Skip to main content
Top
Published in: Acta Mechanica 12/2019

25-09-2019 | Original Paper

Magneto-thermoelastic interaction in a reinforced medium with cylindrical cavity in the context of Caputo–Fabrizio heat transport law

Authors: Sudip Mondal, Abhik Sur, M. Kanoria

Published in: Acta Mechanica | Issue 12/2019

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This present work is devoted to the investigation of the transient phenomena for a fiber-reinforced medium with a cylindrical cavity in the context of the three-phase-lag model of generalized thermoelasticity with a new form of derivative of the Caputo–Fabrizio (CF) type in the heat transport equation, where the medium is under the action of an induced magnetic field. The Laplace transform is incorporated as a tool for the solution of the problem when the boundary of the cavity is exposed to harmonically varying heat with a constant angular frequency of thermal vibration. The numerical inversion of the Laplace transforms is computed using the Zakian method. Excellent predictive capability is demonstrated due to the presence of reinforcement, the angular frequencies on thermal vibrations, CF fractional parameter and magnetic field.
Literature
4.
go back to reference Sur, A., Kanoria, M.: Fibre-reinforced magneto-thermoelastic rotating medium with fractional heat conduction. Procedia Eng. 127, 605–612 (2015)CrossRef Sur, A., Kanoria, M.: Fibre-reinforced magneto-thermoelastic rotating medium with fractional heat conduction. Procedia Eng. 127, 605–612 (2015)CrossRef
5.
go back to reference Sur, A., Kanoria, M.: Modeling of fibre-reinforced magneto-thermoelastic plate with heat sources. Procedia Eng. 173, 875–882 (2017)CrossRef Sur, A., Kanoria, M.: Modeling of fibre-reinforced magneto-thermoelastic plate with heat sources. Procedia Eng. 173, 875–882 (2017)CrossRef
6.
go back to reference Padture, N.P., Gell, M., Jordan, E.H.: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280–284 (2017)CrossRef Padture, N.P., Gell, M., Jordan, E.H.: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280–284 (2017)CrossRef
7.
go back to reference Zoby, E., Thompson, R., Wurster, K.: Aeroheating design issues for reusable launch vehicles a perspective. In: Proceedings of Thirty Fourth AIAA Fluid Dynamics Conference Exhibit, pp. 25–35 (2004) Zoby, E., Thompson, R., Wurster, K.: Aeroheating design issues for reusable launch vehicles a perspective. In: Proceedings of Thirty Fourth AIAA Fluid Dynamics Conference Exhibit, pp. 25–35 (2004)
8.
go back to reference Li, T.Q., Xu, Z.H., Hu, Z.J., Yang, X.G.: Application of a high thermal conductivity c/c composite in a heat-redistribution thermal protection system. Carbon 48(3), 924–925 (2010)CrossRef Li, T.Q., Xu, Z.H., Hu, Z.J., Yang, X.G.: Application of a high thermal conductivity c/c composite in a heat-redistribution thermal protection system. Carbon 48(3), 924–925 (2010)CrossRef
10.
go back to reference Landau, L.: The theory of superfluidity of helium II. J. Phys. 5, 71 (1941)MATH Landau, L.: The theory of superfluidity of helium II. J. Phys. 5, 71 (1941)MATH
14.
go back to reference Sur, A., Kanoria, M.: Thermoelastic interaction in a three dimensional layered sandwich structure. Mech. Adv. Compos. Struct. 5, 187–198 (2018) Sur, A., Kanoria, M.: Thermoelastic interaction in a three dimensional layered sandwich structure. Mech. Adv. Compos. Struct. 5, 187–198 (2018)
15.
go back to reference Sur, A., Kanoria, M.: Propagation of thermal waves in a functionally graded thick plate. Math. Mech. Solids 22(4), 718–736 (2015)MathSciNetMATHCrossRef Sur, A., Kanoria, M.: Propagation of thermal waves in a functionally graded thick plate. Math. Mech. Solids 22(4), 718–736 (2015)MathSciNetMATHCrossRef
16.
go back to reference Sur, A., Kanoria, M.: Thermoelastic interaction in a functionally graded half-space subjected to a Mode-I crack. Int. J. Adv. Appl. Math. Mech. 3(2), 33–44 (2015)MathSciNetMATH Sur, A., Kanoria, M.: Thermoelastic interaction in a functionally graded half-space subjected to a Mode-I crack. Int. J. Adv. Appl. Math. Mech. 3(2), 33–44 (2015)MathSciNetMATH
17.
go back to reference Pal, P., Sur, A., Kanoria, M.: Thermo-viscoelastic interaction subjected to fractional Fourier law with three-phase-lag effects. J. Solid Mech. 7(4), 400–415 (2015) Pal, P., Sur, A., Kanoria, M.: Thermo-viscoelastic interaction subjected to fractional Fourier law with three-phase-lag effects. J. Solid Mech. 7(4), 400–415 (2015)
18.
go back to reference Sur, A., Kanoria, M.: Three-phase-lag elasto-thermodiffusive response in a elastic solid under hydrostatic pressure. Int. J. Adv. Appl. Math. Mech. 3(2), 121–137 (2015)MathSciNetMATH Sur, A., Kanoria, M.: Three-phase-lag elasto-thermodiffusive response in a elastic solid under hydrostatic pressure. Int. J. Adv. Appl. Math. Mech. 3(2), 121–137 (2015)MathSciNetMATH
19.
go back to reference Sur, A., Kanoria, M.: Three dimensional viscoelastic medium under thermal shock. Eng. Solid Mech. 4, 187–200 (2016)CrossRef Sur, A., Kanoria, M.: Three dimensional viscoelastic medium under thermal shock. Eng. Solid Mech. 4, 187–200 (2016)CrossRef
20.
go back to reference Sur, A., Kanoria, M.: Thermoelastic interaction in a viscoelastic functionally graded half-space under three phase lag model. Eur. J. Comput. Mech. 23, 179–198 (2014)CrossRef Sur, A., Kanoria, M.: Thermoelastic interaction in a viscoelastic functionally graded half-space under three phase lag model. Eur. J. Comput. Mech. 23, 179–198 (2014)CrossRef
21.
go back to reference Das, P., Kanoria, M.: Study of finite thermal wavs in a magneto-thermo-elastic rotating medium. J. Therm. Stress. 37, 405–428 (2014)CrossRef Das, P., Kanoria, M.: Study of finite thermal wavs in a magneto-thermo-elastic rotating medium. J. Therm. Stress. 37, 405–428 (2014)CrossRef
22.
go back to reference Das, P., Kar, A., Kanoria, M.: Analysis of magneto-thermoelastic response in a transversely isotropic hollow cylinder under thermal shock with three-phase-lag effect. J. Therm. Stress. 36, 239–258 (2013)CrossRef Das, P., Kar, A., Kanoria, M.: Analysis of magneto-thermoelastic response in a transversely isotropic hollow cylinder under thermal shock with three-phase-lag effect. J. Therm. Stress. 36, 239–258 (2013)CrossRef
23.
go back to reference Sur, A., Pal, P., Kanoria, M.: Modeling of memory-dependent derivative in a fibre-reinforced plate under gravitational effect. J. Therm. Stress. 41(8), 973–992 (2018)CrossRef Sur, A., Pal, P., Kanoria, M.: Modeling of memory-dependent derivative in a fibre-reinforced plate under gravitational effect. J. Therm. Stress. 41(8), 973–992 (2018)CrossRef
24.
go back to reference Karmakar, R., Sur, A., Kanoria, M.: Generalized thermoelastic problem of an infinite body with a spherical cavity under dual-phase-lags. J. Appl. Mech. Tech. Phys. 57(4), 652–665 (2016)MathSciNetMATHCrossRef Karmakar, R., Sur, A., Kanoria, M.: Generalized thermoelastic problem of an infinite body with a spherical cavity under dual-phase-lags. J. Appl. Mech. Tech. Phys. 57(4), 652–665 (2016)MathSciNetMATHCrossRef
25.
go back to reference Sur, A., Kanoria, M.: Finite thermal wave propagation in a half-space due to variable thermal loading. Appl. Appl. Math. Int. J. 9(1), 94–120 (2014)MathSciNetMATH Sur, A., Kanoria, M.: Finite thermal wave propagation in a half-space due to variable thermal loading. Appl. Appl. Math. Int. J. 9(1), 94–120 (2014)MathSciNetMATH
26.
go back to reference Roy Choudhuri, S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stress. 30, 231–238 (2007)CrossRef Roy Choudhuri, S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stress. 30, 231–238 (2007)CrossRef
27.
go back to reference Chakravorty, S., Ghosh, S., Sur, A.: Thermo-viscoelastic interaction in a three-dimensional problem subjected to fractional heat conduction. Procedia Eng. 173, 851–858 (2017)CrossRef Chakravorty, S., Ghosh, S., Sur, A.: Thermo-viscoelastic interaction in a three-dimensional problem subjected to fractional heat conduction. Procedia Eng. 173, 851–858 (2017)CrossRef
28.
go back to reference Sur, A., Kanoria, M.: Fractional order generalized thermoelastic functionally graded solid with variable material properties. J. Solid Mech. 6, 54–69 (2014) Sur, A., Kanoria, M.: Fractional order generalized thermoelastic functionally graded solid with variable material properties. J. Solid Mech. 6, 54–69 (2014)
30.
go back to reference Caputo, M.: Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. R. Astron. Soc. 3, 529–539 (1967)CrossRef Caputo, M.: Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. R. Astron. Soc. 3, 529–539 (1967)CrossRef
31.
go back to reference Caputo, M., Mainardi, F.: Linear model of dissipation in anelastic solids. Rivis. ta. el. Nuovo. cimento 1, 161–198 (1971)CrossRef Caputo, M., Mainardi, F.: Linear model of dissipation in anelastic solids. Rivis. ta. el. Nuovo. cimento 1, 161–198 (1971)CrossRef
32.
go back to reference Gómez-Aguilar, J., López-López, M., Alvarado-Martínez, V., Reyes-Reyes, J., Adam-Medina, M.: Modeling diffusive transport with a fractional derivative without singular kernel. Phys. A Stat. Mech. Appl. 447, 467–481 (2016)MathSciNetMATHCrossRef Gómez-Aguilar, J., López-López, M., Alvarado-Martínez, V., Reyes-Reyes, J., Adam-Medina, M.: Modeling diffusive transport with a fractional derivative without singular kernel. Phys. A Stat. Mech. Appl. 447, 467–481 (2016)MathSciNetMATHCrossRef
33.
go back to reference Anh, V.V., Leonenko, N.N.: Spectral analysis of fractional kinetic equations with random data. J. Stat. Phys. 104, 1349–1387 (2001)MathSciNetMATHCrossRef Anh, V.V., Leonenko, N.N.: Spectral analysis of fractional kinetic equations with random data. J. Stat. Phys. 104, 1349–1387 (2001)MathSciNetMATHCrossRef
34.
go back to reference Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics, vol. 43. De Gruyter, Berlin (2012)MATH Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics, vol. 43. De Gruyter, Berlin (2012)MATH
35.
36.
go back to reference Atangana, A.: Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology. Academic Press, London (2018). ISBN: 978-0-12-809670-3MATH Atangana, A.: Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology. Academic Press, London (2018). ISBN: 978-0-12-809670-3MATH
37.
go back to reference Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Frac. Differ. Appl. 1(2), 73–85 (2015) Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Frac. Differ. Appl. 1(2), 73–85 (2015)
39.
go back to reference Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 87–92 (2015) Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 87–92 (2015)
40.
go back to reference Caputo, M., Fabrizio, M.: Applications of new time and spatial fractional derivatives with exponential kernels. Prog. Fract. Differ. Appl. 2(1), 1–11 (2016)CrossRef Caputo, M., Fabrizio, M.: Applications of new time and spatial fractional derivatives with exponential kernels. Prog. Fract. Differ. Appl. 2(1), 1–11 (2016)CrossRef
41.
go back to reference Atangana, A., Alkahtani, B.S.T.: Analysis of the Keller–Segel model with a fractional derivative without singular kernel. Entropy 17(6), 4439–4453 (2015)MathSciNetMATHCrossRef Atangana, A., Alkahtani, B.S.T.: Analysis of the Keller–Segel model with a fractional derivative without singular kernel. Entropy 17(6), 4439–4453 (2015)MathSciNetMATHCrossRef
47.
go back to reference Atangana, A., Alkahtani, S.T.A.: Extension of the RLC electrical circuit to fractional derivative without singular kernel. Adv. Mech. Eng. 7, 1–6 (2015) Atangana, A., Alkahtani, S.T.A.: Extension of the RLC electrical circuit to fractional derivative without singular kernel. Adv. Mech. Eng. 7, 1–6 (2015)
48.
go back to reference Atangana, A., Nieto, J.J.: Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel. Adv. Mech. Eng. 7, 1–7 (2015) Atangana, A., Nieto, J.J.: Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel. Adv. Mech. Eng. 7, 1–7 (2015)
50.
go back to reference Gómez-Aguilar, J.F., Yépez-Martnez, H., Calderón-Ramón, C., Cruz-Orduña, I., Fabricio, R., Jiménez, E., Olivares-Peregrino, V.H.: Modeling of a mass-spring-damper system by fractional derivatives with and without a singular kernel. Entropy 17(9), 6289–6303 (2005)MathSciNetMATH Gómez-Aguilar, J.F., Yépez-Martnez, H., Calderón-Ramón, C., Cruz-Orduña, I., Fabricio, R., Jiménez, E., Olivares-Peregrino, V.H.: Modeling of a mass-spring-damper system by fractional derivatives with and without a singular kernel. Entropy 17(9), 6289–6303 (2005)MathSciNetMATH
51.
go back to reference Sherief, H.H., Helmy, A.K.: A two dimensional problem for a half-space in magneto-thermoelasticity with thermal relaxation. Int. J. Eng. Sci. 40, 587–604 (2002)MathSciNetMATHCrossRef Sherief, H.H., Helmy, A.K.: A two dimensional problem for a half-space in magneto-thermoelasticity with thermal relaxation. Int. J. Eng. Sci. 40, 587–604 (2002)MathSciNetMATHCrossRef
52.
go back to reference Othman, M.I.A.: Generalized electromagneto-thermoelastic plane waves by thermal shock problem in a finite conductivity half-space with one relaxation time. Multidiscipl. Model. Mater. Struct. 1, 231–250 (2005)CrossRef Othman, M.I.A.: Generalized electromagneto-thermoelastic plane waves by thermal shock problem in a finite conductivity half-space with one relaxation time. Multidiscipl. Model. Mater. Struct. 1, 231–250 (2005)CrossRef
53.
go back to reference Othman, M.I.A., Zidan, M.E.M., Hilal, M.I.M.: The effect of magnetic field on a rotating thermoelastic medium with voids under thermal loading due to laser pulse with energy dissipation. Can. J. Phys. 92, 1359–1371 (2014)CrossRef Othman, M.I.A., Zidan, M.E.M., Hilal, M.I.M.: The effect of magnetic field on a rotating thermoelastic medium with voids under thermal loading due to laser pulse with energy dissipation. Can. J. Phys. 92, 1359–1371 (2014)CrossRef
55.
go back to reference Halsted, D.J., Brown, D.E.: Zakian’s technique for inverting Laplace transforms. Chem. Eng. J. 3, 312–313 (1972)CrossRef Halsted, D.J., Brown, D.E.: Zakian’s technique for inverting Laplace transforms. Chem. Eng. J. 3, 312–313 (1972)CrossRef
56.
go back to reference Othman, M.I.A.: Generalized electro-magneto-thermoelasticity in case of thermal shock plane waves for a finite conducting half-space with two relaxation time. Mech. Mech. Eng. 14(1), 5–30 (2010) Othman, M.I.A.: Generalized electro-magneto-thermoelasticity in case of thermal shock plane waves for a finite conducting half-space with two relaxation time. Mech. Mech. Eng. 14(1), 5–30 (2010)
57.
go back to reference Nowacki, W.: Dynamic Problem of Thermoelasticity, vol. 399. Noordhoff International, Leyden (1975)MATH Nowacki, W.: Dynamic Problem of Thermoelasticity, vol. 399. Noordhoff International, Leyden (1975)MATH
58.
go back to reference Spencer, A.J.M.: Continuum Theory of the Mechanics of Fibre-Reinforced Composites. Springer, Berlin (1984). ISBN: 978-3-7091-4336-0MATHCrossRef Spencer, A.J.M.: Continuum Theory of the Mechanics of Fibre-Reinforced Composites. Springer, Berlin (1984). ISBN: 978-3-7091-4336-0MATHCrossRef
59.
go back to reference Dhaliwal, R.S., Singh, A.: Dynamic Coupled Thermoelasticity. Hindustan Publishing Corporation, New Delhi (1980) Dhaliwal, R.S., Singh, A.: Dynamic Coupled Thermoelasticity. Hindustan Publishing Corporation, New Delhi (1980)
60.
go back to reference Youssef, H.M., Al-Lehaibi, E.A.: Fractional order generalized thermoelastic infinite medium with cylindrical cavity subjected to harmonically varying heat. Engineering 3, 32–37 (2011)CrossRef Youssef, H.M., Al-Lehaibi, E.A.: Fractional order generalized thermoelastic infinite medium with cylindrical cavity subjected to harmonically varying heat. Engineering 3, 32–37 (2011)CrossRef
61.
go back to reference Mondal, S., Pal, P., Kanoria, M.: Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative. Acta Mech. 230(1), 179–199 (2019)MathSciNetMATHCrossRef Mondal, S., Pal, P., Kanoria, M.: Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative. Acta Mech. 230(1), 179–199 (2019)MathSciNetMATHCrossRef
Metadata
Title
Magneto-thermoelastic interaction in a reinforced medium with cylindrical cavity in the context of Caputo–Fabrizio heat transport law
Authors
Sudip Mondal
Abhik Sur
M. Kanoria
Publication date
25-09-2019
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 12/2019
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02498-5

Other articles of this Issue 12/2019

Acta Mechanica 12/2019 Go to the issue

Premium Partners