Skip to main content
Top
Published in: Acta Mechanica 12/2019

26-09-2019 | Original Paper

Wave propagation in one-dimensional infinite acoustic metamaterials with long-range interactions

Authors: Esmaeal Ghavanloo, S. Ahmad Fazelzadeh

Published in: Acta Mechanica | Issue 12/2019

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the effect of long-range interactions on the wave propagation in one-dimensional acoustic metamaterials is investigated. The wave dispersion relations of these materials are expressed in closed-form solutions. In addition, a nonlocal continuum model is developed to approximate the behavior of the metamaterials with general long-range interactions. The influences of various parameters including the mass and stiffness ratios are also examined. The numerical results show that the long-range interactions affect the shape of the dispersion curves, while the range of the band-gap slightly changes. Furthermore, the results indicate that the proposed nonlocal model with appropriate nonlocal parameters can predict the dispersion behavior of the one-dimensional mass-in-mass system with long-range interactions very well, especially for the acoustic mode.
Literature
1.
go back to reference Zhu, R., Huang, H.H., Huang, G.L., Sun, C.T.: Microstructure continuum modeling of an elastic metamaterial. Int. J. Eng. Sci. 49, 1477–1485 (2011)CrossRef Zhu, R., Huang, H.H., Huang, G.L., Sun, C.T.: Microstructure continuum modeling of an elastic metamaterial. Int. J. Eng. Sci. 49, 1477–1485 (2011)CrossRef
2.
go back to reference Wang, X.: Dynamic behaviour of a metamaterial system with negative mass and modulus. Int. J. Solids Struct. 51, 1534–1541 (2014)CrossRef Wang, X.: Dynamic behaviour of a metamaterial system with negative mass and modulus. Int. J. Solids Struct. 51, 1534–1541 (2014)CrossRef
3.
go back to reference He, Z.C., Li, E., Wang, G., Li, G.Y., Xia, Z.: Development of an efficient algorithm to analyze the elastic wave in acoustic metamaterials. Acta Mech. 227, 3015–3030 (2016)MathSciNetCrossRef He, Z.C., Li, E., Wang, G., Li, G.Y., Xia, Z.: Development of an efficient algorithm to analyze the elastic wave in acoustic metamaterials. Acta Mech. 227, 3015–3030 (2016)MathSciNetCrossRef
4.
go back to reference Zhou, X., Hu, G.: Dynamic effective models of two-dimensional acoustic metamaterials with cylindrical inclusions. Acta Mech. 224, 1233–1241 (2013)MathSciNetCrossRef Zhou, X., Hu, G.: Dynamic effective models of two-dimensional acoustic metamaterials with cylindrical inclusions. Acta Mech. 224, 1233–1241 (2013)MathSciNetCrossRef
5.
go back to reference Sang, S., Sandgren, E.: Study of two-dimensional acoustic metamaterial based on lattice system. J. Vib. Eng. Technol. 6, 513–521 (2018)CrossRef Sang, S., Sandgren, E.: Study of two-dimensional acoustic metamaterial based on lattice system. J. Vib. Eng. Technol. 6, 513–521 (2018)CrossRef
6.
go back to reference Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289, 1734–1736 (2000)CrossRef Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289, 1734–1736 (2000)CrossRef
7.
go back to reference Zhou, X., Liu, X., Hu, G.: Elastic metamaterials with local resonances: an overview. Theor. Appl. Mech. Lett. 2, 041001 (2012)CrossRef Zhou, X., Liu, X., Hu, G.: Elastic metamaterials with local resonances: an overview. Theor. Appl. Mech. Lett. 2, 041001 (2012)CrossRef
8.
go back to reference Zhu, R., Liu, X.N., Hu, G.K., Yuan, F.G., Huang, G.L.: Microstructural designs of plate-type elastic metamaterial and their potential applications: a review. Int. J. Smart Nano Mater. 6, 14–40 (2015)CrossRef Zhu, R., Liu, X.N., Hu, G.K., Yuan, F.G., Huang, G.L.: Microstructural designs of plate-type elastic metamaterial and their potential applications: a review. Int. J. Smart Nano Mater. 6, 14–40 (2015)CrossRef
9.
go back to reference Cselyuszka, N., Sĕcujski, M., Crnojević-Bengin, V.: Novel negative mass density resonant metamaterial unit cell. Phys. Lett. A 379, 33–36 (2015)CrossRef Cselyuszka, N., Sĕcujski, M., Crnojević-Bengin, V.: Novel negative mass density resonant metamaterial unit cell. Phys. Lett. A 379, 33–36 (2015)CrossRef
10.
go back to reference Sang, S., Wang, Z.: A design of elastic metamaterials with multi-negative pass bands. Acta Mech. 229, 2647–2655 (2018)CrossRef Sang, S., Wang, Z.: A design of elastic metamaterials with multi-negative pass bands. Acta Mech. 229, 2647–2655 (2018)CrossRef
11.
go back to reference Beli, D., Arruda, J.R.F., Ruzzene, M.: Wave propagation in elastic metamaterial beams and plates with interconnected resonators. Int. J. Solids Struct. 139–140, 105–120 (2018)CrossRef Beli, D., Arruda, J.R.F., Ruzzene, M.: Wave propagation in elastic metamaterial beams and plates with interconnected resonators. Int. J. Solids Struct. 139–140, 105–120 (2018)CrossRef
12.
go back to reference Yao, S., Zhou, X., Hu, G.: Experimental study on negative mass effective mass in a 1D mass-spring system. New J. Phys. 10, 043020 (2008)CrossRef Yao, S., Zhou, X., Hu, G.: Experimental study on negative mass effective mass in a 1D mass-spring system. New J. Phys. 10, 043020 (2008)CrossRef
13.
go back to reference Huang, H.H., Sun, C.T., Huang, G.L.: On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 47, 610–617 (2009)CrossRef Huang, H.H., Sun, C.T., Huang, G.L.: On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 47, 610–617 (2009)CrossRef
14.
go back to reference Huang, G.L., Sun, C.T.: Band gaps in a multiresonator acoustic metamaterial. J. Vib. Acoust. 132, 031003 (2010)CrossRef Huang, G.L., Sun, C.T.: Band gaps in a multiresonator acoustic metamaterial. J. Vib. Acoust. 132, 031003 (2010)CrossRef
15.
go back to reference Manimala, J.M., Huang, H.H., Sun, C.T., Snyder, R., Bland, S.: Dynamic load mitigation using negative effective mass structures. Eng. Struct. 80, 458–468 (2014)CrossRef Manimala, J.M., Huang, H.H., Sun, C.T., Snyder, R., Bland, S.: Dynamic load mitigation using negative effective mass structures. Eng. Struct. 80, 458–468 (2014)CrossRef
16.
go back to reference Fang, X., Wen, J., Yin, J., Yu, D.: Wave propagation in nonlinear metamaterial multi-atomic chains based on homotopy method. AIP Adv. 6, 121706 (2016)CrossRef Fang, X., Wen, J., Yin, J., Yu, D.: Wave propagation in nonlinear metamaterial multi-atomic chains based on homotopy method. AIP Adv. 6, 121706 (2016)CrossRef
17.
go back to reference Fang, X., Wen, J., Bonello, B., Yin, J., Yu, D.: Wave propagation in one-dimensional nonlinear acoustic metamaterials. New J. Phys. 19, 053007 (2017)CrossRef Fang, X., Wen, J., Bonello, B., Yin, J., Yu, D.: Wave propagation in one-dimensional nonlinear acoustic metamaterials. New J. Phys. 19, 053007 (2017)CrossRef
18.
go back to reference Terao, T.: Wave propagation in acoustic metamaterial double-barrier structures. Phys. Status Solidi A 213, 2773–2779 (2016)CrossRef Terao, T.: Wave propagation in acoustic metamaterial double-barrier structures. Phys. Status Solidi A 213, 2773–2779 (2016)CrossRef
19.
go back to reference Kulkarni, P.P., Manimala, J.M.: Longitudinal elastic wave propagation characteristics of inertant acoustic metamaterials. J. Appl. Phys. 119, 245101 (2016)CrossRef Kulkarni, P.P., Manimala, J.M.: Longitudinal elastic wave propagation characteristics of inertant acoustic metamaterials. J. Appl. Phys. 119, 245101 (2016)CrossRef
20.
go back to reference Hu, G., Tang, L., Das, R., Gao, S., Liu, H.: Acoustic metamaterials with coupled local resonators for broadband vibration suppression. AIP Adv. 7, 025211 (2017)CrossRef Hu, G., Tang, L., Das, R., Gao, S., Liu, H.: Acoustic metamaterials with coupled local resonators for broadband vibration suppression. AIP Adv. 7, 025211 (2017)CrossRef
21.
go back to reference Banerjee, A., Das, R., Calius, E.P.: Frequency graded 1D metamaterials: a study on the attenuation bands. J. Appl. Phys. 122, 075101 (2017)CrossRef Banerjee, A., Das, R., Calius, E.P.: Frequency graded 1D metamaterials: a study on the attenuation bands. J. Appl. Phys. 122, 075101 (2017)CrossRef
22.
go back to reference Al Ba’ba’a, H.B., Nouh, M.: Mechanics of longitudinal and flexural locally resonant elastic metamaterials using a structural power flow approach. Int. J. Mech. Sci. 122, 341–354 (2017)CrossRef Al Ba’ba’a, H.B., Nouh, M.: Mechanics of longitudinal and flexural locally resonant elastic metamaterials using a structural power flow approach. Int. J. Mech. Sci. 122, 341–354 (2017)CrossRef
23.
go back to reference Cveticanin, L., Zukovic, M.: Negative effective mass in acoustic metamaterial with nonlinear mass-in-mass subsystems. Commun. Nonlinear Sci. Numer. Simul. 51, 89–104 (2017)MathSciNetCrossRef Cveticanin, L., Zukovic, M.: Negative effective mass in acoustic metamaterial with nonlinear mass-in-mass subsystems. Commun. Nonlinear Sci. Numer. Simul. 51, 89–104 (2017)MathSciNetCrossRef
24.
go back to reference Cveticanin, L., Zukovic, M., Cveticanin, D.: On the elastic metamaterial with negative effective mass. J. Sound Vib. 436, 295–309 (2018)CrossRef Cveticanin, L., Zukovic, M., Cveticanin, D.: On the elastic metamaterial with negative effective mass. J. Sound Vib. 436, 295–309 (2018)CrossRef
25.
go back to reference Li, B., Alamri, S., Tan, K.T.: A diatomic elastic metamaterial for tunable asymmetric wave transmission in multiple frequency bands. Sci. Rep. 7, 6226 (2017)CrossRef Li, B., Alamri, S., Tan, K.T.: A diatomic elastic metamaterial for tunable asymmetric wave transmission in multiple frequency bands. Sci. Rep. 7, 6226 (2017)CrossRef
26.
go back to reference Comi, C., Driemeier, L.: Wave propagation in cellular locally resonant metamaterials. Lat. Am. J. Solids Struct. 15, e38 (2018)CrossRef Comi, C., Driemeier, L.: Wave propagation in cellular locally resonant metamaterials. Lat. Am. J. Solids Struct. 15, e38 (2018)CrossRef
27.
go back to reference Xu, X., Barnhart, M.V., Li, X., Chen, Y., Huang, G.: Tailoring vibration suppression bands with hierarchical metamaterials containing local resonators. J. Sound Vib. 442, 237–248 (2019)CrossRef Xu, X., Barnhart, M.V., Li, X., Chen, Y., Huang, G.: Tailoring vibration suppression bands with hierarchical metamaterials containing local resonators. J. Sound Vib. 442, 237–248 (2019)CrossRef
28.
go back to reference Ponge, M.F., Poncelet, O., Torrent, D.: Dynamic homogenization theory for nonlocal acoustic metamaterials. Extreme Mech. Lett. 12, 71–76 (2017)CrossRef Ponge, M.F., Poncelet, O., Torrent, D.: Dynamic homogenization theory for nonlocal acoustic metamaterials. Extreme Mech. Lett. 12, 71–76 (2017)CrossRef
29.
go back to reference Bacquet, C.L., Al Ba’ba’a, H., Frazier, M.J., Nouh, M., Hussein, M.I.: Metadamping: dissipation emergence in elastic metamaterials. Adv. Appl. Mech. 51, 115–164 (2018)CrossRef Bacquet, C.L., Al Ba’ba’a, H., Frazier, M.J., Nouh, M., Hussein, M.I.: Metadamping: dissipation emergence in elastic metamaterials. Adv. Appl. Mech. 51, 115–164 (2018)CrossRef
30.
go back to reference Carcaterra, A., Coppo, F., Mezzani, F., Pensalfini, S.: Long-range retarded elastic metamaterials: wave-stopping, negative, and hypersonic or superluminal group velocity. Phys. Rev. Appl. 11, 014041 (2019)CrossRef Carcaterra, A., Coppo, F., Mezzani, F., Pensalfini, S.: Long-range retarded elastic metamaterials: wave-stopping, negative, and hypersonic or superluminal group velocity. Phys. Rev. Appl. 11, 014041 (2019)CrossRef
31.
go back to reference Zhou, Y., Wei, P., Tang, Q.: Continuum model of a one-dimensional lattice of metamaterials. Acta Mech. 227, 2361–2376 (2016)MathSciNetCrossRef Zhou, Y., Wei, P., Tang, Q.: Continuum model of a one-dimensional lattice of metamaterials. Acta Mech. 227, 2361–2376 (2016)MathSciNetCrossRef
32.
go back to reference Ghavanloo, E., Rafii-Tabar, H., Fazelzadeh, S.A.: Computational Continuum Mechanics of Nanoscopic Structures: Nonlocal Elasticity Approaches. Springer, Berlin (2019)CrossRef Ghavanloo, E., Rafii-Tabar, H., Fazelzadeh, S.A.: Computational Continuum Mechanics of Nanoscopic Structures: Nonlocal Elasticity Approaches. Springer, Berlin (2019)CrossRef
33.
go back to reference Al Ba’ba’a, H., Nouh, M., Singh, T.: Formation of local resonance band gaps in finite acoustic metamaterials: a closed-form transfer function model. J. Sound Vib. 410, 429–446 (2017)CrossRef Al Ba’ba’a, H., Nouh, M., Singh, T.: Formation of local resonance band gaps in finite acoustic metamaterials: a closed-form transfer function model. J. Sound Vib. 410, 429–446 (2017)CrossRef
Metadata
Title
Wave propagation in one-dimensional infinite acoustic metamaterials with long-range interactions
Authors
Esmaeal Ghavanloo
S. Ahmad Fazelzadeh
Publication date
26-09-2019
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 12/2019
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02514-8

Other articles of this Issue 12/2019

Acta Mechanica 12/2019 Go to the issue

Premium Partners