Skip to main content

2021 | OriginalPaper | Buchkapitel

9. Fog-IoT Environment in Smart Healthcare: A Case Study for Student Stress Monitoring

verfasst von : Tawseef Ayoub Shaikh, Rashid Ali

Erschienen in: Fog Computing for Healthcare 4.0 Environments

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fog computing disseminates computing system which incorporates the cloud computing model to fully support the vision of internet of things (IoT). In the course of the most recent couple of years, the internet of things (IoT) opens the portal to developments that encourage communication among things as well as among people known as the man to machine (M2M) interface. Concentrating on medicinal services space, IoT devices, for example, therapeutic sensors, visual sensors, cameras, as well as remote sensor systems, are driving the developmental pattern. Toward this way, the part anticipates strengthening the amalgamation of fog computing in the medicinal services area. Convinced by the equivalent creative methods, our work features the latest IoT-aware student-centered stress management system for student stress indexing in a specific context. The work proposes to utilize the temporal dynamic Bayesian network (TDBN) model to depict the event of stress as conventional or sporadic by readings through physiological means congregated from medicinal devices at the fog layer. Constructed from four parameters, especially leaf node confirmations, outstanding tasks at hand, context, and understudy well-being quality are employed for the stress computation, and decisions are made well into the shape of a warning generator equipment with provision of moment-sensitive information to caregivers or respondents. Experimentation is aimed on both fog and cloud layers on stress-related datasets that illustrate the usefulness and accuracy of the TDBN model in our proposed system. The final experiments bear witness that the BBN classifier overweighed the group by attaining an accuracy value of 95.5% and specificity of 97.3%, whereas J48, Random forest, and SVM have accomplished an exactness of 85.2%, 87.9%, and 90.8%, separately. However, if sensitivity and f-measure would occur, the BBN classifier beats other classifier models individually with 95.5% and 92.9% values for the same. Also, we evaluated our proposed method with seven states of the artworks, and again, our method leads the list in terms of its promised performance. The work also offers a gentle touch in the literature review form on the recent novel techniques and methods, including deep learning for complex heterogeneous healthcare sensor data, which act as a supporting hand for fog computing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Adams, F. (2017). OpenFog reference architecture for fog computing. Retrieved from https://knect365.com/. [Online]. Cloud-enterprise-tech/article/0fa40de2-6596-4060-901d-8bdddf167cfe/openFog-referencearchitecture-for-Fog-computing. Adams, F. (2017). OpenFog reference architecture for fog computing. Retrieved from https://​knect365.​com/​. [Online]. Cloud-enterprise-tech/article/0fa40de2-6596-4060-901d-8bdddf167cfe/openFog-referencearchitecture-for-Fog-computing.
3.
Zurück zum Zitat Tanwar, S., Vora, J., Kanriya, S., Tyagi, S., Kumar, N., Sharma, V., et al. (2019). Influence of monitoring: Fog and Edge computing. IEEE Consumer Electronics Magazine, 9(1), 88–94.CrossRef Tanwar, S., Vora, J., Kanriya, S., Tyagi, S., Kumar, N., Sharma, V., et al. (2019). Influence of monitoring: Fog and Edge computing. IEEE Consumer Electronics Magazine, 9(1), 88–94.CrossRef
4.
Zurück zum Zitat Prasad, V. K., Bhavsar, M., & Tanwar, S. (2019). Influence of monitoring: Fog and Edge Computing. Scalable Computing: Practice and Experience, 20(2), 365–376. Prasad, V. K., Bhavsar, M., & Tanwar, S. (2019). Influence of monitoring: Fog and Edge Computing. Scalable Computing: Practice and Experience, 20(2), 365–376.
5.
Zurück zum Zitat Kumari, A., Tanwar, S., Tyagi, S., Kumar, N., Parizi, R., & Choo, K. K. R. (2019). Fog data analytics: A taxonomy and process model. Journal of Network and Computer Applications, 128, 90–104.CrossRef Kumari, A., Tanwar, S., Tyagi, S., Kumar, N., Parizi, R., & Choo, K. K. R. (2019). Fog data analytics: A taxonomy and process model. Journal of Network and Computer Applications, 128, 90–104.CrossRef
6.
Zurück zum Zitat Magen, B., & Numhauser, J. (2012). Fog Computing introduction to a New Cloud Evolution. Escrituras silenciadas: Paisaje como historiografía (pp. 111–126). Spain: University of Alcala. Magen, B., & Numhauser, J. (2012). Fog Computing introduction to a New Cloud Evolution. Escrituras silenciadas: Paisaje como historiografía (pp. 111–126). Spain: University of Alcala.
7.
Zurück zum Zitat Tanwar, S., Vora, J., Kaneriya, S., & Tyagi, S. (2017). Fog based enhanced safety management system for miners. In 3rd International Conference on Advances in Computing, Communication & Automation (ICACCA) 2017 (pp. 1–6). Dehradhun: Tula Institute. Tanwar, S., Vora, J., Kaneriya, S., & Tyagi, S. (2017). Fog based enhanced safety management system for miners. In 3rd International Conference on Advances in Computing, Communication & Automation (ICACCA) 2017 (pp. 1–6). Dehradhun: Tula Institute.
8.
Zurück zum Zitat Vora, J., Tanwar, S., Tyagi, S., Kumar, N., & Rodrigues, J. P. C. (2019). HRIDaaY: Ballistocardiogram-based heart rate monitoring using fog computing. In IEEE Global Communications Conference (GLOBECOM) 2019, Hawaii, USA (pp. 1–6). Vora, J., Tanwar, S., Tyagi, S., Kumar, N., & Rodrigues, J. P. C. (2019). HRIDaaY: Ballistocardiogram-based heart rate monitoring using fog computing. In IEEE Global Communications Conference (GLOBECOM) 2019, Hawaii, USA (pp. 1–6).
9.
Zurück zum Zitat Kumari, A., Tanwar, S., Tyagi, S., Kumar, N., & Rodrigues, J. (2019). Fog computing for smart grid systems in 5G environment: Challenges and solutions. IEEE Wireless Communications Magazine, 26(3), 47–53.CrossRef Kumari, A., Tanwar, S., Tyagi, S., Kumar, N., & Rodrigues, J. (2019). Fog computing for smart grid systems in 5G environment: Challenges and solutions. IEEE Wireless Communications Magazine, 26(3), 47–53.CrossRef
10.
Zurück zum Zitat Vora, J., Kanriya, S., Tanwar, S., Tyagi, S., Kumar, N., & Obaidat, M. S. (2019). TILAA: Tactile internet-based ambient assistant living in fog environment. Future Generation Computer Systems, 98, 635–649.CrossRef Vora, J., Kanriya, S., Tanwar, S., Tyagi, S., Kumar, N., & Obaidat, M. S. (2019). TILAA: Tactile internet-based ambient assistant living in fog environment. Future Generation Computer Systems, 98, 635–649.CrossRef
11.
Zurück zum Zitat Tanwar, S., Tyagi, S., & Kumar, S. (2017). The role of internet of things and smart grid for the development of a smart city. Intelligent Communication and Computational Technologies, 19, 23–33.CrossRef Tanwar, S., Tyagi, S., & Kumar, S. (2017). The role of internet of things and smart grid for the development of a smart city. Intelligent Communication and Computational Technologies, 19, 23–33.CrossRef
12.
Zurück zum Zitat Tanwar, S., Patel, P., Patel, K., Tyagi, S., Kumar, N., & Obaidat, M. S. (2017). An advanced Internet of Thing based security alert system for smart home. In International Conference on Computer, Information and Telecommunication Systems (IEEE CITS), 2017, Dalian University, China (pp. 25–29). Tanwar, S., Patel, P., Patel, K., Tyagi, S., Kumar, N., & Obaidat, M. S. (2017). An advanced Internet of Thing based security alert system for smart home. In International Conference on Computer, Information and Telecommunication Systems (IEEE CITS), 2017, Dalian University, China (pp. 25–29).
13.
Zurück zum Zitat Vora, J., Tanwar, S., Tyagi, S., Kumar, N., & Rodrigues, J. P. C. (2017). FAAL: Fog computing-based patient monitoring system for ambient assisted living. In IEEE 19th International conference on e-health networking, applications and services (Healthcom), Dalian University, China (pp. 1–6). Vora, J., Tanwar, S., Tyagi, S., Kumar, N., & Rodrigues, J. P. C. (2017). FAAL: Fog computing-based patient monitoring system for ambient assisted living. In IEEE 19th International conference on e-health networking, applications and services (Healthcom), Dalian University, China (pp. 1–6).
15.
Zurück zum Zitat Patel, D., Narmawala, Z., Tanwar, S., & Singh, P. K. (2018). A systematic review on scheduling public transport using IoT as tool. Smart innovations in communication and computational sciences. Adv. Intell. Syst. Comput., 670, 39–48. Patel, D., Narmawala, Z., Tanwar, S., & Singh, P. K. (2018). A systematic review on scheduling public transport using IoT as tool. Smart innovations in communication and computational sciences. Adv. Intell. Syst. Comput., 670, 39–48.
16.
Zurück zum Zitat Mistry, I., Tanwar, S., Tyagi, S., & Kumar, N. (2020). Blockchain for 5G-enabled IoT for industrial automation: A systematic review, solutions, and challenges. Mechanical Systems and Signal Processing, 135, 1–19.CrossRef Mistry, I., Tanwar, S., Tyagi, S., & Kumar, N. (2020). Blockchain for 5G-enabled IoT for industrial automation: A systematic review, solutions, and challenges. Mechanical Systems and Signal Processing, 135, 1–19.CrossRef
17.
Zurück zum Zitat Mittal, M., Tanwar, S., Agarwal, B., & Goyal, L. M. (2019). Energy conservation for IoT devices: Concepts, paradigms and solutions. In Studies in systems, decision and control (pp. 1–356). Mittal, M., Tanwar, S., Agarwal, B., & Goyal, L. M. (2019). Energy conservation for IoT devices: Concepts, paradigms and solutions. In Studies in systems, decision and control (pp. 1–356).
18.
Zurück zum Zitat Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communication Surveys and Tutorials, 17(4), 2347–2376.CrossRef Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communication Surveys and Tutorials, 17(4), 2347–2376.CrossRef
19.
Zurück zum Zitat Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the internet of things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing (MCC 12), New York (pp. 13–16).CrossRef Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the internet of things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing (MCC 12), New York (pp. 13–16).CrossRef
20.
Zurück zum Zitat Kushalnagar, N., Montenegro, G., & Schumacher, C. (2019). Ipv6 over low-power wireless personal area networks (6LoWPANs): Overview, assumptions, problem statement, and goals, [Online]. Retrieved September 11, 2019, from https://tools.ietf.org/html/rfc4919. Kushalnagar, N., Montenegro, G., & Schumacher, C. (2019). Ipv6 over low-power wireless personal area networks (6LoWPANs): Overview, assumptions, problem statement, and goals, [Online]. Retrieved September 11, 2019, from https://​tools.​ietf.​org/​html/​rfc4919.
21.
Zurück zum Zitat Wang, Y. P. E., Lin, X., Adhikary, A., Grovlen, A., Sui, Y., Blankenship, Y. W., et al. (2016). A primer on 3GPPnarrowband internet of things (NB-IoT). CoRR, abs/1606.04171. Wang, Y. P. E., Lin, X., Adhikary, A., Grovlen, A., Sui, Y., Blankenship, Y. W., et al. (2016). A primer on 3GPPnarrowband internet of things (NB-IoT). CoRR, abs/1606.04171.
24.
Zurück zum Zitat Negash, B., Rahmani, A. M., Westerlund, T., Liljeberg, P., & Tenhunen, H. (2016). LISA 2.0: Lightweight internet of things service bus architecture using node centric networking. Journal of Ambient Intelligence and Humanized Computing, 7(3), 305–319.CrossRef Negash, B., Rahmani, A. M., Westerlund, T., Liljeberg, P., & Tenhunen, H. (2016). LISA 2.0: Lightweight internet of things service bus architecture using node centric networking. Journal of Ambient Intelligence and Humanized Computing, 7(3), 305–319.CrossRef
26.
Zurück zum Zitat Tanwar, S., Tyagi, S., & Kumar, N. (2019). Multimedia Big Data Computing for IoT applications: Concepts, paradigms and solutions, intelligent systems reference library (pp. 1–425). Berlin: Springer. Tanwar, S., Tyagi, S., & Kumar, N. (2019). Multimedia Big Data Computing for IoT applications: Concepts, paradigms and solutions, intelligent systems reference library (pp. 1–425). Berlin: Springer.
27.
Zurück zum Zitat Vora, J., Tanwar, S., Tyagi, S., Kumar, N., & Rodrigues, J. J. P. C. (2017). Home-based exercise system for patients using IoT enabled smart speaker. In Proceedings of the IEEE 19 th international conference on e-health networking, applications and services (Healthcom) (pp. 1–6). Vora, J., Tanwar, S., Tyagi, S., Kumar, N., & Rodrigues, J. J. P. C. (2017). Home-based exercise system for patients using IoT enabled smart speaker. In Proceedings of the IEEE 19 th international conference on e-health networking, applications and services (Healthcom) (pp. 1–6).
28.
Zurück zum Zitat Peralta, G., Iglesias-Urkia, M., Barcelo, M., Gomez, R., Moran, A., & Bilbao, J. (2017). Fog computing based efficient iot scheme for the industry 4.0. In Proceedings of the IEEE international workshop of electronics, control, measurement, signals and their application to mechatronics (ECMSM) (pp. 1–6). Peralta, G., Iglesias-Urkia, M., Barcelo, M., Gomez, R., Moran, A., & Bilbao, J. (2017). Fog computing based efficient iot scheme for the industry 4.0. In Proceedings of the IEEE international workshop of electronics, control, measurement, signals and their application to mechatronics (ECMSM) (pp. 1–6).
29.
Zurück zum Zitat Akrivopoulos, O., Chatzigiannakis, I., Tselios, C., & Antoniou, A. (2017). On the deployment of healthcare applications over fog computing infrastructure. In Proceedings of the IEEE 41 st annual computer software and applications conference (COMPSAC) (pp. 288–293). Akrivopoulos, O., Chatzigiannakis, I., Tselios, C., & Antoniou, A. (2017). On the deployment of healthcare applications over fog computing infrastructure. In Proceedings of the IEEE 41 st annual computer software and applications conference (COMPSAC) (pp. 288–293).
30.
Zurück zum Zitat He, D., Kumar, N., Wang, H., Wang, L., Choo, K. K. R., & Vinel, A. (2016). A provably-secure cross-domain handshake scheme with symptoms-matching for mobile health- care social network. In Proceedings of the IEEE transactions on dependable and secure computing (p. 1). He, D., Kumar, N., Wang, H., Wang, L., Choo, K. K. R., & Vinel, A. (2016). A provably-secure cross-domain handshake scheme with symptoms-matching for mobile health- care social network. In Proceedings of the IEEE transactions on dependable and secure computing (p. 1).
31.
Zurück zum Zitat Elmisery, A. M., Rho, S., & Botvich, D. (2016). A fog based middleware for automated compliance with OECD privacy principles in internet of healthcare things. IEEE Access, 4, 8418–8441.CrossRef Elmisery, A. M., Rho, S., & Botvich, D. (2016). A fog based middleware for automated compliance with OECD privacy principles in internet of healthcare things. IEEE Access, 4, 8418–8441.CrossRef
32.
Zurück zum Zitat Chakraborty, S., Bhowmick, S., Talaga, P., & Agrawal, D. P. (2016). Fog networks inhealthcare application. In Proceedingsof the13th internationalconference on mobile ad hoc and sensor systems (MASS) (pp. 386–387). Chakraborty, S., Bhowmick, S., Talaga, P., & Agrawal, D. P. (2016). Fog networks inhealthcare application. In Proceedingsof the13th internationalconference on mobile ad hoc and sensor systems (MASS) (pp. 386–387).
33.
Zurück zum Zitat Tasic, J., Gusev, M., & Ristov, S. (2016). A medical cloud. In Proceedings of the 9th international convention on information and communication technology, electronics and microelectronics (MIPRO) (pp. 400–405). Tasic, J., Gusev, M., & Ristov, S. (2016). A medical cloud. In Proceedings of the 9th international convention on information and communication technology, electronics and microelectronics (MIPRO) (pp. 400–405).
34.
Zurück zum Zitat Ramalho, F., Neto, A., Santos, K., Filho, J. B., & Agoulmine, N. (2015). Enhancing ehealth smart applications: A fog-enabled approach. In Proceedings of the 17th international conference on E-health networking, application & services (HealthCom) (pp. 323–328). Ramalho, F., Neto, A., Santos, K., Filho, J. B., & Agoulmine, N. (2015). Enhancing ehealth smart applications: A fog-enabled approach. In Proceedings of the 17th international conference on E-health networking, application & services (HealthCom) (pp. 323–328).
35.
Zurück zum Zitat Kumari, A., Tanwar, S., Tyagi, S., & Kumar, N. (2018). Fog computing for Healthcare 4.0 environment: Opportunities and challenges. Computers and Electrical Engineering, 72, 1–13.CrossRef Kumari, A., Tanwar, S., Tyagi, S., & Kumar, N. (2018). Fog computing for Healthcare 4.0 environment: Opportunities and challenges. Computers and Electrical Engineering, 72, 1–13.CrossRef
36.
Zurück zum Zitat Rahmani, A. M., Sören Preden, P. L. J., & Jantsch, A. (2018). Fog computing in the Internet of Things, intelligence at the Edge., ISBN 978-3-319-57638-1 (pp. 95–110). Berlin: Springer. Rahmani, A. M., Sören Preden, P. L. J., & Jantsch, A. (2018). Fog computing in the Internet of Things, intelligence at the Edge., ISBN 978-3-319-57638-1 (pp. 95–110). Berlin: Springer.
37.
Zurück zum Zitat Morgan, R., Williams, F., & Wright, M. (1997). An early warning scoring system for detecting developing critical illness. Clinical Intensive Care, 8(2), 100–114. Morgan, R., Williams, F., & Wright, M. (1997). An early warning scoring system for detecting developing critical illness. Clinical Intensive Care, 8(2), 100–114.
38.
Zurück zum Zitat Georgaka, D., Mparmparousi, M., & Vitos, M. (2012). Early warning systems. Hospital Chronicles, 7(1), 37–43. Georgaka, D., Mparmparousi, M., & Vitos, M. (2012). Early warning systems. Hospital Chronicles, 7(1), 37–43.
39.
Zurück zum Zitat Anzanpour, A., Rahmani, A. M., Liljeberg, P., & Tenhunen, H. (2015). Context-aware early warning system for in-home healthcare using internet-of-things. In Proceedings of the International Conference on IoT Technologies for HealthCare (HealthyIoT) 2015. Berlin: Springer. Anzanpour, A., Rahmani, A. M., Liljeberg, P., & Tenhunen, H. (2015). Context-aware early warning system for in-home healthcare using internet-of-things. In Proceedings of the International Conference on IoT Technologies for HealthCare (HealthyIoT) 2015. Berlin: Springer.
40.
Zurück zum Zitat Gupta, R., Tanwar, S., Tyagi, S., Kumar, N., Obaidat, M. S., & Sadoun, B. (2019). HaBiTs: Blockchain-based telesurgery framework for Healthcare 4.0. In International conference on computer, information and telecommunication systems (IEEE CITS) 2019, Beijing, China (pp. 6–10). Gupta, R., Tanwar, S., Tyagi, S., Kumar, N., Obaidat, M. S., & Sadoun, B. (2019). HaBiTs: Blockchain-based telesurgery framework for Healthcare 4.0. In International conference on computer, information and telecommunication systems (IEEE CITS) 2019, Beijing, China (pp. 6–10).
42.
Zurück zum Zitat Igual, R., Medrano, C., & Plaza, I. (2013). Challenges, issues and trends in fall detection systems. Biomedical Engineering Online, 12(1), 66–77.CrossRef Igual, R., Medrano, C., & Plaza, I. (2013). Challenges, issues and trends in fall detection systems. Biomedical Engineering Online, 12(1), 66–77.CrossRef
43.
Zurück zum Zitat Tessier, A., Beaulieu, M. D., Mcginn, C., & Latulippe, R. (2016). Effectiveness of reablement: A systematic review. Health Policy, 11(4), 49–59. Tessier, A., Beaulieu, M. D., Mcginn, C., & Latulippe, R. (2016). Effectiveness of reablement: A systematic review. Health Policy, 11(4), 49–59.
44.
Zurück zum Zitat Billinger, S., Arena, R., & Bernhardt, J. (2014). Physical activity and exercise recommendations for stroke survivors. Stroke, 45(8), 2532–2553.CrossRef Billinger, S., Arena, R., & Bernhardt, J. (2014). Physical activity and exercise recommendations for stroke survivors. Stroke, 45(8), 2532–2553.CrossRef
45.
Zurück zum Zitat Jovanov, E., Lords, A. D., Raskovic, D., Cox, P. G., Adhami, R., & Andrasik, F. (2003). Stress monitoring using a distributed wireless intelligent sensor system. IEEE Engineering in Medicine and Biology, 22(3), 49–55.CrossRef Jovanov, E., Lords, A. D., Raskovic, D., Cox, P. G., Adhami, R., & Andrasik, F. (2003). Stress monitoring using a distributed wireless intelligent sensor system. IEEE Engineering in Medicine and Biology, 22(3), 49–55.CrossRef
46.
Zurück zum Zitat Suzuki, S., Matsui, T., Imuta, H., Uenoyama, M., Yura, H., Ishihara, M., et al. (2008). A novel autonomic activation measurement method for stress monitoring: Non-contact measurement of heart rate variability using a compact microwave radar. Medical & Biological Engineering & Computing, 46(7), 709–714.CrossRef Suzuki, S., Matsui, T., Imuta, H., Uenoyama, M., Yura, H., Ishihara, M., et al. (2008). A novel autonomic activation measurement method for stress monitoring: Non-contact measurement of heart rate variability using a compact microwave radar. Medical & Biological Engineering & Computing, 46(7), 709–714.CrossRef
47.
Zurück zum Zitat Ayzenberg, Y., Rivera, J. H., & Picard, R. (2012). FEEL: Frequent EDA and event logging -a mobile social interaction stress monitoring system. In CHI12 extended abstracts on human factors in computing systems (pp. 2357–2362).CrossRef Ayzenberg, Y., Rivera, J. H., & Picard, R. (2012). FEEL: Frequent EDA and event logging -a mobile social interaction stress monitoring system. In CHI12 extended abstracts on human factors in computing systems (pp. 2357–2362).CrossRef
48.
Zurück zum Zitat Shen, Y. H., Zheng, J. W., Zhang, Z. B., & Li, C. M. (2012). Design and implementation of a wearable, multiparameter physiological monitoring system for the study of human heat stress, cold stress, and thermal comfort. Instrumentation Science and Technology, 40(4), 290–304.CrossRef Shen, Y. H., Zheng, J. W., Zhang, Z. B., & Li, C. M. (2012). Design and implementation of a wearable, multiparameter physiological monitoring system for the study of human heat stress, cold stress, and thermal comfort. Instrumentation Science and Technology, 40(4), 290–304.CrossRef
49.
Zurück zum Zitat Tartarisco, G., Baldus, G., Corda, D., Raso, R., Arnao, A., Ferro, M., et al. (2012). Personal health system architecture for stress monitoring and support to clinical decisions. Computer Communications, 35(11), 1296–1305.CrossRef Tartarisco, G., Baldus, G., Corda, D., Raso, R., Arnao, A., Ferro, M., et al. (2012). Personal health system architecture for stress monitoring and support to clinical decisions. Computer Communications, 35(11), 1296–1305.CrossRef
50.
Zurück zum Zitat Yoon, S., Sim, J. K., & Cho, Y. H. (2014). On-chip flexible multi-layer sensors for human stress monitoring. In IEEE conference sensors (pp. 851–854). Yoon, S., Sim, J. K., & Cho, Y. H. (2014). On-chip flexible multi-layer sensors for human stress monitoring. In IEEE conference sensors (pp. 851–854).
51.
Zurück zum Zitat Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J., & Leung, K. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications, 20(6), 91–98.CrossRef Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J., & Leung, K. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications, 20(6), 91–98.CrossRef
52.
Zurück zum Zitat Zhou, J., Cao, Z., Dong, X., Xiong, N., & Vasilakos, A. V. (2014). 4S: A secure and privacy-preserving key management scheme for cloudassisted wireless body area network in m-healthcare social networks. Information Sciences, 331, 255–276. Zhou, J., Cao, Z., Dong, X., Xiong, N., & Vasilakos, A. V. (2014). 4S: A secure and privacy-preserving key management scheme for cloudassisted wireless body area network in m-healthcare social networks. Information Sciences, 331, 255–276.
53.
Zurück zum Zitat Tsai, C. W., Lai, C. F., & Vasilakos, A. V. (2014). Future internet of things open issues and challenges. Wireless Networks, 20(8), 2201–2217.CrossRef Tsai, C. W., Lai, C. F., & Vasilakos, A. V. (2014). Future internet of things open issues and challenges. Wireless Networks, 20(8), 2201–2217.CrossRef
54.
Zurück zum Zitat Fortino, G., Di Fatta, G., Pathan, M., & Vasilakos, A. V. (2014). Cloudassisted body area networks: State-of-the-art and future challenges. Wireless Networks, 20(7), 1925–1938.CrossRef Fortino, G., Di Fatta, G., Pathan, M., & Vasilakos, A. V. (2014). Cloudassisted body area networks: State-of-the-art and future challenges. Wireless Networks, 20(7), 1925–1938.CrossRef
55.
Zurück zum Zitat Chouvarda, I. G., Goulis, D. G., Lambrinoudaki, I., & Maglaveras, N. (2015). Connected health and integrated care: Toward new models for chronic disease management. Maturitas, 82(1), 22–27.CrossRef Chouvarda, I. G., Goulis, D. G., Lambrinoudaki, I., & Maglaveras, N. (2015). Connected health and integrated care: Toward new models for chronic disease management. Maturitas, 82(1), 22–27.CrossRef
56.
Zurück zum Zitat Qin, Y., Sheng, Q. Z., Falkner, N. J., Dustdar, S., Wang, H., & Vasilakos, A. V. (2016). When things matter: A survey on data-centric internet of things. Journal of Network and Computer Applications, 64, 137–153.CrossRef Qin, Y., Sheng, Q. Z., Falkner, N. J., Dustdar, S., Wang, H., & Vasilakos, A. V. (2016). When things matter: A survey on data-centric internet of things. Journal of Network and Computer Applications, 64, 137–153.CrossRef
57.
Zurück zum Zitat Zhang, D., He, Z., Qian, Y., Wan, J., Li, D., & Zhao, S. (2016). Revisiting unknown RFID tag identification in large-scale internet of things. IEEE Wireless Communications, 23(5), 24–29.CrossRef Zhang, D., He, Z., Qian, Y., Wan, J., Li, D., & Zhao, S. (2016). Revisiting unknown RFID tag identification in large-scale internet of things. IEEE Wireless Communications, 23(5), 24–29.CrossRef
58.
Zurück zum Zitat Amadeo, M., Campolo, C., Quevedo, J., Corujo, D., Molinaro, A., Iera, A., et al. (2016). Information-centric networking for the internet of things: Challenges and opportunities. IEEE Network, 30(2), 92–100.CrossRef Amadeo, M., Campolo, C., Quevedo, J., Corujo, D., Molinaro, A., Iera, A., et al. (2016). Information-centric networking for the internet of things: Challenges and opportunities. IEEE Network, 30(2), 92–100.CrossRef
59.
Zurück zum Zitat Wan, J., Tang, S., Shu, Z., Li, D., Wang, S., Imran, M., et al. (2016). Software-defined industrial internet of things in the context of industry 4.0. IEEE Sensors Journal, 16(20), 7373–7380. Wan, J., Tang, S., Shu, Z., Li, D., Wang, S., Imran, M., et al. (2016). Software-defined industrial internet of things in the context of industry 4.0. IEEE Sensors Journal, 16(20), 7373–7380.
60.
Zurück zum Zitat Azimi, I., Rahmani, A. M., Liljeberg, P., & Tenhunen, H. (2017). Internet of things for remote elderly monitoring: A study from user-centered perspective. Journal of Ambient Intelligence and Humanized Computing, 8(2), 273–289.CrossRef Azimi, I., Rahmani, A. M., Liljeberg, P., & Tenhunen, H. (2017). Internet of things for remote elderly monitoring: A study from user-centered perspective. Journal of Ambient Intelligence and Humanized Computing, 8(2), 273–289.CrossRef
61.
Zurück zum Zitat Ghanavati, S., Abawajy, J. H., Izadi, D., & Alelaiwi, A. A. (2017). Cloudassisted IoT-based health status monitoring framework. Cluster Computing, 20(2), 1843–1853.CrossRef Ghanavati, S., Abawajy, J. H., Izadi, D., & Alelaiwi, A. A. (2017). Cloudassisted IoT-based health status monitoring framework. Cluster Computing, 20(2), 1843–1853.CrossRef
62.
Zurück zum Zitat Yang, Z., Zhou, Q., Lei, L., Zheng, K., & Xiang, W. (2016). An IoT-cloud based wearable ECG monitoring system for smart healthcare. Journal of Medical Systems, 40(12), 286–297.CrossRef Yang, Z., Zhou, Q., Lei, L., Zheng, K., & Xiang, W. (2016). An IoT-cloud based wearable ECG monitoring system for smart healthcare. Journal of Medical Systems, 40(12), 286–297.CrossRef
63.
Zurück zum Zitat Wu, T., Wu, F., Redoute, J. M., & Yuce, M. R. (2017). An autonomous wireless body area network implementation towards IoT connected healthcare applications. IEEE Access, 5, 11413–11422.CrossRef Wu, T., Wu, F., Redoute, J. M., & Yuce, M. R. (2017). An autonomous wireless body area network implementation towards IoT connected healthcare applications. IEEE Access, 5, 11413–11422.CrossRef
64.
Zurück zum Zitat Ahmad, M., Amin, M. B., Hussain, S., Kang, B. H., Cheong, T., & Lee, S. (2016). Health fog: A novel framework for health and wellness applications. The Journal of Supercomputing, 72(10), 3677–3695.CrossRef Ahmad, M., Amin, M. B., Hussain, S., Kang, B. H., Cheong, T., & Lee, S. (2016). Health fog: A novel framework for health and wellness applications. The Journal of Supercomputing, 72(10), 3677–3695.CrossRef
65.
Zurück zum Zitat Karumbaya, A., & Satheesh, G. (2015). Iot empowered real time environment monitoring system. International Journal of Computers and Applications, 129(5), 30–32.CrossRef Karumbaya, A., & Satheesh, G. (2015). Iot empowered real time environment monitoring system. International Journal of Computers and Applications, 129(5), 30–32.CrossRef
66.
Zurück zum Zitat Zhu, Z., & Ji, Q. (2005). Robust real-time eye detection and tracking under variable lighting conditions and various face orientations. Computer Vision and Image Understanding, 98(1), 124–154.CrossRef Zhu, Z., & Ji, Q. (2005). Robust real-time eye detection and tracking under variable lighting conditions and various face orientations. Computer Vision and Image Understanding, 98(1), 124–154.CrossRef
67.
Zurück zum Zitat Koldijk, S., Sappelli, M., Verberne, S., Neerincx, M. A., & Kraaij, W. (2014). The SWELL knowledge work dataset for stress and user modeling research. In 16th International Conference on multimodal interaction (pp. 291–298). Koldijk, S., Sappelli, M., Verberne, S., Neerincx, M. A., & Kraaij, W. (2014). The SWELL knowledge work dataset for stress and user modeling research. In 16th International Conference on multimodal interaction (pp. 291–298).
68.
Zurück zum Zitat Laurıa, E. J., & Duchessi, P. J. (2006). A Bayesian belief network for IT implementation decision support. Decision Support Systems, 42(3), 1573–1588.CrossRef Laurıa, E. J., & Duchessi, P. J. (2006). A Bayesian belief network for IT implementation decision support. Decision Support Systems, 42(3), 1573–1588.CrossRef
69.
Zurück zum Zitat Sacchi, L., Larizza, C., Combi, C., & Bellazzi, R. (2007). Data mining with temporal abstractions: Learning rules from time series. Data Mining and Knowledge Discovery, 15(2), 217–247.MathSciNetCrossRef Sacchi, L., Larizza, C., Combi, C., & Bellazzi, R. (2007). Data mining with temporal abstractions: Learning rules from time series. Data Mining and Knowledge Discovery, 15(2), 217–247.MathSciNetCrossRef
70.
Zurück zum Zitat Verma, P., & Sood, S. K. (2018). A comprehensive framework for student stress monitoring in fog-cloud IoT environment: M-health perspective. Medical and Biological Engineering and Computing, 57, 231–244.CrossRef Verma, P., & Sood, S. K. (2018). A comprehensive framework for student stress monitoring in fog-cloud IoT environment: M-health perspective. Medical and Biological Engineering and Computing, 57, 231–244.CrossRef
71.
Zurück zum Zitat Forkan, A. R. M., Khalil, I., & Atiquzzaman, M. (2017). Visibid: A learning model for early discovery and real-time prediction of severe clinical events using vital signs as big data. Computer Networks, 113, 244–257.CrossRef Forkan, A. R. M., Khalil, I., & Atiquzzaman, M. (2017). Visibid: A learning model for early discovery and real-time prediction of severe clinical events using vital signs as big data. Computer Networks, 113, 244–257.CrossRef
72.
Zurück zum Zitat Priyadarshini, R., Barik, R. K., & Dubey, H. (2018). DeepFog: Fog computing-based deep neural architecture for prediction of stress types, diabetes and hypertension attacks. Computation, 6(62), 1–25. Priyadarshini, R., Barik, R. K., & Dubey, H. (2018). DeepFog: Fog computing-based deep neural architecture for prediction of stress types, diabetes and hypertension attacks. Computation, 6(62), 1–25.
73.
Zurück zum Zitat Verma, P., & Sood, S. K. (2017). Cloud-centric IoT based disease diagnosis healthcare framework. Journal of Parallel and Distributed Computing, 17, 1–19. Verma, P., & Sood, S. K. (2017). Cloud-centric IoT based disease diagnosis healthcare framework. Journal of Parallel and Distributed Computing, 17, 1–19.
Metadaten
Titel
Fog-IoT Environment in Smart Healthcare: A Case Study for Student Stress Monitoring
verfasst von
Tawseef Ayoub Shaikh
Rashid Ali
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-46197-3_9