Skip to main content
Top
Published in: Metals and Materials International 1/2019

07-07-2018

Formation and Magnetic Properties of Nanocomposites in Rapidly Solidified Fe42Ni41.7C7Si4.5B3.9P0.9 (at%) Ribbons

Authors: Jiyong Hwang, Hoseong Lee, Seonghoon Yi

Published in: Metals and Materials International | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel nanocomposite structure comprising ~ 20-nm face-centered cubic Fe50Ni50 nanocrystals embedded within an amorphous matrix has been developed directly from a liquid alloy of Fe42Ni41.7C7Si4.5B3.9P0.9 (at%) through melt-spinning. Grain growth kinetics was significantly limited by the amorphous phase formed between nanocrystals. Glass forming elements rejected from nanocrystals stabilize the amorphous phase restricting further growth of nanocrystals. The nanocomposite ribbon exhibits excellent soft magnetic properties compared to those of the conventional micron-scale microstructured Fe50Ni50 alloy known as 50 Permalloy. When the as-melt spun ribbon was heated to 600 °C, two exothermic events occurred. The formation of metastable C-rich Fe3Ni and Si- and P-rich FeNi phases at low temperatures was confirmed by detailed transmission electron microscopy analysis. The hard magnetic behaviors of these metastable phases were estimated based on the hysteresis curve analysis results obtained from a ribbon heated to 600 °C. Through proper addition of glass-forming elements to FeNi-based alloys, nanocomposites with superior soft magnetic properties were effectively fabricated for massive practical soft magnetic applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R.C. O’Handley, Modern Magnetic Materials: Principles and Applications (Wiley, New York, 1999) R.C. O’Handley, Modern Magnetic Materials: Principles and Applications (Wiley, New York, 1999)
2.
go back to reference B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley, Hoboken, 2008)CrossRef B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley, Hoboken, 2008)CrossRef
3.
go back to reference A.A. Chlenova, A.A. Moiseev, M.S. Derevyanko, A.V. Semirov, V.N. Lepalovsky, G.V. Kurlyandskaya, Permalloy-based thin film structures: magnetic properties and the giant magnetoimpedance effect in the temperature range important for biomedical applications. Sensors 17, 1900 (2017)CrossRef A.A. Chlenova, A.A. Moiseev, M.S. Derevyanko, A.V. Semirov, V.N. Lepalovsky, G.V. Kurlyandskaya, Permalloy-based thin film structures: magnetic properties and the giant magnetoimpedance effect in the temperature range important for biomedical applications. Sensors 17, 1900 (2017)CrossRef
4.
go back to reference W.J. Qiang, Z.Z. Qi, H. Rui, W. Tao, L.F. Shen, Microwave reflection properties of planar anisotropy Fe50Ni50 powder/paraffin composites. Chin. Phys. B 21, 037601 (2012)CrossRef W.J. Qiang, Z.Z. Qi, H. Rui, W. Tao, L.F. Shen, Microwave reflection properties of planar anisotropy Fe50Ni50 powder/paraffin composites. Chin. Phys. B 21, 037601 (2012)CrossRef
5.
go back to reference C. Kuhrt, L. Schultz, Formation and magnetic properties of nanocrystalline mechanically alloyed Fe–Co. J. Appl. Phys. 71, 1896 (1992)CrossRef C. Kuhrt, L. Schultz, Formation and magnetic properties of nanocrystalline mechanically alloyed Fe–Co. J. Appl. Phys. 71, 1896 (1992)CrossRef
6.
go back to reference G. Herzer, Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397–1402 (1990)CrossRef G. Herzer, Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397–1402 (1990)CrossRef
7.
go back to reference D. De, A. Karmakar, M.K. Bhunia, A. Bhaumik, S. Majumdar, S. Giri, Memory effects in superparamagnetic and nanocrystalline Fe50Ni50 alloy. J. Appl. Phys. 111, 033919 (2012)CrossRef D. De, A. Karmakar, M.K. Bhunia, A. Bhaumik, S. Majumdar, S. Giri, Memory effects in superparamagnetic and nanocrystalline Fe50Ni50 alloy. J. Appl. Phys. 111, 033919 (2012)CrossRef
8.
go back to reference D. De, S. Majumdar, S. Giri, Magnetic properties of nanocrystalline Fe0.5Ni0.5 permalloy. AIP Conf. Proc. 1447, 337 (2012)CrossRef D. De, S. Majumdar, S. Giri, Magnetic properties of nanocrystalline Fe0.5Ni0.5 permalloy. AIP Conf. Proc. 1447, 337 (2012)CrossRef
9.
go back to reference M. Baghayeri, B. Maleki, R. Zarghani, Voltammetric behavior of tiopronin on carbon paste electrode modified with nanocrystalline Fe50Ni50 alloys. Mater. Sci. Eng., C 44, 175–182 (2014)CrossRef M. Baghayeri, B. Maleki, R. Zarghani, Voltammetric behavior of tiopronin on carbon paste electrode modified with nanocrystalline Fe50Ni50 alloys. Mater. Sci. Eng., C 44, 175–182 (2014)CrossRef
10.
go back to reference A. Guittoum, A. Layadi, A. Bourzami, H. Tafat, N. Souami, S. Boutarfaia, D. Lacour, X-ray diffraction, microstructure, Mossbauer and magnetization studies of nanostructured Fe50Ni50 alloy prepared by mechanical alloying. J. Magn. Magn. Mater. 320, 1385–1392 (2008)CrossRef A. Guittoum, A. Layadi, A. Bourzami, H. Tafat, N. Souami, S. Boutarfaia, D. Lacour, X-ray diffraction, microstructure, Mossbauer and magnetization studies of nanostructured Fe50Ni50 alloy prepared by mechanical alloying. J. Magn. Magn. Mater. 320, 1385–1392 (2008)CrossRef
11.
go back to reference R.H. Yu, L. Ren, S. Basu, K.M. Unruh, A.P. Majidi, J.Q. Xiao, Novel soft magnetic composites fabricated by electrodeposition. J. Appl. Phys. 87, 5840 (2000)CrossRef R.H. Yu, L. Ren, S. Basu, K.M. Unruh, A.P. Majidi, J.Q. Xiao, Novel soft magnetic composites fabricated by electrodeposition. J. Appl. Phys. 87, 5840 (2000)CrossRef
12.
go back to reference M. Glezer, S.E. Manaenkov, I.E. Permyakova, N.A. Shurygina, Effect of nanocrystallization on the mechanical behavior of Fe–Ni-based amorphous alloys. Russ. Metall. 2011, 947–955 (2011)CrossRef M. Glezer, S.E. Manaenkov, I.E. Permyakova, N.A. Shurygina, Effect of nanocrystallization on the mechanical behavior of Fe–Ni-based amorphous alloys. Russ. Metall. 2011, 947–955 (2011)CrossRef
13.
go back to reference Y. Adzir, I.I. Yaacob, Nanostructured Fe50Ni50 alloy prepared by mechanical alloying: synthesis and characterization. Mater. Res. Innov. 13, 217–220 (2009)CrossRef Y. Adzir, I.I. Yaacob, Nanostructured Fe50Ni50 alloy prepared by mechanical alloying: synthesis and characterization. Mater. Res. Innov. 13, 217–220 (2009)CrossRef
14.
go back to reference J.J. Suñol, A. González, M.T. Clavaguera-Mora, N. Clavaguera, Mechanically induced thermal changes in amorphous metallic melt-spun alloys. Mater. Lett. 57, 4222–4226 (2003)CrossRef J.J. Suñol, A. González, M.T. Clavaguera-Mora, N. Clavaguera, Mechanically induced thermal changes in amorphous metallic melt-spun alloys. Mater. Lett. 57, 4222–4226 (2003)CrossRef
15.
go back to reference C.-W. Yang, D.B. Williams, J.I. Goldstein, A revision of the Fe–Ni phase diagram at low temperature (< 400°). J. Phase Equilib. 17, 522–531 (1996)CrossRef C.-W. Yang, D.B. Williams, J.I. Goldstein, A revision of the Fe–Ni phase diagram at low temperature (< 400°). J. Phase Equilib. 17, 522–531 (1996)CrossRef
16.
go back to reference T. Pradell, J.J. Suñol, N. Clavaguera, M.T. Clavaguera-Mora, Crystallization behavior of Fe40Ni40SixP20−x (x = 6, 10, 14) amorphous alloys. J. Non Cryst. Solids 276, 113–121 (2000)CrossRef T. Pradell, J.J. Suñol, N. Clavaguera, M.T. Clavaguera-Mora, Crystallization behavior of Fe40Ni40SixP20−x (x = 6, 10, 14) amorphous alloys. J. Non Cryst. Solids 276, 113–121 (2000)CrossRef
17.
go back to reference J.L. Elechiguerra, J. Reyes-Gasga, M.J. Yacaman, The role of twinning in shape evolution of anisotropic noble metal nanostructures. J. Mater. Chem. 16, 3906–3919 (2006)CrossRef J.L. Elechiguerra, J. Reyes-Gasga, M.J. Yacaman, The role of twinning in shape evolution of anisotropic noble metal nanostructures. J. Mater. Chem. 16, 3906–3919 (2006)CrossRef
18.
go back to reference G. Abrosimova, A. Aronin, Amorphous and Nanocrystalline Metallic Alloys (InTech, Rijeka, 2016)CrossRef G. Abrosimova, A. Aronin, Amorphous and Nanocrystalline Metallic Alloys (InTech, Rijeka, 2016)CrossRef
19.
go back to reference M.Y. Gutkin, I.A. Ovid’ko, Physical Mechanics of Deformed Nanostructures, 1st edn. (Yanus, Saint-Petersburg, 2003) M.Y. Gutkin, I.A. Ovid’ko, Physical Mechanics of Deformed Nanostructures, 1st edn. (Yanus, Saint-Petersburg, 2003)
20.
go back to reference N.Y. Pandya, A.D. Mevada, P.N. Gajjar, Lattice dynamical and thermodynamic properties of FeNi3, FeNi and Fe3Ni invar materials. Comput. Mater. Sci. 123, 287–295 (2016)CrossRef N.Y. Pandya, A.D. Mevada, P.N. Gajjar, Lattice dynamical and thermodynamic properties of FeNi3, FeNi and Fe3Ni invar materials. Comput. Mater. Sci. 123, 287–295 (2016)CrossRef
21.
go back to reference Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, Phase stability in the Fe–Ni system: investigation by first-principles calculations and atomistic simulations. Acta Mater. 53, 4029–4041 (2005)CrossRef Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, Phase stability in the Fe–Ni system: investigation by first-principles calculations and atomistic simulations. Acta Mater. 53, 4029–4041 (2005)CrossRef
22.
go back to reference Z. Surowieca, B. Bierska-Piechb, M. Wiertela, M. Budzynski, J. Goworek, Magnetic nanoparticles in MCM-41 type mesoporous silica. Acta Phys. Pol., A 114, 1605–1613 (2008)CrossRef Z. Surowieca, B. Bierska-Piechb, M. Wiertela, M. Budzynski, J. Goworek, Magnetic nanoparticles in MCM-41 type mesoporous silica. Acta Phys. Pol., A 114, 1605–1613 (2008)CrossRef
23.
go back to reference H.N. Frasea, R.D. Shullb, L.-B. Honga, T.A. Stephensa, Z.-Q. Gaoa, B. Fultza, Soft magnetic properties of nanocrystalline Ni3Fe and Fe75Al12.5Ge12.5. Nanostruct. Mater. 11, 987–993 (1999)CrossRef H.N. Frasea, R.D. Shullb, L.-B. Honga, T.A. Stephensa, Z.-Q. Gaoa, B. Fultza, Soft magnetic properties of nanocrystalline Ni3Fe and Fe75Al12.5Ge12.5. Nanostruct. Mater. 11, 987–993 (1999)CrossRef
Metadata
Title
Formation and Magnetic Properties of Nanocomposites in Rapidly Solidified Fe42Ni41.7C7Si4.5B3.9P0.9 (at%) Ribbons
Authors
Jiyong Hwang
Hoseong Lee
Seonghoon Yi
Publication date
07-07-2018
Publisher
The Korean Institute of Metals and Materials
Published in
Metals and Materials International / Issue 1/2019
Print ISSN: 1598-9623
Electronic ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-018-0163-y

Other articles of this Issue 1/2019

Metals and Materials International 1/2019 Go to the issue

Premium Partners