Skip to main content
Top
Published in: Journal of Iron and Steel Research International 9/2023

10-12-2022 | Original Paper

Formation mechanism of interface reaction layer between microporous magnesia refractories and molten steel and its effect on steel cleanliness

Authors: Wen-wen Zhang, Wan Zheng, Wen Yan, Guang-qiang Li

Published in: Journal of Iron and Steel Research International | Issue 9/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The ceramic filter in continuous casting tundish can effectively improve the cleanliness of high-performance steel by regulating tundish flow field to promote the removal of inclusions and adsorbing or blocking fine inclusions in the molten steel into the mold. The interaction between microporous magnesia refractories used as tundish filter and molten interstitial-free (IF) steel at 1873 K was investigated to reveal the formation mechanism of their interface layer and its effect on steel cleanliness by laboratory research and thermodynamic calculations. The results show that the magnesium–aluminum spinel layer at the interface between the molten IF steel and the microporous magnesia refractories is formed mainly by the reaction of MgO in the refractory with the [Al] and [O] in the molten steel, significantly reducing the total O content, the size and amount of inclusions of the molten steel. In addition, the interparticle phases of microporous magnesia refractories at high temperature can adsorb Al2O3 and TiO2 inclusions in the molten steel into interparticle channels of the refractories to form high melting point spinel, impeding the further penetration of the molten steel. As a result, the consecutive interface layer of high melting point spinel between microporous magnesia refractories and molten steel can improve the cleanliness of the molten steel by adsorbing inclusions in the molten steel and avoid the direct dissolution of refractories of the tundish ceramic filter immersed in the molten steel, increasing their service life.
Literature
[1]
go back to reference R.K. Huang, L.F. Zhang, R.B. Jiang, Y.T. Guo, W. Yang, H.J. Duan, D.B. Jiang, X.G. Zhang, Steelmaking 36 (2020) No. 6, 39–45+66. R.K. Huang, L.F. Zhang, R.B. Jiang, Y.T. Guo, W. Yang, H.J. Duan, D.B. Jiang, X.G. Zhang, Steelmaking 36 (2020) No. 6, 39–45+66.
[2]
go back to reference B. Wang, R.C. Li, J.S. Liu, R.J. Cheng, H. Zhang, H.W. Ni, J. Iron Steel Res. 33 (2021) 293–301. B. Wang, R.C. Li, J.S. Liu, R.J. Cheng, H. Zhang, H.W. Ni, J. Iron Steel Res. 33 (2021) 293–301.
[3]
[4]
go back to reference S.S. Feng, J.Q. Chen, Refractories. (2002) No. 4, 235–239. S.S. Feng, J.Q. Chen, Refractories. (2002) No. 4, 235–239.
[5]
go back to reference X.Q. Hong, J.Z. Li, W.D. Yi, Z.Q. Song, Z.X. Lei, X.X. Yi, Refractories 46 (2012) No. 2, 81–86+95. X.Q. Hong, J.Z. Li, W.D. Yi, Z.Q. Song, Z.X. Lei, X.X. Yi, Refractories 46 (2012) No. 2, 81–86+95.
[6]
go back to reference M. Li, W.J. Zhai, China Metallurgy 26 (2016) No. 11, 26–29. M. Li, W.J. Zhai, China Metallurgy 26 (2016) No. 11, 26–29.
[7]
go back to reference H.L. Wang, Q.Y. Cui, Q.H. Xue, Z.H. Yan, P.T. Song, X.L. Tian, Refractories 44 (2010) No. 1, 67–70. H.L. Wang, Q.Y. Cui, Q.H. Xue, Z.H. Yan, P.T. Song, X.L. Tian, Refractories 44 (2010) No. 1, 67–70.
[8]
go back to reference L. Wang, G.Q. Li, Y. Liu, Z. Zhang, Y.W. Li, X.F. Xu, J. Iron Steel Res. 29 (2017) 616–625. L. Wang, G.Q. Li, Y. Liu, Z. Zhang, Y.W. Li, X.F. Xu, J. Iron Steel Res. 29 (2017) 616–625.
[9]
go back to reference W. Yan, G. Wu, S. Ma, S. Schafföner, Y. Dai, Z. Chen, J. Qi, N. Li, J. Eur. Ceram. Soc. 38 (2018) 4276–4282.CrossRef W. Yan, G. Wu, S. Ma, S. Schafföner, Y. Dai, Z. Chen, J. Qi, N. Li, J. Eur. Ceram. Soc. 38 (2018) 4276–4282.CrossRef
[10]
go back to reference G. Wu, W. Yan, S. Schafföner, Y. Dai, B. Han, T. Li, S. Ma, N. Li, G. Li, J. Alloy. Compd. 796 (2019) 131–137.CrossRef G. Wu, W. Yan, S. Schafföner, Y. Dai, B. Han, T. Li, S. Ma, N. Li, G. Li, J. Alloy. Compd. 796 (2019) 131–137.CrossRef
[11]
go back to reference L. Fu, H. Gu, A. Huang, M. Zhang, Z. Li, J. Am. Ceram. Soc. 98 (2015) 1658–1663.CrossRef L. Fu, H. Gu, A. Huang, M. Zhang, Z. Li, J. Am. Ceram. Soc. 98 (2015) 1658–1663.CrossRef
[12]
[13]
go back to reference C. Tan, Y. Liu, G.Q. Li, C. Yuan, Y.F. Tian, Y.S. Zou, A. Huang, Steel Res. Int. 92 (2021) 2100010.CrossRef C. Tan, Y. Liu, G.Q. Li, C. Yuan, Y.F. Tian, Y.S. Zou, A. Huang, Steel Res. Int. 92 (2021) 2100010.CrossRef
[14]
go back to reference L. Fu, Y.S. Zou, A. Huang, H.Z. Gu, H.W. Ni, J. Am. Ceram. Soc. 102 (2019) 3705–3714.CrossRef L. Fu, Y.S. Zou, A. Huang, H.Z. Gu, H.W. Ni, J. Am. Ceram. Soc. 102 (2019) 3705–3714.CrossRef
[15]
[16]
go back to reference C. Yuan, Y. Liu, G.Q. Li, Y.S. Zou, A. Huang, Ceram. Int. 48 (2022) 427–435.CrossRef C. Yuan, Y. Liu, G.Q. Li, Y.S. Zou, A. Huang, Ceram. Int. 48 (2022) 427–435.CrossRef
[17]
go back to reference L. Chen, D.Y. Wang, H.H. Wang, T.P. Qu, A. Huang, G.Q. Li, J. Iron Steel Res. 34 (2022) 43–51. L. Chen, D.Y. Wang, H.H. Wang, T.P. Qu, A. Huang, G.Q. Li, J. Iron Steel Res. 34 (2022) 43–51.
[18]
go back to reference X.Q. Yan, W. Zheng, G.W. Wang, W. Yan, G.Q. Li, J. Iron Steel Res. 32 (2020) 483–490. X.Q. Yan, W. Zheng, G.W. Wang, W. Yan, G.Q. Li, J. Iron Steel Res. 32 (2020) 483–490.
[19]
go back to reference J.J. Yan, W. Yan, S. Schafföner, Y.J. Dai, Z. Chen, Q. Wang, G.Q. Li, C.J. Jia, Ceram. Int. 47 (2021) 6540–6547.CrossRef J.J. Yan, W. Yan, S. Schafföner, Y.J. Dai, Z. Chen, Q. Wang, G.Q. Li, C.J. Jia, Ceram. Int. 47 (2021) 6540–6547.CrossRef
[20]
go back to reference Y. Ren, Y.F. Wang, S.S. Li, L.F. Zhang, X.J. Zou, S.N. Lekakh, K. Peaslee, Metall. Mater. Trans. B 45 (2014) 1291–1303.CrossRef Y. Ren, Y.F. Wang, S.S. Li, L.F. Zhang, X.J. Zou, S.N. Lekakh, K. Peaslee, Metall. Mater. Trans. B 45 (2014) 1291–1303.CrossRef
[21]
go back to reference H. Matsuura, C. Wang, G.H. Wen, S. Sridhar, ISIJ Int. 47 (2007) 1265–1274.CrossRef H. Matsuura, C. Wang, G.H. Wen, S. Sridhar, ISIJ Int. 47 (2007) 1265–1274.CrossRef
[22]
go back to reference J.J. Chen, J.H. Liu, J.F. Liu, C.L. Zhuang, Chin. J. Eng. 33 (2011) 173–178. J.J. Chen, J.H. Liu, J.F. Liu, C.L. Zhuang, Chin. J. Eng. 33 (2011) 173–178.
[23]
[24]
go back to reference H.X. Yu, M. Pan, D.X. Yang, Iron and Steel 55 (2020) No. 6, 46–53. H.X. Yu, M. Pan, D.X. Yang, Iron and Steel 55 (2020) No. 6, 46–53.
[25]
go back to reference Z.Q. Li, L. Yuan, T. Liu, J.K. Yu, J. Northeast. Univ. (Nat. Sci.) 33 (2012) 1294–1298. Z.Q. Li, L. Yuan, T. Liu, J.K. Yu, J. Northeast. Univ. (Nat. Sci.) 33 (2012) 1294–1298.
[26]
go back to reference A. Harada, G. Miyano, N. Maruoka, H. Shibata, S.Y. Kitamura, ISIJ Int. 54 (2014) 2230–2238.CrossRef A. Harada, G. Miyano, N. Maruoka, H. Shibata, S.Y. Kitamura, ISIJ Int. 54 (2014) 2230–2238.CrossRef
[27]
go back to reference L.F. Zhang, Y. Ren, H.J. Duan, W. Yang, L.Y. Sun, Metall. Mater. Trans. B 46 (2015) 1809–1825.CrossRef L.F. Zhang, Y. Ren, H.J. Duan, W. Yang, L.Y. Sun, Metall. Mater. Trans. B 46 (2015) 1809–1825.CrossRef
Metadata
Title
Formation mechanism of interface reaction layer between microporous magnesia refractories and molten steel and its effect on steel cleanliness
Authors
Wen-wen Zhang
Wan Zheng
Wen Yan
Guang-qiang Li
Publication date
10-12-2022
Publisher
Springer Nature Singapore
Published in
Journal of Iron and Steel Research International / Issue 9/2023
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-022-00889-y

Other articles of this Issue 9/2023

Journal of Iron and Steel Research International 9/2023 Go to the issue

Premium Partners