, Eq. (5.120) is a sufficient condition for stability.
 
9
The CMB efficiency is usually defined in another way, such that \(P_{a} = \left( \epsilon _{\mathrm {icb}} + \epsilon _\mathrm {cmb} \right) Q_\mathrm {cmb}\). This has the advantage of linking \(P_{a}\) directly to \(Q_\mathrm {cmb}\), but then \(\epsilon _\mathrm {cmb}\) is itself a function of \(Q_\mathrm {cmb}\) (it includes a factor \(Q_\mathrm {cmb} ^{>\mathrm {ad}}/Q_\mathrm {cmb}\)).
 
Literature
go back to reference Alboussière, T., Deguen, R., & Melzani, M. (2010). Melting induced stratification above the Earth’s inner core due to convective translation. Nature, 466, 744–747.CrossRef Alboussière, T., Deguen, R., & Melzani, M. (2010). Melting induced stratification above the Earth’s inner core due to convective translation. Nature, 466, 744–747.CrossRef
go back to reference Alfè, D., Gillan, M. J., & Price, G. D. (2000). Constraints on the composition of the Earth’s core from ab initio calculations. Nature, 405, 172–175.CrossRef Alfè, D., Gillan, M. J., & Price, G. D. (2000). Constraints on the composition of the Earth’s core from ab initio calculations. Nature, 405, 172–175.CrossRef
go back to reference Andrault, D., Monteux, J., Le Bars, M., & Samuel, H. (2016). The deep Earth may not be cooling down. Earth and Planetary Science Letters, 443, 195–203.CrossRef Andrault, D., Monteux, J., Le Bars, M., & Samuel, H. (2016). The deep Earth may not be cooling down. Earth and Planetary Science Letters, 443, 195–203.CrossRef
go back to reference Badro, J., Fiquet, G., Guyot, F., Gregoryanz, E., Occelli, F., Antonangeli, D., et al. (2007). Effect of light elements on the sound velocities in solid iron: Implications for the composition of Earth’s core. Earth and Planetary Science Letters, 254, 233–238.CrossRef Badro, J., Fiquet, G., Guyot, F., Gregoryanz, E., Occelli, F., Antonangeli, D., et al. (2007). Effect of light elements on the sound velocities in solid iron: Implications for the composition of Earth’s core. Earth and Planetary Science Letters, 254, 233–238.CrossRef
go back to reference Badro, J., Brodholt, J. P., Piet, H., Siebert, J., & Ryerson, F. J. (2015). Core formation and core composition from coupled geochemical and geophysical constraints. Proceedings of the National Academy of Sciences, 112(40), 12310–12314. Badro, J., Brodholt, J. P., Piet, H., Siebert, J., & Ryerson, F. J. (2015). Core formation and core composition from coupled geochemical and geophysical constraints. Proceedings of the National Academy of Sciences, 112(40), 12310–12314.
go back to reference Badro, J., Siebert, J., & Nimmo, F. (2016). An early geodynamo driven by exsolution of mantle components from Earth’s core. Nature, 536(7616), 326–328.CrossRef Badro, J., Siebert, J., & Nimmo, F. (2016). An early geodynamo driven by exsolution of mantle components from Earth’s core. Nature, 536(7616), 326–328.CrossRef
go back to reference Batchelor, G. K. (1954). Heat convection and buoyancy effects in fluids. Quarterly Journal of the Royal Meteorological Society, 80, 339–358.CrossRef Batchelor, G. K. (1954). Heat convection and buoyancy effects in fluids. Quarterly Journal of the Royal Meteorological Society, 80, 339–358.CrossRef
go back to reference Bercovici, D., & Kelly, A. (1997). The non-linear initiation of diapirs and plume heads. Physics of the Earth and Planetary Interiors, 101, 119–130.CrossRef Bercovici, D., & Kelly, A. (1997). The non-linear initiation of diapirs and plume heads. Physics of the Earth and Planetary Interiors, 101, 119–130.CrossRef
go back to reference Berhanu, M., Monchaux, R., Fauve, S., Mordant, N., Pétrélis, F., Chiffaudel, A., et al. (2007). Magnetic field reversals in an experimental turbulent dynamo. EPL (Europhysics Letters), 77(5), 59001.CrossRef Berhanu, M., Monchaux, R., Fauve, S., Mordant, N., Pétrélis, F., Chiffaudel, A., et al. (2007). Magnetic field reversals in an experimental turbulent dynamo. EPL (Europhysics Letters), 77(5), 59001.CrossRef
go back to reference Birch, F. (1940). The alpha-gamma transformation of iron at high pressures, and the problem of the Earth’s magnetism. American Journal of Science. Birch, F. (1940). The alpha-gamma transformation of iron at high pressures, and the problem of the Earth’s magnetism. American Journal of Science.
go back to reference Birch, F. (1952). Elasticity and constitution of the Earth’s interior. Journal of Geophysical Research, 57, 227.CrossRef Birch, F. (1952). Elasticity and constitution of the Earth’s interior. Journal of Geophysical Research, 57, 227.CrossRef
go back to reference Birch, F. (1964). Density and composition of mantle and core. Journal of Geophysical Research, 69, 4377.CrossRef Birch, F. (1964). Density and composition of mantle and core. Journal of Geophysical Research, 69, 4377.CrossRef
go back to reference Bondi, H., & Lyttleton, R. A. (1948). On the dynamical theory of the rotation of the earth: I. the secular retardation of the core. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 44, pp. 345–359). Cambridge University Press. Bondi, H., & Lyttleton, R. A. (1948). On the dynamical theory of the rotation of the earth: I. the secular retardation of the core. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 44, pp. 345–359). Cambridge University Press.
go back to reference Braginsky, S. I. (1963). Structure of the F layer and reasons for convection in the Earth’s core. Doklady Akademii Nauk SSSR English Translation, 149, 1311–1314. Braginsky, S. I. (1963). Structure of the F layer and reasons for convection in the Earth’s core. Doklady Akademii Nauk SSSR English Translation, 149, 1311–1314.
go back to reference Braginsky, S. I. (1970). Torsional magnetohydrodynamics vibrations in the Earth’s core and variations in day length. Geomagnetism and Aeronomy, 10, 3–12. Braginsky, S. I. (1970). Torsional magnetohydrodynamics vibrations in the Earth’s core and variations in day length. Geomagnetism and Aeronomy, 10, 3–12.
go back to reference Buffett, B. A. (2002). Estimates of heat flow in the deep mantle based on the power requirements for the geodynamo. Geophysical Research Letters, 29(12), 120000–1.CrossRef Buffett, B. A. (2002). Estimates of heat flow in the deep mantle based on the power requirements for the geodynamo. Geophysical Research Letters, 29(12), 120000–1.CrossRef
go back to reference Buffett, B. A., & Bloxham, J. (2000). Deformation of Earth’s inner core by electromagnetic forces. Geophysical Research Letters, 27, 4001–4004.CrossRef Buffett, B. A., & Bloxham, J. (2000). Deformation of Earth’s inner core by electromagnetic forces. Geophysical Research Letters, 27, 4001–4004.CrossRef
go back to reference Buffett, B. A., Huppert, H. E., Lister, J. R., & Woods, A. W. (1996). On the thermal evolution of the Earth’s core. Journal of Geophysical Research, 101, 7989–8006.CrossRef Buffett, B. A., Huppert, H. E., Lister, J. R., & Woods, A. W. (1996). On the thermal evolution of the Earth’s core. Journal of Geophysical Research, 101, 7989–8006.CrossRef
go back to reference Bullard, E. (1949). The magnetic field within the Earth. Proceedings of the Royal Society of London A, 197(1051), 433–453.CrossRef Bullard, E. (1949). The magnetic field within the Earth. Proceedings of the Royal Society of London A, 197(1051), 433–453.CrossRef
go back to reference Bullard, E. (1950). The transfer of heat from the core of the Earth. Geophysical Journal International, 6, 36–41.CrossRef Bullard, E. (1950). The transfer of heat from the core of the Earth. Geophysical Journal International, 6, 36–41.CrossRef
go back to reference Bullard, E., & Gellman, H. (1954). Homogeneous dynamos and terrestrial magnetism. Philosophical Transactions of the Royal Society of London A, 247(928), 213–278.MathSciNetMATHCrossRef Bullard, E., & Gellman, H. (1954). Homogeneous dynamos and terrestrial magnetism. Philosophical Transactions of the Royal Society of London A, 247(928), 213–278.MathSciNetMATHCrossRef
go back to reference Busse, F. H. (1970). Thermal instabilities in rapidly rotating systems. Journal of Fluid Mechanics, 44, 441–460.MATHCrossRef Busse, F. H. (1970). Thermal instabilities in rapidly rotating systems. Journal of Fluid Mechanics, 44, 441–460.MATHCrossRef
go back to reference Cabanes, S., Schaeffer, N., & Nataf, H.-C. (2014). Turbulence reduces magnetic diffusivity in a liquid sodium experiment. Physical Review Letters, 113(18), 184501.CrossRef Cabanes, S., Schaeffer, N., & Nataf, H.-C. (2014). Turbulence reduces magnetic diffusivity in a liquid sodium experiment. Physical Review Letters, 113(18), 184501.CrossRef
go back to reference Cheng, J. S., & Aurnou, J. M. (2016). Tests of diffusion-free scaling behaviors in numerical dynamo datasets. Earth and Planetary Science Letters, 436, 121–129.CrossRef Cheng, J. S., & Aurnou, J. M. (2016). Tests of diffusion-free scaling behaviors in numerical dynamo datasets. Earth and Planetary Science Letters, 436, 121–129.CrossRef
go back to reference Christensen, U. R., & Wicht, J. (2015). Numerical dynamo simulations. Treatise on Geophysics (Second Edition), 8, 245–277.CrossRef Christensen, U. R., & Wicht, J. (2015). Numerical dynamo simulations. Treatise on Geophysics (Second Edition), 8, 245–277.CrossRef
go back to reference Christensen, U. R., Aubert, J., & Hulot, G. (2010). Conditions for Earth-like geodynamo models. Earth and Planetary Science Letters, 296(3–4), 487–496.CrossRef Christensen, U. R., Aubert, J., & Hulot, G. (2010). Conditions for Earth-like geodynamo models. Earth and Planetary Science Letters, 296(3–4), 487–496.CrossRef
go back to reference Christensen, U. R. (2010). Dynamo scaling laws and applications to the planets. Space Science Reviews, 152(1–4), 565–590.CrossRef Christensen, U. R. (2010). Dynamo scaling laws and applications to the planets. Space Science Reviews, 152(1–4), 565–590.CrossRef
go back to reference Christensen, U. R., & Aubert, J. (2006). Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophysical Journal International, 166(1), 97–114. ISSN 1365-246X. Christensen, U. R., & Aubert, J. (2006). Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophysical Journal International, 166(1), 97–114. ISSN 1365-246X.
go back to reference Christensen, U. R., & Tilgner, A. (2004). Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos. Nature, 429, 169–171.CrossRef Christensen, U. R., & Tilgner, A. (2004). Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos. Nature, 429, 169–171.CrossRef
go back to reference Clift, R., Grace, J. R., & Weber, M. E. (1978). Bubbles, drops and particles. New York: Academic Press. Clift, R., Grace, J. R., & Weber, M. E. (1978). Bubbles, drops and particles. New York: Academic Press.
go back to reference Corgne, A., Keshav, S., Fei, Y., & McDonough, W. F. (2007). How much potassium is in the Earth’s core? New insights from partitioning experiments. Earth and Planetary Science Letters, 256, 567–576.CrossRef Corgne, A., Keshav, S., Fei, Y., & McDonough, W. F. (2007). How much potassium is in the Earth’s core? New insights from partitioning experiments. Earth and Planetary Science Letters, 256, 567–576.CrossRef
go back to reference Cottaar, S., & Buffett, B. (2012). Convection in the Earth’s inner core. Physics of the Earth and Planetary Interiors, 198–199, 67–78.CrossRef Cottaar, S., & Buffett, B. (2012). Convection in the Earth’s inner core. Physics of the Earth and Planetary Interiors, 198–199, 67–78.CrossRef
go back to reference Dahl, T. W., & Stevenson, D. J. (2010). Turbulent mixing of metal and silicate during planet accretion—and interpretation of the Hf–W chronometer. Earth and Planetary Science Letters, 295, 177–186.CrossRef Dahl, T. W., & Stevenson, D. J. (2010). Turbulent mixing of metal and silicate during planet accretion—and interpretation of the Hf–W chronometer. Earth and Planetary Science Letters, 295, 177–186.CrossRef
go back to reference de Koker, N., Steinle-Neumann, G., & Vlcek, V. (2012). Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth’s core. Proceedings of the National Academy of Sciences, 109(11), 4070–4073.CrossRef de Koker, N., Steinle-Neumann, G., & Vlcek, V. (2012). Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth’s core. Proceedings of the National Academy of Sciences, 109(11), 4070–4073.CrossRef
go back to reference Deguen, R. (2012). Structure and dynamics of Earth’s inner core. Earth and Planetary Science Letters, 333–334, 211–225.CrossRef Deguen, R. (2012). Structure and dynamics of Earth’s inner core. Earth and Planetary Science Letters, 333–334, 211–225.CrossRef
go back to reference Deguen, R., & Cardin, P. (2011). Thermo-chemical convection in Earth’s inner core. Geophysical Journal International, 187, 1101–1118.CrossRef Deguen, R., & Cardin, P. (2011). Thermo-chemical convection in Earth’s inner core. Geophysical Journal International, 187, 1101–1118.CrossRef
go back to reference Deguen, R., Olson, P., & Cardin, P. (2011). Experiments on turbulent metal-silicate mixing in a magma ocean. Earth and Planetary Science Letters, 310, 303–313.CrossRef Deguen, R., Olson, P., & Cardin, P. (2011). Experiments on turbulent metal-silicate mixing in a magma ocean. Earth and Planetary Science Letters, 310, 303–313.CrossRef
go back to reference Deguen, R., Alboussière, T., & Cardin, P. (2013). Thermal convection in Earth’s inner core with phase change at its boundary. Geophysical Journal International, 194(3), 1310–1334.CrossRef Deguen, R., Alboussière, T., & Cardin, P. (2013). Thermal convection in Earth’s inner core with phase change at its boundary. Geophysical Journal International, 194(3), 1310–1334.CrossRef
go back to reference Deguen, R., Landeau, M., & Olson, P. (2014). Turbulent metal-silicate mixing, fragmentation, and equilibration in magma oceans. Earth and Planetary Science Letters, 391, 274–287.CrossRef Deguen, R., Landeau, M., & Olson, P. (2014). Turbulent metal-silicate mixing, fragmentation, and equilibration in magma oceans. Earth and Planetary Science Letters, 391, 274–287.CrossRef
go back to reference Deguen, R., Alboussière, T., & Labrosse, S. (2018). Double-diffusive translation of Earth’s inner core. Geophysical Journal International, 214(1), 88–107. Deguen, R., Alboussière, T., & Labrosse, S. (2018). Double-diffusive translation of Earth’s inner core. Geophysical Journal International, 214(1), 88–107.
go back to reference Deguen, R., Risso, F., Keita, M. Double-diffusive translation of Earth’s inner core, in prep.. Deguen, R., Risso, F., Keita, M. Double-diffusive translation of Earth’s inner core, in prep..
go back to reference Dormy, E., Soward, A. M., Jones, C. A., Jault, D., & Cardin, P. (2004). The onset of thermal convection in rotating spherical shells. Journal of Fluid Mechanics, 501, 43–70.MathSciNetMATHCrossRef Dormy, E., Soward, A. M., Jones, C. A., Jault, D., & Cardin, P. (2004). The onset of thermal convection in rotating spherical shells. Journal of Fluid Mechanics, 501, 43–70.MathSciNetMATHCrossRef
go back to reference Dziewonski, A. M., & Gilbert, F. (1971). Solidity of the inner core of the Earth inferred from normal mode observations. Nature, 234, 465–466.CrossRef Dziewonski, A. M., & Gilbert, F. (1971). Solidity of the inner core of the Earth inferred from normal mode observations. Nature, 234, 465–466.CrossRef
go back to reference Eggers, J., & Villermaux, E. (2008). Physics of liquid jets. Reports on Progress in Physics, 71(3), 036601.CrossRef Eggers, J., & Villermaux, E. (2008). Physics of liquid jets. Reports on Progress in Physics, 71(3), 036601.CrossRef
go back to reference Gailitis, A., Lielausis, O., Platacis, E., Dement’ev, S., Cifersons, A., Gerbeth, G., et al. (2001). Magnetic field saturation in the riga dynamo experiment. Physical Review Letters, 86(14), 3024.CrossRef Gailitis, A., Lielausis, O., Platacis, E., Dement’ev, S., Cifersons, A., Gerbeth, G., et al. (2001). Magnetic field saturation in the riga dynamo experiment. Physical Review Letters, 86(14), 3024.CrossRef
go back to reference Gillet, N., Jault, D., Canet, E., & Fournier, A. (2010). Fast torsional waves and strong magnetic field within the Earths core. Nature, 465(7294), 74–77.CrossRef Gillet, N., Jault, D., Canet, E., & Fournier, A. (2010). Fast torsional waves and strong magnetic field within the Earths core. Nature, 465(7294), 74–77.CrossRef
go back to reference Gilman, P. A., & Miller, J. (1981). Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell. The Astrophysical Journal Supplement Series, 46, 211–238.CrossRef Gilman, P. A., & Miller, J. (1981). Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell. The Astrophysical Journal Supplement Series, 46, 211–238.CrossRef
go back to reference Glatzmaier, G. A. (1984). Numerical simulations of stellar convective dynamos. I. The model and method. Journal of Computational Physics, 55(3), 461–484.CrossRef Glatzmaier, G. A. (1984). Numerical simulations of stellar convective dynamos. I. The model and method. Journal of Computational Physics, 55(3), 461–484.CrossRef
go back to reference Glatzmaier, G. A. (1985a). Numerical simulations of stellar convective dynamos. II-field propagation in the convection zone. The Astrophysical Journal, 291 300–307.CrossRef Glatzmaier, G. A. (1985a). Numerical simulations of stellar convective dynamos. II-field propagation in the convection zone. The Astrophysical Journal, 291 300–307.CrossRef
go back to reference Glatzmaier, G. A. (1985b). Numerical simulations of stellar convective dynamos III. At the base of the convection zone. Geophysical & Astrophysical Fluid Dynamics, 31(1–2), 137–150.CrossRef Glatzmaier, G. A. (1985b). Numerical simulations of stellar convective dynamos III. At the base of the convection zone. Geophysical & Astrophysical Fluid Dynamics, 31(1–2), 137–150.CrossRef
go back to reference Gomi, H., Ohta, K., Hirose, K., Labrosse, S., Caracas, R., Verstraete, M. J., et al. (2013). The high conductivity of iron and thermal evolution of the Earth’s core. Physics of the Earth and Planetary Interiors, 224, 88–103.CrossRef Gomi, H., Ohta, K., Hirose, K., Labrosse, S., Caracas, R., Verstraete, M. J., et al. (2013). The high conductivity of iron and thermal evolution of the Earth’s core. Physics of the Earth and Planetary Interiors, 224, 88–103.CrossRef
go back to reference Gomi, H., Hirose, K., Akai, H., & Fei, Y. (2016). Electrical resistivity of substitutionally disordered hcp Fe-Si and Fe-Ni alloys: Chemically-induced resistivity saturation in the Earth’s core. Earth and Planetary Science Letters, 451, 51–61.CrossRef Gomi, H., Hirose, K., Akai, H., & Fei, Y. (2016). Electrical resistivity of substitutionally disordered hcp Fe-Si and Fe-Ni alloys: Chemically-induced resistivity saturation in the Earth’s core. Earth and Planetary Science Letters, 451, 51–61.CrossRef
go back to reference Gubbins, D. (1977). Energetics of the Earth’s core. Journal of Geophysics Zeitschrift Geophysik, 43, 453–464. Gubbins, D. (1977). Energetics of the Earth’s core. Journal of Geophysics Zeitschrift Geophysik, 43, 453–464.
go back to reference Gubbins, D., Alfè, D., Masters, G., Price, G. D., & Gillan, M. (2004). Gross thermodynamics of two-component core convection. Geophysical Journal International, 157, 1407–1414.CrossRef Gubbins, D., Alfè, D., Masters, G., Price, G. D., & Gillan, M. (2004). Gross thermodynamics of two-component core convection. Geophysical Journal International, 157, 1407–1414.CrossRef
go back to reference Gubbins, D., Alfè, D., & Davies, C. J. (2013). Compositional instability of Earth’s solid inner core. Geophysical Research Letters, 40, 1–5.CrossRef Gubbins, D., Alfè, D., & Davies, C. J. (2013). Compositional instability of Earth’s solid inner core. Geophysical Research Letters, 40, 1–5.CrossRef
go back to reference Hirose, K., Morard, G., Sinmyo, R., Umemoto, K., Hernlund, J., Helffrich, G., et al. (2017). Crystallization of silicon dioxide and compositional evolution of the Earth’s core. Nature, 543(7643), 99.CrossRef Hirose, K., Morard, G., Sinmyo, R., Umemoto, K., Hernlund, J., Helffrich, G., et al. (2017). Crystallization of silicon dioxide and compositional evolution of the Earth’s core. Nature, 543(7643), 99.CrossRef
go back to reference Holme, R. (2015). Large-scale flow in the core. Treatise on Geophysics, 8, 91–113.CrossRef Holme, R. (2015). Large-scale flow in the core. Treatise on Geophysics, 8, 91–113.CrossRef
go back to reference Jaupart, C., & Mareschal, J.-C. (2010). Heat generation and transport in the Earth. Cambridge: Cambridge University Press. Jaupart, C., & Mareschal, J.-C. (2010). Heat generation and transport in the Earth. Cambridge: Cambridge University Press.
go back to reference Jephcoat, A., & Olson, P. (1987). Is the inner core of the Earth pure iron? Nature, 325, 332–335.CrossRef Jephcoat, A., & Olson, P. (1987). Is the inner core of the Earth pure iron? Nature, 325, 332–335.CrossRef
go back to reference Jones, C. A., Soward, A. M., & Mussa, A. I. (2000). The onset of thermal convection in a rapidly rotating sphere. Journal of Fluid Mechanics, 405, 157–179.MathSciNetMATHCrossRef Jones, C. A., Soward, A. M., & Mussa, A. I. (2000). The onset of thermal convection in a rapidly rotating sphere. Journal of Fluid Mechanics, 405, 157–179.MathSciNetMATHCrossRef
go back to reference Kageyama, A., Sato, T., & (Complexity Simulation Group) (1995). Computer simulation of a magnetohydrodynamic dynamo. II. Physics of Plasmas, 2(5), 1421–1431. Kageyama, A., Sato, T., & (Complexity Simulation Group) (1995). Computer simulation of a magnetohydrodynamic dynamo. II. Physics of Plasmas, 2(5), 1421–1431.
go back to reference Karato, S. (2012). Deformation of Earth materials: an introduction to the rheology of solid Earth. Cambridge: Cambridge University Press. Karato, S. (2012). Deformation of Earth materials: an introduction to the rheology of solid Earth. Cambridge: Cambridge University Press.
go back to reference King, E. M., & Buffett, B. A. (2013). Flow speeds and length scales in geodynamo models: The role of viscosity. Earth and Planetary Science Letters, 371, 156–162.CrossRef King, E. M., & Buffett, B. A. (2013). Flow speeds and length scales in geodynamo models: The role of viscosity. Earth and Planetary Science Letters, 371, 156–162.CrossRef
go back to reference Konôpková, Z., McWilliams, R. S., Gómez-Pérez, N., & Goncharov, A. F. (2016). Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature, 534(7605), 99–101.CrossRef Konôpková, Z., McWilliams, R. S., Gómez-Pérez, N., & Goncharov, A. F. (2016). Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature, 534(7605), 99–101.CrossRef
go back to reference Labrosse, S. (2014). Thermal and compositional stratification of the inner core. Comptes Rendus Geoscience, 346, 119–129.CrossRef Labrosse, S. (2014). Thermal and compositional stratification of the inner core. Comptes Rendus Geoscience, 346, 119–129.CrossRef
go back to reference Labrosse, S. (2015). Thermal evolution of the core with a high thermal conductivity. Physics of the Earth and Planetary Interiors, 247, 36–55.CrossRef Labrosse, S. (2015). Thermal evolution of the core with a high thermal conductivity. Physics of the Earth and Planetary Interiors, 247, 36–55.CrossRef
go back to reference Landeau, M., Deguen, R., & Olson, P. (2014). Experiments on the fragmentation of a buoyant liquid volume in another liquid. Journal of Fluid Mechanics, 749, 478–518.CrossRef Landeau, M., Deguen, R., & Olson, P. (2014). Experiments on the fragmentation of a buoyant liquid volume in another liquid. Journal of Fluid Mechanics, 749, 478–518.CrossRef
go back to reference Larmor, J. (1919). How could a rotating body such as the sun become a magnet. Report of the British Association for the Advancement of Science, 159–160. Larmor, J. (1919). How could a rotating body such as the sun become a magnet. Report of the British Association for the Advancement of Science, 159–160.
go back to reference Lasbleis, M., & Deguen, R. (2015). Building a regime diagram for the Earth’s inner core. Physics of the Earth and Planetary Interiors, 247, 80–93.CrossRef Lasbleis, M., & Deguen, R. (2015). Building a regime diagram for the Earth’s inner core. Physics of the Earth and Planetary Interiors, 247, 80–93.CrossRef
go back to reference Lasbleis, M., Deguen, R., Cardin, P., & Labrosse, S. (2015). Earth’s inner core dynamics induced by the Lorentz force. Geophysical Journal International, 202, 548–563.CrossRef Lasbleis, M., Deguen, R., Cardin, P., & Labrosse, S. (2015). Earth’s inner core dynamics induced by the Lorentz force. Geophysical Journal International, 202, 548–563.CrossRef
go back to reference Lay, T., Hernlund, J., Garnero, E. J., & Thorne, M. S. (2006). A post-perovskite lens and D”heat flux beneath the central Pacific. Science, 314, 1272–1276.CrossRef Lay, T., Hernlund, J., Garnero, E. J., & Thorne, M. S. (2006). A post-perovskite lens and D”heat flux beneath the central Pacific. Science, 314, 1272–1276.CrossRef
go back to reference Lehmann, I. (1936). P’. Bureau Central Sismologique International, 14, 87–115. Lehmann, I. (1936). P’. Bureau Central Sismologique International, 14, 87–115.
go back to reference Lherm, V., & Deguen, R. (2018). Small-scale metal/silicate equilibration during core formation: The influence of stretching enhanced diffusion on mixing. Journal of Geophysical Research: Solid Earth, 123(12), 10–496. Lherm, V., & Deguen, R. (2018). Small-scale metal/silicate equilibration during core formation: The influence of stretching enhanced diffusion on mixing. Journal of Geophysical Research: Solid Earth, 123(12), 10–496.
go back to reference Loper, D. E. (1978). The gravitationally powered dynamo. Geophysical Journal International, 54, 389–404.CrossRef Loper, D. E. (1978). The gravitationally powered dynamo. Geophysical Journal International, 54, 389–404.CrossRef
go back to reference Lowes, F. J., & Wilkinson, I. (1963). Geomagnetic dynamo: a laboratory model. Nature (London), 198, 4886.CrossRef Lowes, F. J., & Wilkinson, I. (1963). Geomagnetic dynamo: a laboratory model. Nature (London), 198, 4886.CrossRef
go back to reference Lunine, J. I., O’brien, D. P., Raymond, S. N., Morbidelli, A., Quinn, T., & Graps, A. L. (2011). Dynamical models of terrestrial planet formation. Advanced Science Letters, 4(2), 325–338. Lunine, J. I., O’brien, D. P., Raymond, S. N., Morbidelli, A., Quinn, T., & Graps, A. L. (2011). Dynamical models of terrestrial planet formation. Advanced Science Letters, 4(2), 325–338.
go back to reference Malkus, W. V. R. (1963). Precessional torques as the cause of geomagnetism. Journal of Geophysical Research, 68(10), 2871–2886.MATHCrossRef Malkus, W. V. R. (1963). Precessional torques as the cause of geomagnetism. Journal of Geophysical Research, 68(10), 2871–2886.MATHCrossRef
go back to reference Malkus, W. V. R. (1968). Precession of the Earth as the cause of geomagnetism: Experiments lend support to the proposal that precessional torques drive the Earth’s dynamo. Science, 160(3825), 259–264.CrossRef Malkus, W. V. R. (1968). Precession of the Earth as the cause of geomagnetism: Experiments lend support to the proposal that precessional torques drive the Earth’s dynamo. Science, 160(3825), 259–264.CrossRef
go back to reference Maus, S., Rother, M., Stolle, C., Mai, W., Choi, S., Lühr, H., Cooke, D., & Roth, C. (2006). Third generation of the Potsdam Magnetic Model of the Earth (POMME). Geochemistry, Geophysics, Geosystems, 7(7). Maus, S., Rother, M., Stolle, C., Mai, W., Choi, S., Lühr, H., Cooke, D., & Roth, C. (2006). Third generation of the Potsdam Magnetic Model of the Earth (POMME). Geochemistry, Geophysics, Geosystems, 7(7).
go back to reference Mikami, T., Cox, R. G., & Mason, S. G. (1975). Breakup of extending liquid threads. International Journal of Multiphase Flow, 2(2), 113–138.MATHCrossRef Mikami, T., Cox, R. G., & Mason, S. G. (1975). Breakup of extending liquid threads. International Journal of Multiphase Flow, 2(2), 113–138.MATHCrossRef
go back to reference Mizzon, H., & Monnereau, M. (2013). Implication of the lopsided growth for the viscosity of Earth’s inner core. Earth and Planetary Science Letters, 361, 391–401.CrossRef Mizzon, H., & Monnereau, M. (2013). Implication of the lopsided growth for the viscosity of Earth’s inner core. Earth and Planetary Science Letters, 361, 391–401.CrossRef
go back to reference Monchaux, R., Berhanu, M., Bourgoin, M., Moulin, M., Odier, P., Pinton, J.-F., et al. (2007). Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. Physical Review Letters, 98(4), 044502.CrossRef Monchaux, R., Berhanu, M., Bourgoin, M., Moulin, M., Odier, P., Pinton, J.-F., et al. (2007). Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. Physical Review Letters, 98(4), 044502.CrossRef
go back to reference Monnereau, M., Calvet, M., Margerin, L., & Souriau, A. (2010). Lopsided growth of Earth’s inner core. Science, 328, 1014–1017.CrossRef Monnereau, M., Calvet, M., Margerin, L., & Souriau, A. (2010). Lopsided growth of Earth’s inner core. Science, 328, 1014–1017.CrossRef
go back to reference Monteux, J., Jellinek, A. M., & Johnson, C. L. (2011). Why might planets and moons have early dynamos? Earth and Planetary Science Letters, 310(3), 349–359.CrossRef Monteux, J., Jellinek, A. M., & Johnson, C. L. (2011). Why might planets and moons have early dynamos? Earth and Planetary Science Letters, 310(3), 349–359.CrossRef
go back to reference Morton, B. R., Taylor, G., & Turner, J. S. (1956). Turbulent gravitational convection from maintained and instantaneous sources. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 234, 1–23. Morton, B. R., Taylor, G., & Turner, J. S. (1956). Turbulent gravitational convection from maintained and instantaneous sources. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 234, 1–23.
go back to reference Nataf, H.-C., & Gagnière, N. (2008). On the peculiar nature of turbulence in planetary dynamos. Comptes Rendus Physique, 9(7), 702–710.CrossRef Nataf, H.-C., & Gagnière, N. (2008). On the peculiar nature of turbulence in planetary dynamos. Comptes Rendus Physique, 9(7), 702–710.CrossRef
go back to reference Olson, P. (2013). Experimental dynamos and the dynamics of planetary cores. Annual Review of Earth and Planetary Sciences, 41, 153–181.CrossRef Olson, P. (2013). Experimental dynamos and the dynamics of planetary cores. Annual Review of Earth and Planetary Sciences, 41, 153–181.CrossRef
go back to reference Olson, P., & Christensen, U. R. (2006). Dipole moment scaling for convection-driven planetary dynamos. Earth and Planetary Science Letters, 250(3–4), 561–571.CrossRef Olson, P., & Christensen, U. R. (2006). Dipole moment scaling for convection-driven planetary dynamos. Earth and Planetary Science Letters, 250(3–4), 561–571.CrossRef
go back to reference O’Rourke, J. G., & Stevenson, D. J. (2016). Powering Earth’s dynamo with magnesium precipitation from the core. Nature, 529(7586), 387–389.CrossRef O’Rourke, J. G., & Stevenson, D. J. (2016). Powering Earth’s dynamo with magnesium precipitation from the core. Nature, 529(7586), 387–389.CrossRef
go back to reference O’Rourke, J. G., Korenaga, J., & Stevenson, D. J. (2017). Thermal evolution of Earth with magnesium precipitation in the core. Earth and Planetary Science Letters, 458, 263–272.CrossRef O’Rourke, J. G., Korenaga, J., & Stevenson, D. J. (2017). Thermal evolution of Earth with magnesium precipitation in the core. Earth and Planetary Science Letters, 458, 263–272.CrossRef
go back to reference Ponomarenko, Y. B. (1973). Theory of the hydromagnetic generator. Journal of Applied Mechanics and Technical Physics, 14(6), 775–778.CrossRef Ponomarenko, Y. B. (1973). Theory of the hydromagnetic generator. Journal of Applied Mechanics and Technical Physics, 14(6), 775–778.CrossRef
go back to reference Poupinet, G., Pillet, R., & Souriau, A. (1983). Possible heterogeneity of the Earth’s core deduced from PKIKP travel times. Nature, 305, 204–206.CrossRef Poupinet, G., Pillet, R., & Souriau, A. (1983). Possible heterogeneity of the Earth’s core deduced from PKIKP travel times. Nature, 305, 204–206.CrossRef
go back to reference Pozzo, M., Davies, C., Gubbins, D., & Alfè, D. (2012). Thermal and electrical conductivity of iron at Earth’s core conditions. Nature, 485, 355–358.CrossRef Pozzo, M., Davies, C., Gubbins, D., & Alfè, D. (2012). Thermal and electrical conductivity of iron at Earth’s core conditions. Nature, 485, 355–358.CrossRef
go back to reference Ribe. N. M. (2007). Analytical Approaches to mantle dynamics. In Schubert, G. (Ed.), Treatise on geophysics (Vol. 7).CrossRef Ribe. N. M. (2007). Analytical Approaches to mantle dynamics. In Schubert, G. (Ed.), Treatise on geophysics (Vol. 7).CrossRef
go back to reference Ribe, N. M. (1983). Diapirism in the Earth’s mantle: Experiments on the motion of a hot sphere in a fluid with temperature dependent viscosity. Journal of Volcanology and Geothermal Research, 16, 221–245.CrossRef Ribe, N. M. (1983). Diapirism in the Earth’s mantle: Experiments on the motion of a hot sphere in a fluid with temperature dependent viscosity. Journal of Volcanology and Geothermal Research, 16, 221–245.CrossRef
go back to reference Ricard, Y. (2007). Physics of mantle convection. In Schubert, G. (Ed.), Treatise on geophysics (Vol. 7). Elsevier. Ricard, Y. (2007). Physics of mantle convection. In Schubert, G. (Ed.), Treatise on geophysics (Vol. 7). Elsevier.
go back to reference Roberts, P. H. (1968). On the thermal instability of a rotating-fluid sphere containing heat sources. Philosophical Transactions of the Royal Society of London A, 263(1136), 93–117.MATHCrossRef Roberts, P. H. (1968). On the thermal instability of a rotating-fluid sphere containing heat sources. Philosophical Transactions of the Royal Society of London A, 263(1136), 93–117.MATHCrossRef
go back to reference Roberts, G. O. (1972). Dynamo action of fluid motions with two-dimensional periodicity. Philosophical Transactions of the Royal Society of London A, 271(1216), 411–454.MATHCrossRef Roberts, G. O. (1972). Dynamo action of fluid motions with two-dimensional periodicity. Philosophical Transactions of the Royal Society of London A, 271(1216), 411–454.MATHCrossRef
go back to reference Roberts, P. H., Jones, C. A., & Calderwood, A. (2003). Energy fluxes and ohmic dissipation in the Earth’s core. In Jones C. A., Soward A. M., & Zhang K. (Eds.), Earth’s core and lower mantle. Taylor & Francis. Roberts, P. H., Jones, C. A., & Calderwood, A. (2003). Energy fluxes and ohmic dissipation in the Earth’s core. In Jones C. A., Soward A. M., & Zhang K. (Eds.), Earth’s core and lower mantle. Taylor & Francis.
go back to reference Rubie, D. C., Jacobson, S. A., O’Brien, D. P., Young, Ed. D., de Vries, J., Nimmo, F., et al. (2015). Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed solar system bodies and accretion of water. Icarus, 248, 89–108.CrossRef Rubie, D. C., Jacobson, S. A., O’Brien, D. P., Young, Ed. D., de Vries, J., Nimmo, F., et al. (2015). Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed solar system bodies and accretion of water. Icarus, 248, 89–108.CrossRef
go back to reference Rudge, J. F., Kleine, T., & Bourdon, B. (2010). Broad bounds on Earth’s accretion and core formation constrained by geochemical models. Nature Geoscience, 3, 439–443.CrossRef Rudge, J. F., Kleine, T., & Bourdon, B. (2010). Broad bounds on Earth’s accretion and core formation constrained by geochemical models. Nature Geoscience, 3, 439–443.CrossRef
go back to reference Samuel, H. (2012). A re-evaluation of metal diapir breakup and equilibration in terrestrial magma oceans. Earth and Planetary Science Letters, 313, 105–114.CrossRef Samuel, H. (2012). A re-evaluation of metal diapir breakup and equilibration in terrestrial magma oceans. Earth and Planetary Science Letters, 313, 105–114.CrossRef
go back to reference Schaeffer, N., Jault, D., Nataf, H.-C., & Fournier, A. (2017). Turbulent geodynamo simulations: A leap towards Earth’s core. Geophysical Journal International, 211(1), 1–29.CrossRef Schaeffer, N., Jault, D., Nataf, H.-C., & Fournier, A. (2017). Turbulent geodynamo simulations: A leap towards Earth’s core. Geophysical Journal International, 211(1), 1–29.CrossRef
go back to reference Seagle, C. T., Cottrell, E., Fei, Y., Hummer, D. R., & Prakapenka, V. B. (2013). Electrical and thermal transport properties of iron and iron-silicon alloy at high pressure. Geophysical Research Letters, 40(20), 5377–5381.CrossRef Seagle, C. T., Cottrell, E., Fei, Y., Hummer, D. R., & Prakapenka, V. B. (2013). Electrical and thermal transport properties of iron and iron-silicon alloy at high pressure. Geophysical Research Letters, 40(20), 5377–5381.CrossRef
go back to reference Stacey, F. D., & Anderson, O. L. (2001). Electrical and thermal conductivities of Fe-Ni-Si alloy under core conditions. Physics of the Earth and Planetary Interiors, 124, 153–162.CrossRef Stacey, F. D., & Anderson, O. L. (2001). Electrical and thermal conductivities of Fe-Ni-Si alloy under core conditions. Physics of the Earth and Planetary Interiors, 124, 153–162.CrossRef
go back to reference Stacey, F. D., & Loper, D. E. (2007). A revised estimate of the conductivity of iron alloy at high pressure and implications for the core energy balance. Physics of the Earth and Planetary Interiors, 161, 13–18.CrossRef Stacey, F. D., & Loper, D. E. (2007). A revised estimate of the conductivity of iron alloy at high pressure and implications for the core energy balance. Physics of the Earth and Planetary Interiors, 161, 13–18.CrossRef
go back to reference Starchenko, S. V., & Jones, C. A. (2002). Typical velocities and magnetic field strengths in planetary interiors. Icarus, 157(2), 426–435.CrossRef Starchenko, S. V., & Jones, C. A. (2002). Typical velocities and magnetic field strengths in planetary interiors. Icarus, 157(2), 426–435.CrossRef
go back to reference Stelzer, Z., & Jackson, A. (2013). Extracting scaling laws from numerical dynamo models. Geophysical Journal International, 193(3), 1265–1276.CrossRef Stelzer, Z., & Jackson, A. (2013). Extracting scaling laws from numerical dynamo models. Geophysical Journal International, 193(3), 1265–1276.CrossRef
go back to reference Stevenson, D. J. (1990). Fluid dynamics of core formation. Origin of the earth (pp. 231–249). Oxford: Oxford University Press. Stevenson, D. J. (1990). Fluid dynamics of core formation. Origin of the earth (pp. 231–249). Oxford: Oxford University Press.
go back to reference Stevenson, D. J. (2003). Planetary science: Mission to Earth’s core—a modest proposal. Nature, 423(6937), 239–240.CrossRef Stevenson, D. J. (2003). Planetary science: Mission to Earth’s core—a modest proposal. Nature, 423(6937), 239–240.CrossRef
go back to reference Stieglitz, R., & Müller, U. (2001). Experimental demonstration of a homogeneous two-scale dynamo. Physics of Fluids, 13(3), 561–564.MATHCrossRef Stieglitz, R., & Müller, U. (2001). Experimental demonstration of a homogeneous two-scale dynamo. Physics of Fluids, 13(3), 561–564.MATHCrossRef
go back to reference Sumita, I., & Bergman, M. I. (2015). Inner-core dynamics. In Schubert G. (Ed.), Treatise on geophysics (Vol. 8, pp. 297–316). Elsevier. Sumita, I., & Bergman, M. I. (2015). Inner-core dynamics. In Schubert G. (Ed.), Treatise on geophysics (Vol. 8, pp. 297–316). Elsevier.
go back to reference Taylor, G. I. (1934). The formation of emulsions in definable fields of flow. Proceedings of the Royal Society of London A, 146(858), 501–523.CrossRef Taylor, G. I. (1934). The formation of emulsions in definable fields of flow. Proceedings of the Royal Society of London A, 146(858), 501–523.CrossRef
go back to reference Tomotika, S. (1936). Breaking up of a drop of viscous liquid immersed in another viscous fluid which is extending at a uniform rate. Proceedings of the Royal Society of London A, 153(879), 302–318.MATHCrossRef Tomotika, S. (1936). Breaking up of a drop of viscous liquid immersed in another viscous fluid which is extending at a uniform rate. Proceedings of the Royal Society of London A, 153(879), 302–318.MATHCrossRef
go back to reference Ulvrová, M., Coltice, N., Ricard, Y., Labrosse, S., Dubuffet, F., Velímskỳ, J., et al. (2011). Compositional and thermal equilibration of particles, drops and diapirs in geophysical flows. Geochemistry Geophysics Geosystems, 12(10), 1–11.CrossRef Ulvrová, M., Coltice, N., Ricard, Y., Labrosse, S., Dubuffet, F., Velímskỳ, J., et al. (2011). Compositional and thermal equilibration of particles, drops and diapirs in geophysical flows. Geochemistry Geophysics Geosystems, 12(10), 1–11.CrossRef
go back to reference Verhoogen, J. (1961). Heat balance of the Earth’s core. Geophysical Journal of the Royal Astronomical Society, 4, 276–291.CrossRef Verhoogen, J. (1961). Heat balance of the Earth’s core. Geophysical Journal of the Royal Astronomical Society, 4, 276–291.CrossRef
go back to reference Wacheul, J.-B., & Le Bars, M. (2017). Experiments on fragmentation and thermo-chemical exchanges during planetary core formation. Physics of the Earth and Planetary Interiors. Wacheul, J.-B., & Le Bars, M. (2017). Experiments on fragmentation and thermo-chemical exchanges during planetary core formation. Physics of the Earth and Planetary Interiors.
go back to reference Wacheul, J.-B., Le Bars, M., Monteux, J., & Aurnou, J. M. (2014). Laboratory experiments on the breakup of liquid metal diapirs. Earth and Planetary Science Letters, 403, 236–245.CrossRef Wacheul, J.-B., Le Bars, M., Monteux, J., & Aurnou, J. M. (2014). Laboratory experiments on the breakup of liquid metal diapirs. Earth and Planetary Science Letters, 403, 236–245.CrossRef
go back to reference Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., & Mandell, A. M. (2011). A low mass for Mars from Jupiter/’s early gas-driven migration. Nature, 475(7355), 206–209.CrossRef Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., & Mandell, A. M. (2011). A low mass for Mars from Jupiter/’s early gas-driven migration. Nature, 475(7355), 206–209.CrossRef
go back to reference Weber, P., & Machetel, P. (1992). Convection within the inner-core and thermal implications. Geophysical Research Letters, 19, 2107–2110.CrossRef Weber, P., & Machetel, P. (1992). Convection within the inner-core and thermal implications. Geophysical Research Letters, 19, 2107–2110.CrossRef
go back to reference Wenk, H.-R., Baumgardner, J. R., Lebensohn, R. A., & Tomé, C. N. (2000). A convection model to explain anisotropy of the inner core. Journal of Geophysical Research, 105, 5663–5678.CrossRef Wenk, H.-R., Baumgardner, J. R., Lebensohn, R. A., & Tomé, C. N. (2000). A convection model to explain anisotropy of the inner core. Journal of Geophysical Research, 105, 5663–5678.CrossRef
go back to reference Williams, J.-P., & Nimmo, F. (2004, February). Thermal evolution of the Martian core: Implications for an early dynamo. Geology, 32 97–+. Williams, J.-P., & Nimmo, F. (2004, February). Thermal evolution of the Martian core: Implications for an early dynamo. Geology, 32 97–+.
go back to reference Woodward, B. (1959). The motion in and around isolated thermals. Quarterly Journal of the Royal Meteorological Society, 85(364), 144–151.CrossRef Woodward, B. (1959). The motion in and around isolated thermals. Quarterly Journal of the Royal Meteorological Society, 85(364), 144–151.CrossRef
go back to reference Zhang, K., & Busse, F. H. (1988). Finite amplitude convection and magnetic field generation in a rotating spherical shell. Geophysical & Astrophysical Fluid Dynamics, 44(1–4), 33–53.MATHCrossRef Zhang, K., & Busse, F. H. (1988). Finite amplitude convection and magnetic field generation in a rotating spherical shell. Geophysical & Astrophysical Fluid Dynamics, 44(1–4), 33–53.MATHCrossRef
Metadata
Title
Fluid Dynamics of Earth’s Core: Geodynamo, Inner Core Dynamics, Core Formation
Authors
Renaud Deguen
Marine Lasbleis
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-22074-7_5

Premium Partners