Skip to main content
Erschienen in: Acta Mechanica 12/2019

12.08.2019 | Original Paper

Effective elasticity tensors of fiber-reinforced composite materials with 2D or 3D fiber distribution coefficients

verfasst von: Tengfei Zhao, Lei Zhang, Mojia Huang

Erschienen in: Acta Mechanica | Ausgabe 12/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A fiber-reinforced composite material \(\mathcal {N}\) consists of a matrix and numerous fibers. Besides their intrinsic properties and the volume fractions of matrix and fibers, the effective elasticity tensors of \(\mathcal {N}\) are also related to the two-dimensional (2D) or the three-dimensional (3D) fiber direction distributions. Herein the Fourier series and the Wigner D-functions are introduced as the 2D and the 3D fiber direction distribution functions (FDF), respectively. The expanded coefficients of the FDF are called the fiber distribution coefficients (FDC). When \(\mathcal {N}\) consists of an anisotropic elasticity matrix and numerous transversely isotropic fibers, we derive the effective elasticity tensor \(\widehat{\mathbf {C}}\) of \(\mathcal {N}\) by the self-consistent method with the 2D FDC or the 3D FDC. The FDC can be easily obtained via the fiber direction arrangements of \(\mathcal {N}\) for the fiber arbitrary or orthorhombic distributions of \(\mathcal {N}\). The procedure of deriving \(\widehat{\mathbf {C}}\) is simple because the Kelvin notation is used to compute tensor rotations. When both the matrix and the fibers are isotropic, for the 2D fiber distributions at least three direction arrangements of fibers are needed to build the fiber-reinforced transversely isotropic composite materials, and for the 3D fiber distributions at least six direction arrangements are needed to build the fiber-reinforced isotropic composite materials. The results of the FEM simulations are consistent with those of our expressions \(\widehat{\mathbf {C}}\).
Literatur
1.
Zurück zum Zitat Advani, S.G., Tucker, C.L.: The use of tensor to describe and predict fiber orientation in short-fiber composites. J. Rheol. 31(8), 751–784 (1987)CrossRef Advani, S.G., Tucker, C.L.: The use of tensor to describe and predict fiber orientation in short-fiber composites. J. Rheol. 31(8), 751–784 (1987)CrossRef
2.
Zurück zum Zitat Müller, V., Böhlke, T.: Prediction of effective elastic properties of fiber reinforced composites using fiber orientation tensors. Compos. Sci. Technol. 130, 36–45 (2016)CrossRef Müller, V., Böhlke, T.: Prediction of effective elastic properties of fiber reinforced composites using fiber orientation tensors. Compos. Sci. Technol. 130, 36–45 (2016)CrossRef
3.
Zurück zum Zitat Dong, X.N., Zhang, X., Huang, Y.Y., Guo, X.E.: A generalized self-consistent estimate for the effective elastic moduli of fiber-reinforced composite materials with multiple transversely isotropic inclusions. Int. J. Mech. Sci. 47, 922–940 (2005)CrossRef Dong, X.N., Zhang, X., Huang, Y.Y., Guo, X.E.: A generalized self-consistent estimate for the effective elastic moduli of fiber-reinforced composite materials with multiple transversely isotropic inclusions. Int. J. Mech. Sci. 47, 922–940 (2005)CrossRef
4.
Zurück zum Zitat Hashin, Z., Rosen, B.W.: The elastic moduli of fiber-reinforced materials. J. Appl. Mech. 31, 223–232 (1964)CrossRef Hashin, Z., Rosen, B.W.: The elastic moduli of fiber-reinforced materials. J. Appl. Mech. 31, 223–232 (1964)CrossRef
5.
Zurück zum Zitat Hashin, Z.: On elastic behavior of fiber reinforced materials of arbitrary transverse phase geometry. J. Mech. Phys. Solids 13, 119–134 (1965)CrossRef Hashin, Z.: On elastic behavior of fiber reinforced materials of arbitrary transverse phase geometry. J. Mech. Phys. Solids 13, 119–134 (1965)CrossRef
6.
Zurück zum Zitat Hill, R.: Theory of mechanical properties of fibre-strengthened materials-I. Elastic behavior. J. Mech. Phys. Solids 12, 199–212 (1964)MathSciNetCrossRef Hill, R.: Theory of mechanical properties of fibre-strengthened materials-I. Elastic behavior. J. Mech. Phys. Solids 12, 199–212 (1964)MathSciNetCrossRef
7.
Zurück zum Zitat Hill, R.: Theory of mechanical properties of fibre-strengthened materials-III. Self-consistent model. J. Mech. Phys. Solids 13, 189–198 (1965)CrossRef Hill, R.: Theory of mechanical properties of fibre-strengthened materials-III. Self-consistent model. J. Mech. Phys. Solids 13, 189–198 (1965)CrossRef
8.
Zurück zum Zitat Bunge, H.J.: Texture Analysis in Material Science: Mathematical Methods. Butterworths, London (1982) Bunge, H.J.: Texture Analysis in Material Science: Mathematical Methods. Butterworths, London (1982)
9.
Zurück zum Zitat Roe, R.J.: Description of crystallite orientation in polycrystalline materials: III. General solution to pole figures. J. Appl. Phys. 36, 2024–2031 (1965)CrossRef Roe, R.J.: Description of crystallite orientation in polycrystalline materials: III. General solution to pole figures. J. Appl. Phys. 36, 2024–2031 (1965)CrossRef
10.
Zurück zum Zitat Roe, R.J.: Inversion of pole figures for materials having cubic crystal symmetry. J. Appl. Phys. 37, 2069–2072 (1966)CrossRef Roe, R.J.: Inversion of pole figures for materials having cubic crystal symmetry. J. Appl. Phys. 37, 2069–2072 (1966)CrossRef
11.
Zurück zum Zitat Lobos, M., Yuzbasioglu, T., Böhlke, T.: Materials design of elastic properties of multiphase polycrystalline composites using model functions. Proc. Appl. Math. Mech. 15, 459–460 (2015)CrossRef Lobos, M., Yuzbasioglu, T., Böhlke, T.: Materials design of elastic properties of multiphase polycrystalline composites using model functions. Proc. Appl. Math. Mech. 15, 459–460 (2015)CrossRef
12.
Zurück zum Zitat Lobos, M., Yuzbasioglu, T., Böhlke, T.: Homogenization and materials design of anisotropic multiphase linear elastic materials using central model functions. J. Elast. 128(1), 17–60 (2017)MathSciNetCrossRef Lobos, M., Yuzbasioglu, T., Böhlke, T.: Homogenization and materials design of anisotropic multiphase linear elastic materials using central model functions. J. Elast. 128(1), 17–60 (2017)MathSciNetCrossRef
13.
Zurück zum Zitat Böhlke, T., Lobos, M.: Representation of Hashin–Shtrikman bounds of cubic crystal aggregates in terms of texture coefficients with application in materials design. Acta Mater. 67, 324–334 (2014)CrossRef Böhlke, T., Lobos, M.: Representation of Hashin–Shtrikman bounds of cubic crystal aggregates in terms of texture coefficients with application in materials design. Acta Mater. 67, 324–334 (2014)CrossRef
14.
Zurück zum Zitat Lobos, M., Böhlke, T.: Materials design for the anisotropic linear elastic properties of textured cubic crystal aggregates using zeroth-, first- and second-order bounds. Int. J. Mech. Mater. Des. 11, 59–78 (2015)CrossRef Lobos, M., Böhlke, T.: Materials design for the anisotropic linear elastic properties of textured cubic crystal aggregates using zeroth-, first- and second-order bounds. Int. J. Mech. Mater. Des. 11, 59–78 (2015)CrossRef
15.
Zurück zum Zitat Fernändez, M., Böhlke, T.: Hashin–Shtrikman bounds with eigenfields in terms of texture coefficients for polycrystalline materials. Acta Mater. 165, 686–697 (2019)CrossRef Fernändez, M., Böhlke, T.: Hashin–Shtrikman bounds with eigenfields in terms of texture coefficients for polycrystalline materials. Acta Mater. 165, 686–697 (2019)CrossRef
16.
Zurück zum Zitat Lobos Fernändez, M., Böhlke, T.: Representation of Hashin-Shtrikman bounds in terms of texture coefficients for arbitrarily anisotropic polycrystalline materials. J. Elast. 134, 1–38 (2019)MathSciNetCrossRef Lobos Fernändez, M., Böhlke, T.: Representation of Hashin-Shtrikman bounds in terms of texture coefficients for arbitrarily anisotropic polycrystalline materials. J. Elast. 134, 1–38 (2019)MathSciNetCrossRef
17.
Zurück zum Zitat Huang, M.J., Man, C.-S.: A finite-element study on constitutive relation HM-V for elastic polycrystals. Comput. Mater. Sci. 2005(32), 378–386 (2005)CrossRef Huang, M.J., Man, C.-S.: A finite-element study on constitutive relation HM-V for elastic polycrystals. Comput. Mater. Sci. 2005(32), 378–386 (2005)CrossRef
18.
Zurück zum Zitat Huang, M., Zhan, H., Lin, X.Q., Tang, H.: Constitutive relation of weakly anisotropic polycrystal with microstructure and initial stress. Acta. Mech. Sin. 23, 183–198 (2007)MathSciNetCrossRef Huang, M., Zhan, H., Lin, X.Q., Tang, H.: Constitutive relation of weakly anisotropic polycrystal with microstructure and initial stress. Acta. Mech. Sin. 23, 183–198 (2007)MathSciNetCrossRef
19.
Zurück zum Zitat Morris, P.R.: Elastic constants of polycrystals. Int. J. Eng. Sci. 8, 49–61 (1970)CrossRef Morris, P.R.: Elastic constants of polycrystals. Int. J. Eng. Sci. 8, 49–61 (1970)CrossRef
20.
Zurück zum Zitat Huang, M.J.: Elastic constants of a polycrystal with an orthorhombic texture. Mech. Mater. 36, 623–632 (2004)CrossRef Huang, M.J.: Elastic constants of a polycrystal with an orthorhombic texture. Mech. Mater. 36, 623–632 (2004)CrossRef
21.
Zurück zum Zitat Huang, M.J.: Perturbation approach to elastic constitutive relations of polycrystals. J. Mech. Phys. Solids 52, 1827–1853 (2004)MathSciNetCrossRef Huang, M.J.: Perturbation approach to elastic constitutive relations of polycrystals. J. Mech. Phys. Solids 52, 1827–1853 (2004)MathSciNetCrossRef
22.
Zurück zum Zitat Huang, M., Man, C.-S.: Explicit bounds of effective stiffness tensors for textured aggregates of cubic crystallites. Math. Mech. Solids 13, 408–430 (2008)MathSciNetCrossRef Huang, M., Man, C.-S.: Explicit bounds of effective stiffness tensors for textured aggregates of cubic crystallites. Math. Mech. Solids 13, 408–430 (2008)MathSciNetCrossRef
23.
Zurück zum Zitat Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum. Word Scientific, Singapore (1988)CrossRef Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum. Word Scientific, Singapore (1988)CrossRef
24.
Zurück zum Zitat Biedenharn, L.C., Louck, J.D.: Angular Momentum in Quantum Physics. Cambridge University Press, Cambridge (1984)CrossRef Biedenharn, L.C., Louck, J.D.: Angular Momentum in Quantum Physics. Cambridge University Press, Cambridge (1984)CrossRef
25.
Zurück zum Zitat Man, C.-S., Huang, M.J.: A representation theorem for material tensors of weakly-textured polycrystals and its applications in elasticity. J. Elast. 106, 1–42 (2012)MathSciNetCrossRef Man, C.-S., Huang, M.J.: A representation theorem for material tensors of weakly-textured polycrystals and its applications in elasticity. J. Elast. 106, 1–42 (2012)MathSciNetCrossRef
26.
Zurück zum Zitat Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A241, 376–396 (1957)MathSciNetMATH Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A241, 376–396 (1957)MathSciNetMATH
27.
Zurück zum Zitat Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials. North-Holland, Amsterdam (1993)MATH Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials. North-Holland, Amsterdam (1993)MATH
28.
Zurück zum Zitat Mura, T.: Micromechanics of Defects in Solids. Martinus Nijhoff Publishers, The Hague (1982)CrossRef Mura, T.: Micromechanics of Defects in Solids. Martinus Nijhoff Publishers, The Hague (1982)CrossRef
29.
Zurück zum Zitat Man, C.-S.: On the constitutive equations of some weakly textured materials. Arch. Ration. Mech. 143, 77–103 (1998)MathSciNetCrossRef Man, C.-S.: On the constitutive equations of some weakly textured materials. Arch. Ration. Mech. 143, 77–103 (1998)MathSciNetCrossRef
Metadaten
Titel
Effective elasticity tensors of fiber-reinforced composite materials with 2D or 3D fiber distribution coefficients
verfasst von
Tengfei Zhao
Lei Zhang
Mojia Huang
Publikationsdatum
12.08.2019
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 12/2019
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02485-w

Weitere Artikel der Ausgabe 12/2019

Acta Mechanica 12/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.