Skip to main content
Top
Published in: Acta Mechanica 12/2019

09-09-2019 | Original Paper

Fractional Burgers wave equation

Authors: Ljubica Oparnica, Dušan Zorica, Aleksandar S. Okuka

Published in: Acta Mechanica | Issue 12/2019

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Thermodynamically consistent fractional Burgers constitutive models for viscoelastic media, divided into two classes according to model behavior in stress relaxation and creep tests near the initial time instant, are coupled with the equation of motion and strain forming the fractional Burgers wave equations. The Cauchy problem is solved for both classes of Burgers models using an integral transform method, and an analytical solution is obtained as a convolution of the solution kernels and initial data. The form of the solution kernel is found to be dependent on model parameters, while its support properties imply infinite wave propagation speed for the first class and finite speed for the second class. Spatial profiles corresponding to the initial Dirac delta displacement with zero initial velocity display features which are not expected in wave propagation behavior.
Appendix
Available only for authorised users
Literature
1.
go back to reference Abate, J., Valkó, P.P.: Multi-precision Laplace transform inversion. Int. J. Numer. Methods Eng. 60, 979–993 (2004)CrossRef Abate, J., Valkó, P.P.: Multi-precision Laplace transform inversion. Int. J. Numer. Methods Eng. 60, 979–993 (2004)CrossRef
2.
go back to reference Atanackovic, T.M., Konjik, S., Oparnica, Lj, Zorica, D.: Thermodynamical restrictions and wave propagation for a class of fractional order viscoelastic rods. Abstr. Appl. Anal. 2011, ID975694–1–32 (2011)MathSciNetCrossRef Atanackovic, T.M., Konjik, S., Oparnica, Lj, Zorica, D.: Thermodynamical restrictions and wave propagation for a class of fractional order viscoelastic rods. Abstr. Appl. Anal. 2011, ID975694–1–32 (2011)MathSciNetCrossRef
3.
go back to reference Atanackovic, T.M., Pilipovic, S., Stankovic, B., Zorica, D.: Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles. Wiley-ISTE, London (2014)CrossRef Atanackovic, T.M., Pilipovic, S., Stankovic, B., Zorica, D.: Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles. Wiley-ISTE, London (2014)CrossRef
4.
go back to reference Atanackovic, T.M., Pilipovic, S., Zorica, D.: Distributed-order fractional wave equation on a finite domain: creep and forced oscillations of a rod. Contin. Mech. Thermodyn. 23, 305–318 (2011)MathSciNetCrossRef Atanackovic, T.M., Pilipovic, S., Zorica, D.: Distributed-order fractional wave equation on a finite domain: creep and forced oscillations of a rod. Contin. Mech. Thermodyn. 23, 305–318 (2011)MathSciNetCrossRef
5.
go back to reference Atanackovic, T.M., Pilipovic, S., Zorica, D.: Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod. Int. J. Eng. Sci. 49, 175–190 (2011)MathSciNetCrossRef Atanackovic, T.M., Pilipovic, S., Zorica, D.: Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod. Int. J. Eng. Sci. 49, 175–190 (2011)MathSciNetCrossRef
6.
go back to reference Atanackovic, T.M., Pilipovic, S., Zorica, D.: Forced oscillations of a body attached to a viscoelastic rod of fractional derivative type. Int. J. Eng. Sci. 64, 54–65 (2013)MathSciNetCrossRef Atanackovic, T.M., Pilipovic, S., Zorica, D.: Forced oscillations of a body attached to a viscoelastic rod of fractional derivative type. Int. J. Eng. Sci. 64, 54–65 (2013)MathSciNetCrossRef
7.
go back to reference Buchen, P.W., Mainardi, F.: Asymptotic expansions for transient viscoelastic waves. Journal de mécanique 14, 597–608 (1975)MATH Buchen, P.W., Mainardi, F.: Asymptotic expansions for transient viscoelastic waves. Journal de mécanique 14, 597–608 (1975)MATH
8.
go back to reference Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. La Rivista del Nuovo Cimento 1, 161–198 (1971)CrossRef Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. La Rivista del Nuovo Cimento 1, 161–198 (1971)CrossRef
9.
go back to reference Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91, 134–147 (1971)CrossRef Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91, 134–147 (1971)CrossRef
10.
go back to reference Colombaro, I., Giusti, A., Mainardi, F.: A class of linear viscoelastic models based on Bessel functions. Meccanica 52, 825–832 (2017)MathSciNetCrossRef Colombaro, I., Giusti, A., Mainardi, F.: A class of linear viscoelastic models based on Bessel functions. Meccanica 52, 825–832 (2017)MathSciNetCrossRef
11.
go back to reference Colombaro, I., Giusti, A., Mainardi, F.: On the propagation of transient waves in a viscoelastic Bessel medium. Zeitschrift für angewandte Mathematik und Physik 68, 62–1–13 (2017)MathSciNetCrossRef Colombaro, I., Giusti, A., Mainardi, F.: On the propagation of transient waves in a viscoelastic Bessel medium. Zeitschrift für angewandte Mathematik und Physik 68, 62–1–13 (2017)MathSciNetCrossRef
12.
go back to reference Colombaro, I., Giusti, A., Mainardi, F.: On transient waves in linear viscoelasticity. Wave Motion 74, 191–212 (2017)MathSciNetCrossRef Colombaro, I., Giusti, A., Mainardi, F.: On transient waves in linear viscoelasticity. Wave Motion 74, 191–212 (2017)MathSciNetCrossRef
13.
go back to reference Giusti, A., Mainardi, F.: A dynamic viscoelastic analogy for fluid-filled elastic tubes. Meccanica 51, 2321–2330 (2016)MathSciNetCrossRef Giusti, A., Mainardi, F.: A dynamic viscoelastic analogy for fluid-filled elastic tubes. Meccanica 51, 2321–2330 (2016)MathSciNetCrossRef
14.
go back to reference Hanyga, A.: Attenuation and shock waves in linear hereditary viscoelastic media; Strick-Mainardi, Jeffreys-Lomnitz-S trick and Andrade creep compliances. Pure Appl. Geophys. 171, 2097–2109 (2014)CrossRef Hanyga, A.: Attenuation and shock waves in linear hereditary viscoelastic media; Strick-Mainardi, Jeffreys-Lomnitz-S trick and Andrade creep compliances. Pure Appl. Geophys. 171, 2097–2109 (2014)CrossRef
15.
go back to reference Hanyga, A.: Dispersion and attenuation for an acoustic wave equation consistent with viscoelasticity. J. Comput. Acoust. 22, 1450006–1–22 (2014)MathSciNetCrossRef Hanyga, A.: Dispersion and attenuation for an acoustic wave equation consistent with viscoelasticity. J. Comput. Acoust. 22, 1450006–1–22 (2014)MathSciNetCrossRef
16.
go back to reference Hanyga, A.: Asymptotic estimates of viscoelastic Green’s functions near the wavefront. Q. Appl. Math. 73, 679–692 (2015)MathSciNetCrossRef Hanyga, A.: Asymptotic estimates of viscoelastic Green’s functions near the wavefront. Q. Appl. Math. 73, 679–692 (2015)MathSciNetCrossRef
17.
go back to reference Hörmann, G., Oparnica, Lj, Zorica, D.: Microlocal analysis of fractional wave equations. Zeitschrift für angewandte Mathematik und Mechanik 97, 217–225 (2017)MathSciNetCrossRef Hörmann, G., Oparnica, Lj, Zorica, D.: Microlocal analysis of fractional wave equations. Zeitschrift für angewandte Mathematik und Mechanik 97, 217–225 (2017)MathSciNetCrossRef
18.
go back to reference Hörmann, G., Oparnica, Lj, Zorica, D.: Solvability and microlocal analysis of the fractional Eringen wave equation. Math. Mech. Solids 23, 1420–1430 (2018)MathSciNetCrossRef Hörmann, G., Oparnica, Lj, Zorica, D.: Solvability and microlocal analysis of the fractional Eringen wave equation. Math. Mech. Solids 23, 1420–1430 (2018)MathSciNetCrossRef
19.
go back to reference Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier B.V, Amsterdam (2006)MATH Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier B.V, Amsterdam (2006)MATH
20.
go back to reference Konjik, S., Oparnica, Lj, Zorica, D.: Waves in fractional Zener type viscoelastic media. J. Math. Anal. Appl. 365, 259–268 (2010)MathSciNetCrossRef Konjik, S., Oparnica, Lj, Zorica, D.: Waves in fractional Zener type viscoelastic media. J. Math. Anal. Appl. 365, 259–268 (2010)MathSciNetCrossRef
21.
go back to reference Konjik, S., Oparnica, Lj, Zorica, D.: Waves in viscoelastic media described by a linear fractional model. Integral Transforms Spec. Funct. 22, 283–291 (2011)MathSciNetCrossRef Konjik, S., Oparnica, Lj, Zorica, D.: Waves in viscoelastic media described by a linear fractional model. Integral Transforms Spec. Funct. 22, 283–291 (2011)MathSciNetCrossRef
22.
go back to reference Konjik, S., Oparnica, Lj, Zorica, D.: Distributed-order fractional constitutive stress-strain relation in wave propagation modeling. Zeitschrift für angewandte Mathematik und Physik 70, 51–1–21 (2019)MathSciNetCrossRef Konjik, S., Oparnica, Lj, Zorica, D.: Distributed-order fractional constitutive stress-strain relation in wave propagation modeling. Zeitschrift für angewandte Mathematik und Physik 70, 51–1–21 (2019)MathSciNetCrossRef
23.
go back to reference Luchko, Y., Mainardi, F.: Some properties of the fundamental solution to the signalling problem for the fractional diffusion-wave equation. Cent. Eur. J. Phys. 11, 666–675 (2013) Luchko, Y., Mainardi, F.: Some properties of the fundamental solution to the signalling problem for the fractional diffusion-wave equation. Cent. Eur. J. Phys. 11, 666–675 (2013)
24.
go back to reference Luchko, Y., Mainardi, F.: Cauchy and signaling problems for the time-fractional diffusion-wave equation. J. Vib. Acoust. 136, 050904–1–7 (2014)CrossRef Luchko, Y., Mainardi, F.: Cauchy and signaling problems for the time-fractional diffusion-wave equation. J. Vib. Acoust. 136, 050904–1–7 (2014)CrossRef
25.
go back to reference Luchko, Y., Mainardi, F., Povstenko, Y.: Propagation speed of the maximum of the fundamental solution to the fractional diffusion-wave equation. Comput. Math. Appl. 66, 774–784 (2013)MathSciNetCrossRef Luchko, Y., Mainardi, F., Povstenko, Y.: Propagation speed of the maximum of the fundamental solution to the fractional diffusion-wave equation. Comput. Math. Appl. 66, 774–784 (2013)MathSciNetCrossRef
26.
go back to reference Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)CrossRef Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)CrossRef
27.
go back to reference Okuka, A.S., Zorica, D.: Formulation of thermodynamically consistent fractional Burgers models. Acta Mech. 229, 3557–3570 (2018)MathSciNetCrossRef Okuka, A.S., Zorica, D.: Formulation of thermodynamically consistent fractional Burgers models. Acta Mech. 229, 3557–3570 (2018)MathSciNetCrossRef
28.
29.
go back to reference Rossikhin, Y.A., Shitikova, M.V.: Analysis of dynamic behavior of viscoelastic rods whose rheological models contain fractional derivatives of two different orders. Zeitschrift für angewandte Mathematik und Mechanik 81, 363–376 (2001)CrossRef Rossikhin, Y.A., Shitikova, M.V.: Analysis of dynamic behavior of viscoelastic rods whose rheological models contain fractional derivatives of two different orders. Zeitschrift für angewandte Mathematik und Mechanik 81, 363–376 (2001)CrossRef
30.
go back to reference Rossikhin, Y.A., Shitikova, M.V.: A new method for solving dynamic problems of fractional derivative viscoelasticity. Int. J. Eng. Sci. 39, 149–176 (2001)CrossRef Rossikhin, Y.A., Shitikova, M.V.: A new method for solving dynamic problems of fractional derivative viscoelasticity. Int. J. Eng. Sci. 39, 149–176 (2001)CrossRef
31.
go back to reference Rossikhin, Y.A., Shitikova, M.V.: Analysis of the viscoelastic rod dynamics via models involving fractional derivatives or operators of two different orders. Shock Vib. Digest 36, 3–26 (2004)CrossRef Rossikhin, Y.A., Shitikova, M.V.: Analysis of the viscoelastic rod dynamics via models involving fractional derivatives or operators of two different orders. Shock Vib. Digest 36, 3–26 (2004)CrossRef
32.
go back to reference Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl. Mech. Rev. 63, 010801–1–52 (2010) Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl. Mech. Rev. 63, 010801–1–52 (2010)
Metadata
Title
Fractional Burgers wave equation
Authors
Ljubica Oparnica
Dušan Zorica
Aleksandar S. Okuka
Publication date
09-09-2019
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 12/2019
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02500-0

Other articles of this Issue 12/2019

Acta Mechanica 12/2019 Go to the issue

Premium Partners