Skip to main content
Top

2021 | OriginalPaper | Chapter

9. Fog-IoT Environment in Smart Healthcare: A Case Study for Student Stress Monitoring

Authors : Tawseef Ayoub Shaikh, Rashid Ali

Published in: Fog Computing for Healthcare 4.0 Environments

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fog computing disseminates computing system which incorporates the cloud computing model to fully support the vision of internet of things (IoT). In the course of the most recent couple of years, the internet of things (IoT) opens the portal to developments that encourage communication among things as well as among people known as the man to machine (M2M) interface. Concentrating on medicinal services space, IoT devices, for example, therapeutic sensors, visual sensors, cameras, as well as remote sensor systems, are driving the developmental pattern. Toward this way, the part anticipates strengthening the amalgamation of fog computing in the medicinal services area. Convinced by the equivalent creative methods, our work features the latest IoT-aware student-centered stress management system for student stress indexing in a specific context. The work proposes to utilize the temporal dynamic Bayesian network (TDBN) model to depict the event of stress as conventional or sporadic by readings through physiological means congregated from medicinal devices at the fog layer. Constructed from four parameters, especially leaf node confirmations, outstanding tasks at hand, context, and understudy well-being quality are employed for the stress computation, and decisions are made well into the shape of a warning generator equipment with provision of moment-sensitive information to caregivers or respondents. Experimentation is aimed on both fog and cloud layers on stress-related datasets that illustrate the usefulness and accuracy of the TDBN model in our proposed system. The final experiments bear witness that the BBN classifier overweighed the group by attaining an accuracy value of 95.5% and specificity of 97.3%, whereas J48, Random forest, and SVM have accomplished an exactness of 85.2%, 87.9%, and 90.8%, separately. However, if sensitivity and f-measure would occur, the BBN classifier beats other classifier models individually with 95.5% and 92.9% values for the same. Also, we evaluated our proposed method with seven states of the artworks, and again, our method leads the list in terms of its promised performance. The work also offers a gentle touch in the literature review form on the recent novel techniques and methods, including deep learning for complex heterogeneous healthcare sensor data, which act as a supporting hand for fog computing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Adams, F. (2017). OpenFog reference architecture for fog computing. Retrieved from https://knect365.com/. [Online]. Cloud-enterprise-tech/article/0fa40de2-6596-4060-901d-8bdddf167cfe/openFog-referencearchitecture-for-Fog-computing. Adams, F. (2017). OpenFog reference architecture for fog computing. Retrieved from https://​knect365.​com/​. [Online]. Cloud-enterprise-tech/article/0fa40de2-6596-4060-901d-8bdddf167cfe/openFog-referencearchitecture-for-Fog-computing.
3.
go back to reference Tanwar, S., Vora, J., Kanriya, S., Tyagi, S., Kumar, N., Sharma, V., et al. (2019). Influence of monitoring: Fog and Edge computing. IEEE Consumer Electronics Magazine, 9(1), 88–94.CrossRef Tanwar, S., Vora, J., Kanriya, S., Tyagi, S., Kumar, N., Sharma, V., et al. (2019). Influence of monitoring: Fog and Edge computing. IEEE Consumer Electronics Magazine, 9(1), 88–94.CrossRef
4.
go back to reference Prasad, V. K., Bhavsar, M., & Tanwar, S. (2019). Influence of monitoring: Fog and Edge Computing. Scalable Computing: Practice and Experience, 20(2), 365–376. Prasad, V. K., Bhavsar, M., & Tanwar, S. (2019). Influence of monitoring: Fog and Edge Computing. Scalable Computing: Practice and Experience, 20(2), 365–376.
5.
go back to reference Kumari, A., Tanwar, S., Tyagi, S., Kumar, N., Parizi, R., & Choo, K. K. R. (2019). Fog data analytics: A taxonomy and process model. Journal of Network and Computer Applications, 128, 90–104.CrossRef Kumari, A., Tanwar, S., Tyagi, S., Kumar, N., Parizi, R., & Choo, K. K. R. (2019). Fog data analytics: A taxonomy and process model. Journal of Network and Computer Applications, 128, 90–104.CrossRef
6.
go back to reference Magen, B., & Numhauser, J. (2012). Fog Computing introduction to a New Cloud Evolution. Escrituras silenciadas: Paisaje como historiografía (pp. 111–126). Spain: University of Alcala. Magen, B., & Numhauser, J. (2012). Fog Computing introduction to a New Cloud Evolution. Escrituras silenciadas: Paisaje como historiografía (pp. 111–126). Spain: University of Alcala.
7.
go back to reference Tanwar, S., Vora, J., Kaneriya, S., & Tyagi, S. (2017). Fog based enhanced safety management system for miners. In 3rd International Conference on Advances in Computing, Communication & Automation (ICACCA) 2017 (pp. 1–6). Dehradhun: Tula Institute. Tanwar, S., Vora, J., Kaneriya, S., & Tyagi, S. (2017). Fog based enhanced safety management system for miners. In 3rd International Conference on Advances in Computing, Communication & Automation (ICACCA) 2017 (pp. 1–6). Dehradhun: Tula Institute.
8.
go back to reference Vora, J., Tanwar, S., Tyagi, S., Kumar, N., & Rodrigues, J. P. C. (2019). HRIDaaY: Ballistocardiogram-based heart rate monitoring using fog computing. In IEEE Global Communications Conference (GLOBECOM) 2019, Hawaii, USA (pp. 1–6). Vora, J., Tanwar, S., Tyagi, S., Kumar, N., & Rodrigues, J. P. C. (2019). HRIDaaY: Ballistocardiogram-based heart rate monitoring using fog computing. In IEEE Global Communications Conference (GLOBECOM) 2019, Hawaii, USA (pp. 1–6).
9.
go back to reference Kumari, A., Tanwar, S., Tyagi, S., Kumar, N., & Rodrigues, J. (2019). Fog computing for smart grid systems in 5G environment: Challenges and solutions. IEEE Wireless Communications Magazine, 26(3), 47–53.CrossRef Kumari, A., Tanwar, S., Tyagi, S., Kumar, N., & Rodrigues, J. (2019). Fog computing for smart grid systems in 5G environment: Challenges and solutions. IEEE Wireless Communications Magazine, 26(3), 47–53.CrossRef
10.
go back to reference Vora, J., Kanriya, S., Tanwar, S., Tyagi, S., Kumar, N., & Obaidat, M. S. (2019). TILAA: Tactile internet-based ambient assistant living in fog environment. Future Generation Computer Systems, 98, 635–649.CrossRef Vora, J., Kanriya, S., Tanwar, S., Tyagi, S., Kumar, N., & Obaidat, M. S. (2019). TILAA: Tactile internet-based ambient assistant living in fog environment. Future Generation Computer Systems, 98, 635–649.CrossRef
11.
go back to reference Tanwar, S., Tyagi, S., & Kumar, S. (2017). The role of internet of things and smart grid for the development of a smart city. Intelligent Communication and Computational Technologies, 19, 23–33.CrossRef Tanwar, S., Tyagi, S., & Kumar, S. (2017). The role of internet of things and smart grid for the development of a smart city. Intelligent Communication and Computational Technologies, 19, 23–33.CrossRef
12.
go back to reference Tanwar, S., Patel, P., Patel, K., Tyagi, S., Kumar, N., & Obaidat, M. S. (2017). An advanced Internet of Thing based security alert system for smart home. In International Conference on Computer, Information and Telecommunication Systems (IEEE CITS), 2017, Dalian University, China (pp. 25–29). Tanwar, S., Patel, P., Patel, K., Tyagi, S., Kumar, N., & Obaidat, M. S. (2017). An advanced Internet of Thing based security alert system for smart home. In International Conference on Computer, Information and Telecommunication Systems (IEEE CITS), 2017, Dalian University, China (pp. 25–29).
13.
go back to reference Vora, J., Tanwar, S., Tyagi, S., Kumar, N., & Rodrigues, J. P. C. (2017). FAAL: Fog computing-based patient monitoring system for ambient assisted living. In IEEE 19th International conference on e-health networking, applications and services (Healthcom), Dalian University, China (pp. 1–6). Vora, J., Tanwar, S., Tyagi, S., Kumar, N., & Rodrigues, J. P. C. (2017). FAAL: Fog computing-based patient monitoring system for ambient assisted living. In IEEE 19th International conference on e-health networking, applications and services (Healthcom), Dalian University, China (pp. 1–6).
15.
go back to reference Patel, D., Narmawala, Z., Tanwar, S., & Singh, P. K. (2018). A systematic review on scheduling public transport using IoT as tool. Smart innovations in communication and computational sciences. Adv. Intell. Syst. Comput., 670, 39–48. Patel, D., Narmawala, Z., Tanwar, S., & Singh, P. K. (2018). A systematic review on scheduling public transport using IoT as tool. Smart innovations in communication and computational sciences. Adv. Intell. Syst. Comput., 670, 39–48.
16.
go back to reference Mistry, I., Tanwar, S., Tyagi, S., & Kumar, N. (2020). Blockchain for 5G-enabled IoT for industrial automation: A systematic review, solutions, and challenges. Mechanical Systems and Signal Processing, 135, 1–19.CrossRef Mistry, I., Tanwar, S., Tyagi, S., & Kumar, N. (2020). Blockchain for 5G-enabled IoT for industrial automation: A systematic review, solutions, and challenges. Mechanical Systems and Signal Processing, 135, 1–19.CrossRef
17.
go back to reference Mittal, M., Tanwar, S., Agarwal, B., & Goyal, L. M. (2019). Energy conservation for IoT devices: Concepts, paradigms and solutions. In Studies in systems, decision and control (pp. 1–356). Mittal, M., Tanwar, S., Agarwal, B., & Goyal, L. M. (2019). Energy conservation for IoT devices: Concepts, paradigms and solutions. In Studies in systems, decision and control (pp. 1–356).
18.
go back to reference Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communication Surveys and Tutorials, 17(4), 2347–2376.CrossRef Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communication Surveys and Tutorials, 17(4), 2347–2376.CrossRef
19.
go back to reference Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the internet of things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing (MCC 12), New York (pp. 13–16).CrossRef Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the internet of things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing (MCC 12), New York (pp. 13–16).CrossRef
20.
go back to reference Kushalnagar, N., Montenegro, G., & Schumacher, C. (2019). Ipv6 over low-power wireless personal area networks (6LoWPANs): Overview, assumptions, problem statement, and goals, [Online]. Retrieved September 11, 2019, from https://tools.ietf.org/html/rfc4919. Kushalnagar, N., Montenegro, G., & Schumacher, C. (2019). Ipv6 over low-power wireless personal area networks (6LoWPANs): Overview, assumptions, problem statement, and goals, [Online]. Retrieved September 11, 2019, from https://​tools.​ietf.​org/​html/​rfc4919.
21.
go back to reference Wang, Y. P. E., Lin, X., Adhikary, A., Grovlen, A., Sui, Y., Blankenship, Y. W., et al. (2016). A primer on 3GPPnarrowband internet of things (NB-IoT). CoRR, abs/1606.04171. Wang, Y. P. E., Lin, X., Adhikary, A., Grovlen, A., Sui, Y., Blankenship, Y. W., et al. (2016). A primer on 3GPPnarrowband internet of things (NB-IoT). CoRR, abs/1606.04171.
24.
go back to reference Negash, B., Rahmani, A. M., Westerlund, T., Liljeberg, P., & Tenhunen, H. (2016). LISA 2.0: Lightweight internet of things service bus architecture using node centric networking. Journal of Ambient Intelligence and Humanized Computing, 7(3), 305–319.CrossRef Negash, B., Rahmani, A. M., Westerlund, T., Liljeberg, P., & Tenhunen, H. (2016). LISA 2.0: Lightweight internet of things service bus architecture using node centric networking. Journal of Ambient Intelligence and Humanized Computing, 7(3), 305–319.CrossRef
26.
go back to reference Tanwar, S., Tyagi, S., & Kumar, N. (2019). Multimedia Big Data Computing for IoT applications: Concepts, paradigms and solutions, intelligent systems reference library (pp. 1–425). Berlin: Springer. Tanwar, S., Tyagi, S., & Kumar, N. (2019). Multimedia Big Data Computing for IoT applications: Concepts, paradigms and solutions, intelligent systems reference library (pp. 1–425). Berlin: Springer.
27.
go back to reference Vora, J., Tanwar, S., Tyagi, S., Kumar, N., & Rodrigues, J. J. P. C. (2017). Home-based exercise system for patients using IoT enabled smart speaker. In Proceedings of the IEEE 19 th international conference on e-health networking, applications and services (Healthcom) (pp. 1–6). Vora, J., Tanwar, S., Tyagi, S., Kumar, N., & Rodrigues, J. J. P. C. (2017). Home-based exercise system for patients using IoT enabled smart speaker. In Proceedings of the IEEE 19 th international conference on e-health networking, applications and services (Healthcom) (pp. 1–6).
28.
go back to reference Peralta, G., Iglesias-Urkia, M., Barcelo, M., Gomez, R., Moran, A., & Bilbao, J. (2017). Fog computing based efficient iot scheme for the industry 4.0. In Proceedings of the IEEE international workshop of electronics, control, measurement, signals and their application to mechatronics (ECMSM) (pp. 1–6). Peralta, G., Iglesias-Urkia, M., Barcelo, M., Gomez, R., Moran, A., & Bilbao, J. (2017). Fog computing based efficient iot scheme for the industry 4.0. In Proceedings of the IEEE international workshop of electronics, control, measurement, signals and their application to mechatronics (ECMSM) (pp. 1–6).
29.
go back to reference Akrivopoulos, O., Chatzigiannakis, I., Tselios, C., & Antoniou, A. (2017). On the deployment of healthcare applications over fog computing infrastructure. In Proceedings of the IEEE 41 st annual computer software and applications conference (COMPSAC) (pp. 288–293). Akrivopoulos, O., Chatzigiannakis, I., Tselios, C., & Antoniou, A. (2017). On the deployment of healthcare applications over fog computing infrastructure. In Proceedings of the IEEE 41 st annual computer software and applications conference (COMPSAC) (pp. 288–293).
30.
go back to reference He, D., Kumar, N., Wang, H., Wang, L., Choo, K. K. R., & Vinel, A. (2016). A provably-secure cross-domain handshake scheme with symptoms-matching for mobile health- care social network. In Proceedings of the IEEE transactions on dependable and secure computing (p. 1). He, D., Kumar, N., Wang, H., Wang, L., Choo, K. K. R., & Vinel, A. (2016). A provably-secure cross-domain handshake scheme with symptoms-matching for mobile health- care social network. In Proceedings of the IEEE transactions on dependable and secure computing (p. 1).
31.
go back to reference Elmisery, A. M., Rho, S., & Botvich, D. (2016). A fog based middleware for automated compliance with OECD privacy principles in internet of healthcare things. IEEE Access, 4, 8418–8441.CrossRef Elmisery, A. M., Rho, S., & Botvich, D. (2016). A fog based middleware for automated compliance with OECD privacy principles in internet of healthcare things. IEEE Access, 4, 8418–8441.CrossRef
32.
go back to reference Chakraborty, S., Bhowmick, S., Talaga, P., & Agrawal, D. P. (2016). Fog networks inhealthcare application. In Proceedingsof the13th internationalconference on mobile ad hoc and sensor systems (MASS) (pp. 386–387). Chakraborty, S., Bhowmick, S., Talaga, P., & Agrawal, D. P. (2016). Fog networks inhealthcare application. In Proceedingsof the13th internationalconference on mobile ad hoc and sensor systems (MASS) (pp. 386–387).
33.
go back to reference Tasic, J., Gusev, M., & Ristov, S. (2016). A medical cloud. In Proceedings of the 9th international convention on information and communication technology, electronics and microelectronics (MIPRO) (pp. 400–405). Tasic, J., Gusev, M., & Ristov, S. (2016). A medical cloud. In Proceedings of the 9th international convention on information and communication technology, electronics and microelectronics (MIPRO) (pp. 400–405).
34.
go back to reference Ramalho, F., Neto, A., Santos, K., Filho, J. B., & Agoulmine, N. (2015). Enhancing ehealth smart applications: A fog-enabled approach. In Proceedings of the 17th international conference on E-health networking, application & services (HealthCom) (pp. 323–328). Ramalho, F., Neto, A., Santos, K., Filho, J. B., & Agoulmine, N. (2015). Enhancing ehealth smart applications: A fog-enabled approach. In Proceedings of the 17th international conference on E-health networking, application & services (HealthCom) (pp. 323–328).
35.
go back to reference Kumari, A., Tanwar, S., Tyagi, S., & Kumar, N. (2018). Fog computing for Healthcare 4.0 environment: Opportunities and challenges. Computers and Electrical Engineering, 72, 1–13.CrossRef Kumari, A., Tanwar, S., Tyagi, S., & Kumar, N. (2018). Fog computing for Healthcare 4.0 environment: Opportunities and challenges. Computers and Electrical Engineering, 72, 1–13.CrossRef
36.
go back to reference Rahmani, A. M., Sören Preden, P. L. J., & Jantsch, A. (2018). Fog computing in the Internet of Things, intelligence at the Edge., ISBN 978-3-319-57638-1 (pp. 95–110). Berlin: Springer. Rahmani, A. M., Sören Preden, P. L. J., & Jantsch, A. (2018). Fog computing in the Internet of Things, intelligence at the Edge., ISBN 978-3-319-57638-1 (pp. 95–110). Berlin: Springer.
37.
go back to reference Morgan, R., Williams, F., & Wright, M. (1997). An early warning scoring system for detecting developing critical illness. Clinical Intensive Care, 8(2), 100–114. Morgan, R., Williams, F., & Wright, M. (1997). An early warning scoring system for detecting developing critical illness. Clinical Intensive Care, 8(2), 100–114.
38.
go back to reference Georgaka, D., Mparmparousi, M., & Vitos, M. (2012). Early warning systems. Hospital Chronicles, 7(1), 37–43. Georgaka, D., Mparmparousi, M., & Vitos, M. (2012). Early warning systems. Hospital Chronicles, 7(1), 37–43.
39.
go back to reference Anzanpour, A., Rahmani, A. M., Liljeberg, P., & Tenhunen, H. (2015). Context-aware early warning system for in-home healthcare using internet-of-things. In Proceedings of the International Conference on IoT Technologies for HealthCare (HealthyIoT) 2015. Berlin: Springer. Anzanpour, A., Rahmani, A. M., Liljeberg, P., & Tenhunen, H. (2015). Context-aware early warning system for in-home healthcare using internet-of-things. In Proceedings of the International Conference on IoT Technologies for HealthCare (HealthyIoT) 2015. Berlin: Springer.
40.
go back to reference Gupta, R., Tanwar, S., Tyagi, S., Kumar, N., Obaidat, M. S., & Sadoun, B. (2019). HaBiTs: Blockchain-based telesurgery framework for Healthcare 4.0. In International conference on computer, information and telecommunication systems (IEEE CITS) 2019, Beijing, China (pp. 6–10). Gupta, R., Tanwar, S., Tyagi, S., Kumar, N., Obaidat, M. S., & Sadoun, B. (2019). HaBiTs: Blockchain-based telesurgery framework for Healthcare 4.0. In International conference on computer, information and telecommunication systems (IEEE CITS) 2019, Beijing, China (pp. 6–10).
42.
go back to reference Igual, R., Medrano, C., & Plaza, I. (2013). Challenges, issues and trends in fall detection systems. Biomedical Engineering Online, 12(1), 66–77.CrossRef Igual, R., Medrano, C., & Plaza, I. (2013). Challenges, issues and trends in fall detection systems. Biomedical Engineering Online, 12(1), 66–77.CrossRef
43.
go back to reference Tessier, A., Beaulieu, M. D., Mcginn, C., & Latulippe, R. (2016). Effectiveness of reablement: A systematic review. Health Policy, 11(4), 49–59. Tessier, A., Beaulieu, M. D., Mcginn, C., & Latulippe, R. (2016). Effectiveness of reablement: A systematic review. Health Policy, 11(4), 49–59.
44.
go back to reference Billinger, S., Arena, R., & Bernhardt, J. (2014). Physical activity and exercise recommendations for stroke survivors. Stroke, 45(8), 2532–2553.CrossRef Billinger, S., Arena, R., & Bernhardt, J. (2014). Physical activity and exercise recommendations for stroke survivors. Stroke, 45(8), 2532–2553.CrossRef
45.
go back to reference Jovanov, E., Lords, A. D., Raskovic, D., Cox, P. G., Adhami, R., & Andrasik, F. (2003). Stress monitoring using a distributed wireless intelligent sensor system. IEEE Engineering in Medicine and Biology, 22(3), 49–55.CrossRef Jovanov, E., Lords, A. D., Raskovic, D., Cox, P. G., Adhami, R., & Andrasik, F. (2003). Stress monitoring using a distributed wireless intelligent sensor system. IEEE Engineering in Medicine and Biology, 22(3), 49–55.CrossRef
46.
go back to reference Suzuki, S., Matsui, T., Imuta, H., Uenoyama, M., Yura, H., Ishihara, M., et al. (2008). A novel autonomic activation measurement method for stress monitoring: Non-contact measurement of heart rate variability using a compact microwave radar. Medical & Biological Engineering & Computing, 46(7), 709–714.CrossRef Suzuki, S., Matsui, T., Imuta, H., Uenoyama, M., Yura, H., Ishihara, M., et al. (2008). A novel autonomic activation measurement method for stress monitoring: Non-contact measurement of heart rate variability using a compact microwave radar. Medical & Biological Engineering & Computing, 46(7), 709–714.CrossRef
47.
go back to reference Ayzenberg, Y., Rivera, J. H., & Picard, R. (2012). FEEL: Frequent EDA and event logging -a mobile social interaction stress monitoring system. In CHI12 extended abstracts on human factors in computing systems (pp. 2357–2362).CrossRef Ayzenberg, Y., Rivera, J. H., & Picard, R. (2012). FEEL: Frequent EDA and event logging -a mobile social interaction stress monitoring system. In CHI12 extended abstracts on human factors in computing systems (pp. 2357–2362).CrossRef
48.
go back to reference Shen, Y. H., Zheng, J. W., Zhang, Z. B., & Li, C. M. (2012). Design and implementation of a wearable, multiparameter physiological monitoring system for the study of human heat stress, cold stress, and thermal comfort. Instrumentation Science and Technology, 40(4), 290–304.CrossRef Shen, Y. H., Zheng, J. W., Zhang, Z. B., & Li, C. M. (2012). Design and implementation of a wearable, multiparameter physiological monitoring system for the study of human heat stress, cold stress, and thermal comfort. Instrumentation Science and Technology, 40(4), 290–304.CrossRef
49.
go back to reference Tartarisco, G., Baldus, G., Corda, D., Raso, R., Arnao, A., Ferro, M., et al. (2012). Personal health system architecture for stress monitoring and support to clinical decisions. Computer Communications, 35(11), 1296–1305.CrossRef Tartarisco, G., Baldus, G., Corda, D., Raso, R., Arnao, A., Ferro, M., et al. (2012). Personal health system architecture for stress monitoring and support to clinical decisions. Computer Communications, 35(11), 1296–1305.CrossRef
50.
go back to reference Yoon, S., Sim, J. K., & Cho, Y. H. (2014). On-chip flexible multi-layer sensors for human stress monitoring. In IEEE conference sensors (pp. 851–854). Yoon, S., Sim, J. K., & Cho, Y. H. (2014). On-chip flexible multi-layer sensors for human stress monitoring. In IEEE conference sensors (pp. 851–854).
51.
go back to reference Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J., & Leung, K. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications, 20(6), 91–98.CrossRef Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J., & Leung, K. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications, 20(6), 91–98.CrossRef
52.
go back to reference Zhou, J., Cao, Z., Dong, X., Xiong, N., & Vasilakos, A. V. (2014). 4S: A secure and privacy-preserving key management scheme for cloudassisted wireless body area network in m-healthcare social networks. Information Sciences, 331, 255–276. Zhou, J., Cao, Z., Dong, X., Xiong, N., & Vasilakos, A. V. (2014). 4S: A secure and privacy-preserving key management scheme for cloudassisted wireless body area network in m-healthcare social networks. Information Sciences, 331, 255–276.
53.
go back to reference Tsai, C. W., Lai, C. F., & Vasilakos, A. V. (2014). Future internet of things open issues and challenges. Wireless Networks, 20(8), 2201–2217.CrossRef Tsai, C. W., Lai, C. F., & Vasilakos, A. V. (2014). Future internet of things open issues and challenges. Wireless Networks, 20(8), 2201–2217.CrossRef
54.
go back to reference Fortino, G., Di Fatta, G., Pathan, M., & Vasilakos, A. V. (2014). Cloudassisted body area networks: State-of-the-art and future challenges. Wireless Networks, 20(7), 1925–1938.CrossRef Fortino, G., Di Fatta, G., Pathan, M., & Vasilakos, A. V. (2014). Cloudassisted body area networks: State-of-the-art and future challenges. Wireless Networks, 20(7), 1925–1938.CrossRef
55.
go back to reference Chouvarda, I. G., Goulis, D. G., Lambrinoudaki, I., & Maglaveras, N. (2015). Connected health and integrated care: Toward new models for chronic disease management. Maturitas, 82(1), 22–27.CrossRef Chouvarda, I. G., Goulis, D. G., Lambrinoudaki, I., & Maglaveras, N. (2015). Connected health and integrated care: Toward new models for chronic disease management. Maturitas, 82(1), 22–27.CrossRef
56.
go back to reference Qin, Y., Sheng, Q. Z., Falkner, N. J., Dustdar, S., Wang, H., & Vasilakos, A. V. (2016). When things matter: A survey on data-centric internet of things. Journal of Network and Computer Applications, 64, 137–153.CrossRef Qin, Y., Sheng, Q. Z., Falkner, N. J., Dustdar, S., Wang, H., & Vasilakos, A. V. (2016). When things matter: A survey on data-centric internet of things. Journal of Network and Computer Applications, 64, 137–153.CrossRef
57.
go back to reference Zhang, D., He, Z., Qian, Y., Wan, J., Li, D., & Zhao, S. (2016). Revisiting unknown RFID tag identification in large-scale internet of things. IEEE Wireless Communications, 23(5), 24–29.CrossRef Zhang, D., He, Z., Qian, Y., Wan, J., Li, D., & Zhao, S. (2016). Revisiting unknown RFID tag identification in large-scale internet of things. IEEE Wireless Communications, 23(5), 24–29.CrossRef
58.
go back to reference Amadeo, M., Campolo, C., Quevedo, J., Corujo, D., Molinaro, A., Iera, A., et al. (2016). Information-centric networking for the internet of things: Challenges and opportunities. IEEE Network, 30(2), 92–100.CrossRef Amadeo, M., Campolo, C., Quevedo, J., Corujo, D., Molinaro, A., Iera, A., et al. (2016). Information-centric networking for the internet of things: Challenges and opportunities. IEEE Network, 30(2), 92–100.CrossRef
59.
go back to reference Wan, J., Tang, S., Shu, Z., Li, D., Wang, S., Imran, M., et al. (2016). Software-defined industrial internet of things in the context of industry 4.0. IEEE Sensors Journal, 16(20), 7373–7380. Wan, J., Tang, S., Shu, Z., Li, D., Wang, S., Imran, M., et al. (2016). Software-defined industrial internet of things in the context of industry 4.0. IEEE Sensors Journal, 16(20), 7373–7380.
60.
go back to reference Azimi, I., Rahmani, A. M., Liljeberg, P., & Tenhunen, H. (2017). Internet of things for remote elderly monitoring: A study from user-centered perspective. Journal of Ambient Intelligence and Humanized Computing, 8(2), 273–289.CrossRef Azimi, I., Rahmani, A. M., Liljeberg, P., & Tenhunen, H. (2017). Internet of things for remote elderly monitoring: A study from user-centered perspective. Journal of Ambient Intelligence and Humanized Computing, 8(2), 273–289.CrossRef
61.
go back to reference Ghanavati, S., Abawajy, J. H., Izadi, D., & Alelaiwi, A. A. (2017). Cloudassisted IoT-based health status monitoring framework. Cluster Computing, 20(2), 1843–1853.CrossRef Ghanavati, S., Abawajy, J. H., Izadi, D., & Alelaiwi, A. A. (2017). Cloudassisted IoT-based health status monitoring framework. Cluster Computing, 20(2), 1843–1853.CrossRef
62.
go back to reference Yang, Z., Zhou, Q., Lei, L., Zheng, K., & Xiang, W. (2016). An IoT-cloud based wearable ECG monitoring system for smart healthcare. Journal of Medical Systems, 40(12), 286–297.CrossRef Yang, Z., Zhou, Q., Lei, L., Zheng, K., & Xiang, W. (2016). An IoT-cloud based wearable ECG monitoring system for smart healthcare. Journal of Medical Systems, 40(12), 286–297.CrossRef
63.
go back to reference Wu, T., Wu, F., Redoute, J. M., & Yuce, M. R. (2017). An autonomous wireless body area network implementation towards IoT connected healthcare applications. IEEE Access, 5, 11413–11422.CrossRef Wu, T., Wu, F., Redoute, J. M., & Yuce, M. R. (2017). An autonomous wireless body area network implementation towards IoT connected healthcare applications. IEEE Access, 5, 11413–11422.CrossRef
64.
go back to reference Ahmad, M., Amin, M. B., Hussain, S., Kang, B. H., Cheong, T., & Lee, S. (2016). Health fog: A novel framework for health and wellness applications. The Journal of Supercomputing, 72(10), 3677–3695.CrossRef Ahmad, M., Amin, M. B., Hussain, S., Kang, B. H., Cheong, T., & Lee, S. (2016). Health fog: A novel framework for health and wellness applications. The Journal of Supercomputing, 72(10), 3677–3695.CrossRef
65.
go back to reference Karumbaya, A., & Satheesh, G. (2015). Iot empowered real time environment monitoring system. International Journal of Computers and Applications, 129(5), 30–32.CrossRef Karumbaya, A., & Satheesh, G. (2015). Iot empowered real time environment monitoring system. International Journal of Computers and Applications, 129(5), 30–32.CrossRef
66.
go back to reference Zhu, Z., & Ji, Q. (2005). Robust real-time eye detection and tracking under variable lighting conditions and various face orientations. Computer Vision and Image Understanding, 98(1), 124–154.CrossRef Zhu, Z., & Ji, Q. (2005). Robust real-time eye detection and tracking under variable lighting conditions and various face orientations. Computer Vision and Image Understanding, 98(1), 124–154.CrossRef
67.
go back to reference Koldijk, S., Sappelli, M., Verberne, S., Neerincx, M. A., & Kraaij, W. (2014). The SWELL knowledge work dataset for stress and user modeling research. In 16th International Conference on multimodal interaction (pp. 291–298). Koldijk, S., Sappelli, M., Verberne, S., Neerincx, M. A., & Kraaij, W. (2014). The SWELL knowledge work dataset for stress and user modeling research. In 16th International Conference on multimodal interaction (pp. 291–298).
68.
go back to reference Laurıa, E. J., & Duchessi, P. J. (2006). A Bayesian belief network for IT implementation decision support. Decision Support Systems, 42(3), 1573–1588.CrossRef Laurıa, E. J., & Duchessi, P. J. (2006). A Bayesian belief network for IT implementation decision support. Decision Support Systems, 42(3), 1573–1588.CrossRef
69.
go back to reference Sacchi, L., Larizza, C., Combi, C., & Bellazzi, R. (2007). Data mining with temporal abstractions: Learning rules from time series. Data Mining and Knowledge Discovery, 15(2), 217–247.MathSciNetCrossRef Sacchi, L., Larizza, C., Combi, C., & Bellazzi, R. (2007). Data mining with temporal abstractions: Learning rules from time series. Data Mining and Knowledge Discovery, 15(2), 217–247.MathSciNetCrossRef
70.
go back to reference Verma, P., & Sood, S. K. (2018). A comprehensive framework for student stress monitoring in fog-cloud IoT environment: M-health perspective. Medical and Biological Engineering and Computing, 57, 231–244.CrossRef Verma, P., & Sood, S. K. (2018). A comprehensive framework for student stress monitoring in fog-cloud IoT environment: M-health perspective. Medical and Biological Engineering and Computing, 57, 231–244.CrossRef
71.
go back to reference Forkan, A. R. M., Khalil, I., & Atiquzzaman, M. (2017). Visibid: A learning model for early discovery and real-time prediction of severe clinical events using vital signs as big data. Computer Networks, 113, 244–257.CrossRef Forkan, A. R. M., Khalil, I., & Atiquzzaman, M. (2017). Visibid: A learning model for early discovery and real-time prediction of severe clinical events using vital signs as big data. Computer Networks, 113, 244–257.CrossRef
72.
go back to reference Priyadarshini, R., Barik, R. K., & Dubey, H. (2018). DeepFog: Fog computing-based deep neural architecture for prediction of stress types, diabetes and hypertension attacks. Computation, 6(62), 1–25. Priyadarshini, R., Barik, R. K., & Dubey, H. (2018). DeepFog: Fog computing-based deep neural architecture for prediction of stress types, diabetes and hypertension attacks. Computation, 6(62), 1–25.
73.
go back to reference Verma, P., & Sood, S. K. (2017). Cloud-centric IoT based disease diagnosis healthcare framework. Journal of Parallel and Distributed Computing, 17, 1–19. Verma, P., & Sood, S. K. (2017). Cloud-centric IoT based disease diagnosis healthcare framework. Journal of Parallel and Distributed Computing, 17, 1–19.
Metadata
Title
Fog-IoT Environment in Smart Healthcare: A Case Study for Student Stress Monitoring
Authors
Tawseef Ayoub Shaikh
Rashid Ali
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-46197-3_9