Skip to main content
Erschienen in: Acta Mechanica 12/2019

25.09.2019 | Original Paper

Magneto-thermoelastic interaction in a reinforced medium with cylindrical cavity in the context of Caputo–Fabrizio heat transport law

verfasst von: Sudip Mondal, Abhik Sur, M. Kanoria

Erschienen in: Acta Mechanica | Ausgabe 12/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This present work is devoted to the investigation of the transient phenomena for a fiber-reinforced medium with a cylindrical cavity in the context of the three-phase-lag model of generalized thermoelasticity with a new form of derivative of the Caputo–Fabrizio (CF) type in the heat transport equation, where the medium is under the action of an induced magnetic field. The Laplace transform is incorporated as a tool for the solution of the problem when the boundary of the cavity is exposed to harmonically varying heat with a constant angular frequency of thermal vibration. The numerical inversion of the Laplace transforms is computed using the Zakian method. Excellent predictive capability is demonstrated due to the presence of reinforcement, the angular frequencies on thermal vibrations, CF fractional parameter and magnetic field.
Literatur
4.
Zurück zum Zitat Sur, A., Kanoria, M.: Fibre-reinforced magneto-thermoelastic rotating medium with fractional heat conduction. Procedia Eng. 127, 605–612 (2015)CrossRef Sur, A., Kanoria, M.: Fibre-reinforced magneto-thermoelastic rotating medium with fractional heat conduction. Procedia Eng. 127, 605–612 (2015)CrossRef
5.
Zurück zum Zitat Sur, A., Kanoria, M.: Modeling of fibre-reinforced magneto-thermoelastic plate with heat sources. Procedia Eng. 173, 875–882 (2017)CrossRef Sur, A., Kanoria, M.: Modeling of fibre-reinforced magneto-thermoelastic plate with heat sources. Procedia Eng. 173, 875–882 (2017)CrossRef
6.
Zurück zum Zitat Padture, N.P., Gell, M., Jordan, E.H.: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280–284 (2017)CrossRef Padture, N.P., Gell, M., Jordan, E.H.: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280–284 (2017)CrossRef
7.
Zurück zum Zitat Zoby, E., Thompson, R., Wurster, K.: Aeroheating design issues for reusable launch vehicles a perspective. In: Proceedings of Thirty Fourth AIAA Fluid Dynamics Conference Exhibit, pp. 25–35 (2004) Zoby, E., Thompson, R., Wurster, K.: Aeroheating design issues for reusable launch vehicles a perspective. In: Proceedings of Thirty Fourth AIAA Fluid Dynamics Conference Exhibit, pp. 25–35 (2004)
8.
Zurück zum Zitat Li, T.Q., Xu, Z.H., Hu, Z.J., Yang, X.G.: Application of a high thermal conductivity c/c composite in a heat-redistribution thermal protection system. Carbon 48(3), 924–925 (2010)CrossRef Li, T.Q., Xu, Z.H., Hu, Z.J., Yang, X.G.: Application of a high thermal conductivity c/c composite in a heat-redistribution thermal protection system. Carbon 48(3), 924–925 (2010)CrossRef
10.
Zurück zum Zitat Landau, L.: The theory of superfluidity of helium II. J. Phys. 5, 71 (1941)MATH Landau, L.: The theory of superfluidity of helium II. J. Phys. 5, 71 (1941)MATH
14.
Zurück zum Zitat Sur, A., Kanoria, M.: Thermoelastic interaction in a three dimensional layered sandwich structure. Mech. Adv. Compos. Struct. 5, 187–198 (2018) Sur, A., Kanoria, M.: Thermoelastic interaction in a three dimensional layered sandwich structure. Mech. Adv. Compos. Struct. 5, 187–198 (2018)
15.
Zurück zum Zitat Sur, A., Kanoria, M.: Propagation of thermal waves in a functionally graded thick plate. Math. Mech. Solids 22(4), 718–736 (2015)MathSciNetMATHCrossRef Sur, A., Kanoria, M.: Propagation of thermal waves in a functionally graded thick plate. Math. Mech. Solids 22(4), 718–736 (2015)MathSciNetMATHCrossRef
16.
Zurück zum Zitat Sur, A., Kanoria, M.: Thermoelastic interaction in a functionally graded half-space subjected to a Mode-I crack. Int. J. Adv. Appl. Math. Mech. 3(2), 33–44 (2015)MathSciNetMATH Sur, A., Kanoria, M.: Thermoelastic interaction in a functionally graded half-space subjected to a Mode-I crack. Int. J. Adv. Appl. Math. Mech. 3(2), 33–44 (2015)MathSciNetMATH
17.
Zurück zum Zitat Pal, P., Sur, A., Kanoria, M.: Thermo-viscoelastic interaction subjected to fractional Fourier law with three-phase-lag effects. J. Solid Mech. 7(4), 400–415 (2015) Pal, P., Sur, A., Kanoria, M.: Thermo-viscoelastic interaction subjected to fractional Fourier law with three-phase-lag effects. J. Solid Mech. 7(4), 400–415 (2015)
18.
Zurück zum Zitat Sur, A., Kanoria, M.: Three-phase-lag elasto-thermodiffusive response in a elastic solid under hydrostatic pressure. Int. J. Adv. Appl. Math. Mech. 3(2), 121–137 (2015)MathSciNetMATH Sur, A., Kanoria, M.: Three-phase-lag elasto-thermodiffusive response in a elastic solid under hydrostatic pressure. Int. J. Adv. Appl. Math. Mech. 3(2), 121–137 (2015)MathSciNetMATH
19.
Zurück zum Zitat Sur, A., Kanoria, M.: Three dimensional viscoelastic medium under thermal shock. Eng. Solid Mech. 4, 187–200 (2016)CrossRef Sur, A., Kanoria, M.: Three dimensional viscoelastic medium under thermal shock. Eng. Solid Mech. 4, 187–200 (2016)CrossRef
20.
Zurück zum Zitat Sur, A., Kanoria, M.: Thermoelastic interaction in a viscoelastic functionally graded half-space under three phase lag model. Eur. J. Comput. Mech. 23, 179–198 (2014)CrossRef Sur, A., Kanoria, M.: Thermoelastic interaction in a viscoelastic functionally graded half-space under three phase lag model. Eur. J. Comput. Mech. 23, 179–198 (2014)CrossRef
21.
Zurück zum Zitat Das, P., Kanoria, M.: Study of finite thermal wavs in a magneto-thermo-elastic rotating medium. J. Therm. Stress. 37, 405–428 (2014)CrossRef Das, P., Kanoria, M.: Study of finite thermal wavs in a magneto-thermo-elastic rotating medium. J. Therm. Stress. 37, 405–428 (2014)CrossRef
22.
Zurück zum Zitat Das, P., Kar, A., Kanoria, M.: Analysis of magneto-thermoelastic response in a transversely isotropic hollow cylinder under thermal shock with three-phase-lag effect. J. Therm. Stress. 36, 239–258 (2013)CrossRef Das, P., Kar, A., Kanoria, M.: Analysis of magneto-thermoelastic response in a transversely isotropic hollow cylinder under thermal shock with three-phase-lag effect. J. Therm. Stress. 36, 239–258 (2013)CrossRef
23.
Zurück zum Zitat Sur, A., Pal, P., Kanoria, M.: Modeling of memory-dependent derivative in a fibre-reinforced plate under gravitational effect. J. Therm. Stress. 41(8), 973–992 (2018)CrossRef Sur, A., Pal, P., Kanoria, M.: Modeling of memory-dependent derivative in a fibre-reinforced plate under gravitational effect. J. Therm. Stress. 41(8), 973–992 (2018)CrossRef
24.
Zurück zum Zitat Karmakar, R., Sur, A., Kanoria, M.: Generalized thermoelastic problem of an infinite body with a spherical cavity under dual-phase-lags. J. Appl. Mech. Tech. Phys. 57(4), 652–665 (2016)MathSciNetMATHCrossRef Karmakar, R., Sur, A., Kanoria, M.: Generalized thermoelastic problem of an infinite body with a spherical cavity under dual-phase-lags. J. Appl. Mech. Tech. Phys. 57(4), 652–665 (2016)MathSciNetMATHCrossRef
25.
Zurück zum Zitat Sur, A., Kanoria, M.: Finite thermal wave propagation in a half-space due to variable thermal loading. Appl. Appl. Math. Int. J. 9(1), 94–120 (2014)MathSciNetMATH Sur, A., Kanoria, M.: Finite thermal wave propagation in a half-space due to variable thermal loading. Appl. Appl. Math. Int. J. 9(1), 94–120 (2014)MathSciNetMATH
26.
Zurück zum Zitat Roy Choudhuri, S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stress. 30, 231–238 (2007)CrossRef Roy Choudhuri, S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stress. 30, 231–238 (2007)CrossRef
27.
Zurück zum Zitat Chakravorty, S., Ghosh, S., Sur, A.: Thermo-viscoelastic interaction in a three-dimensional problem subjected to fractional heat conduction. Procedia Eng. 173, 851–858 (2017)CrossRef Chakravorty, S., Ghosh, S., Sur, A.: Thermo-viscoelastic interaction in a three-dimensional problem subjected to fractional heat conduction. Procedia Eng. 173, 851–858 (2017)CrossRef
28.
Zurück zum Zitat Sur, A., Kanoria, M.: Fractional order generalized thermoelastic functionally graded solid with variable material properties. J. Solid Mech. 6, 54–69 (2014) Sur, A., Kanoria, M.: Fractional order generalized thermoelastic functionally graded solid with variable material properties. J. Solid Mech. 6, 54–69 (2014)
30.
Zurück zum Zitat Caputo, M.: Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. R. Astron. Soc. 3, 529–539 (1967)CrossRef Caputo, M.: Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. R. Astron. Soc. 3, 529–539 (1967)CrossRef
31.
Zurück zum Zitat Caputo, M., Mainardi, F.: Linear model of dissipation in anelastic solids. Rivis. ta. el. Nuovo. cimento 1, 161–198 (1971)CrossRef Caputo, M., Mainardi, F.: Linear model of dissipation in anelastic solids. Rivis. ta. el. Nuovo. cimento 1, 161–198 (1971)CrossRef
32.
Zurück zum Zitat Gómez-Aguilar, J., López-López, M., Alvarado-Martínez, V., Reyes-Reyes, J., Adam-Medina, M.: Modeling diffusive transport with a fractional derivative without singular kernel. Phys. A Stat. Mech. Appl. 447, 467–481 (2016)MathSciNetMATHCrossRef Gómez-Aguilar, J., López-López, M., Alvarado-Martínez, V., Reyes-Reyes, J., Adam-Medina, M.: Modeling diffusive transport with a fractional derivative without singular kernel. Phys. A Stat. Mech. Appl. 447, 467–481 (2016)MathSciNetMATHCrossRef
33.
Zurück zum Zitat Anh, V.V., Leonenko, N.N.: Spectral analysis of fractional kinetic equations with random data. J. Stat. Phys. 104, 1349–1387 (2001)MathSciNetMATHCrossRef Anh, V.V., Leonenko, N.N.: Spectral analysis of fractional kinetic equations with random data. J. Stat. Phys. 104, 1349–1387 (2001)MathSciNetMATHCrossRef
34.
Zurück zum Zitat Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics, vol. 43. De Gruyter, Berlin (2012)MATH Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics, vol. 43. De Gruyter, Berlin (2012)MATH
35.
Zurück zum Zitat Leonenko, N.N., Meerschaert, M.M., Sikorskii, A.: Fractional Pearson diffusions. J. Math. Anal. Appl. 403(2), 532–546 (2013)MathSciNetMATHCrossRef Leonenko, N.N., Meerschaert, M.M., Sikorskii, A.: Fractional Pearson diffusions. J. Math. Anal. Appl. 403(2), 532–546 (2013)MathSciNetMATHCrossRef
36.
Zurück zum Zitat Atangana, A.: Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology. Academic Press, London (2018). ISBN: 978-0-12-809670-3MATH Atangana, A.: Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology. Academic Press, London (2018). ISBN: 978-0-12-809670-3MATH
37.
Zurück zum Zitat Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Frac. Differ. Appl. 1(2), 73–85 (2015) Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Frac. Differ. Appl. 1(2), 73–85 (2015)
39.
Zurück zum Zitat Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 87–92 (2015) Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 87–92 (2015)
40.
Zurück zum Zitat Caputo, M., Fabrizio, M.: Applications of new time and spatial fractional derivatives with exponential kernels. Prog. Fract. Differ. Appl. 2(1), 1–11 (2016)CrossRef Caputo, M., Fabrizio, M.: Applications of new time and spatial fractional derivatives with exponential kernels. Prog. Fract. Differ. Appl. 2(1), 1–11 (2016)CrossRef
41.
Zurück zum Zitat Atangana, A., Alkahtani, B.S.T.: Analysis of the Keller–Segel model with a fractional derivative without singular kernel. Entropy 17(6), 4439–4453 (2015)MathSciNetMATHCrossRef Atangana, A., Alkahtani, B.S.T.: Analysis of the Keller–Segel model with a fractional derivative without singular kernel. Entropy 17(6), 4439–4453 (2015)MathSciNetMATHCrossRef
47.
Zurück zum Zitat Atangana, A., Alkahtani, S.T.A.: Extension of the RLC electrical circuit to fractional derivative without singular kernel. Adv. Mech. Eng. 7, 1–6 (2015) Atangana, A., Alkahtani, S.T.A.: Extension of the RLC electrical circuit to fractional derivative without singular kernel. Adv. Mech. Eng. 7, 1–6 (2015)
48.
Zurück zum Zitat Atangana, A., Nieto, J.J.: Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel. Adv. Mech. Eng. 7, 1–7 (2015) Atangana, A., Nieto, J.J.: Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel. Adv. Mech. Eng. 7, 1–7 (2015)
50.
Zurück zum Zitat Gómez-Aguilar, J.F., Yépez-Martnez, H., Calderón-Ramón, C., Cruz-Orduña, I., Fabricio, R., Jiménez, E., Olivares-Peregrino, V.H.: Modeling of a mass-spring-damper system by fractional derivatives with and without a singular kernel. Entropy 17(9), 6289–6303 (2005)MathSciNetMATH Gómez-Aguilar, J.F., Yépez-Martnez, H., Calderón-Ramón, C., Cruz-Orduña, I., Fabricio, R., Jiménez, E., Olivares-Peregrino, V.H.: Modeling of a mass-spring-damper system by fractional derivatives with and without a singular kernel. Entropy 17(9), 6289–6303 (2005)MathSciNetMATH
51.
Zurück zum Zitat Sherief, H.H., Helmy, A.K.: A two dimensional problem for a half-space in magneto-thermoelasticity with thermal relaxation. Int. J. Eng. Sci. 40, 587–604 (2002)MathSciNetMATHCrossRef Sherief, H.H., Helmy, A.K.: A two dimensional problem for a half-space in magneto-thermoelasticity with thermal relaxation. Int. J. Eng. Sci. 40, 587–604 (2002)MathSciNetMATHCrossRef
52.
Zurück zum Zitat Othman, M.I.A.: Generalized electromagneto-thermoelastic plane waves by thermal shock problem in a finite conductivity half-space with one relaxation time. Multidiscipl. Model. Mater. Struct. 1, 231–250 (2005)CrossRef Othman, M.I.A.: Generalized electromagneto-thermoelastic plane waves by thermal shock problem in a finite conductivity half-space with one relaxation time. Multidiscipl. Model. Mater. Struct. 1, 231–250 (2005)CrossRef
53.
Zurück zum Zitat Othman, M.I.A., Zidan, M.E.M., Hilal, M.I.M.: The effect of magnetic field on a rotating thermoelastic medium with voids under thermal loading due to laser pulse with energy dissipation. Can. J. Phys. 92, 1359–1371 (2014)CrossRef Othman, M.I.A., Zidan, M.E.M., Hilal, M.I.M.: The effect of magnetic field on a rotating thermoelastic medium with voids under thermal loading due to laser pulse with energy dissipation. Can. J. Phys. 92, 1359–1371 (2014)CrossRef
55.
Zurück zum Zitat Halsted, D.J., Brown, D.E.: Zakian’s technique for inverting Laplace transforms. Chem. Eng. J. 3, 312–313 (1972)CrossRef Halsted, D.J., Brown, D.E.: Zakian’s technique for inverting Laplace transforms. Chem. Eng. J. 3, 312–313 (1972)CrossRef
56.
Zurück zum Zitat Othman, M.I.A.: Generalized electro-magneto-thermoelasticity in case of thermal shock plane waves for a finite conducting half-space with two relaxation time. Mech. Mech. Eng. 14(1), 5–30 (2010) Othman, M.I.A.: Generalized electro-magneto-thermoelasticity in case of thermal shock plane waves for a finite conducting half-space with two relaxation time. Mech. Mech. Eng. 14(1), 5–30 (2010)
57.
Zurück zum Zitat Nowacki, W.: Dynamic Problem of Thermoelasticity, vol. 399. Noordhoff International, Leyden (1975)MATH Nowacki, W.: Dynamic Problem of Thermoelasticity, vol. 399. Noordhoff International, Leyden (1975)MATH
58.
Zurück zum Zitat Spencer, A.J.M.: Continuum Theory of the Mechanics of Fibre-Reinforced Composites. Springer, Berlin (1984). ISBN: 978-3-7091-4336-0MATHCrossRef Spencer, A.J.M.: Continuum Theory of the Mechanics of Fibre-Reinforced Composites. Springer, Berlin (1984). ISBN: 978-3-7091-4336-0MATHCrossRef
59.
Zurück zum Zitat Dhaliwal, R.S., Singh, A.: Dynamic Coupled Thermoelasticity. Hindustan Publishing Corporation, New Delhi (1980) Dhaliwal, R.S., Singh, A.: Dynamic Coupled Thermoelasticity. Hindustan Publishing Corporation, New Delhi (1980)
60.
Zurück zum Zitat Youssef, H.M., Al-Lehaibi, E.A.: Fractional order generalized thermoelastic infinite medium with cylindrical cavity subjected to harmonically varying heat. Engineering 3, 32–37 (2011)CrossRef Youssef, H.M., Al-Lehaibi, E.A.: Fractional order generalized thermoelastic infinite medium with cylindrical cavity subjected to harmonically varying heat. Engineering 3, 32–37 (2011)CrossRef
61.
Zurück zum Zitat Mondal, S., Pal, P., Kanoria, M.: Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative. Acta Mech. 230(1), 179–199 (2019)MathSciNetMATHCrossRef Mondal, S., Pal, P., Kanoria, M.: Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative. Acta Mech. 230(1), 179–199 (2019)MathSciNetMATHCrossRef
Metadaten
Titel
Magneto-thermoelastic interaction in a reinforced medium with cylindrical cavity in the context of Caputo–Fabrizio heat transport law
verfasst von
Sudip Mondal
Abhik Sur
M. Kanoria
Publikationsdatum
25.09.2019
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 12/2019
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02498-5

Weitere Artikel der Ausgabe 12/2019

Acta Mechanica 12/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.