Skip to main content
Top

02-04-2024 | Original

Fractional dual-phase-lag hygrothermoelastic model for a sphere subjected to heat-moisture load

Authors: Shahala Sheikh, Lalsingh Khalsa, Gulshan Makkad, Vinod Varghese

Published in: Archive of Applied Mechanics

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper proposes a non-Fourier model of heat and a non-Fick model of moisture diffusion coupling in unification with hygrothermoelasticity theory within the framework of time-fractional calculus theory. The generalized two-temperature theory of hygrothermoelasticity has been used to develop the relevant linearly coupled partial differential equations system. In the context of time-fractional calculus theory, we investigate a hygrothermal elastic problem for a centrally symmetric sphere exposed to physical heat and moisture load at its surface within the limited spherical region. The integral transform approach produces analytical formulas for the transient response of temperature change, moisture distribution, displacement, and stress components in the sphere for pulsed and continuous heat-moisture flux at the sphere’s surface. The Gaver–Stehfest procedure is used to invert the analytical hygrothermal variation solutions that were derived in the Laplace domain. The Kuznetsov convergence criterion has studied the problem’s stability and bounded variations. The effects of fractional order on the hygrothermal fields and hygrothermoelastic stress response are graphically represented and calculated using numerical data. The specific heat and moisture connection, which abides by Fourier heat conduction and Fick’s moisture diffusion, is recovered as a particular case when the fractional-order derivative reduces to the first-order derivative. The study reveals a significant coupling effect between temperature and moisture in composite material T300/5208, with a maximum discrepancy of up to 50%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sih, G., Michopoulos, J., Chou, S.C.: Hygrothermoelasticity. Martinus Niijhoof Publishing, Dordrecht (1986)CrossRef Sih, G., Michopoulos, J., Chou, S.C.: Hygrothermoelasticity. Martinus Niijhoof Publishing, Dordrecht (1986)CrossRef
2.
go back to reference Chang, W.J.: Transient hygrothermal responses in a solid cylinder by linear theory of coupled heat and moisture. Appl. Math. Modell. 18(8), 467–473 (1994)CrossRef Chang, W.J.: Transient hygrothermal responses in a solid cylinder by linear theory of coupled heat and moisture. Appl. Math. Modell. 18(8), 467–473 (1994)CrossRef
3.
go back to reference Benkhedda, A., Tounsi, A., Addabedia, E.A.: Effect of temperature and humidity on transient hygrothermal stresses during moisture desorption in laminated composite plates. Compos. Struct. 82(4), 629–635 (2008)CrossRef Benkhedda, A., Tounsi, A., Addabedia, E.A.: Effect of temperature and humidity on transient hygrothermal stresses during moisture desorption in laminated composite plates. Compos. Struct. 82(4), 629–635 (2008)CrossRef
4.
go back to reference Zenkour, A.: Hygrothermoelastic responses of inhomogeneous piezoelectric and exponentially graded cylinders. Int. J. Press. Vessels Pip. 119, 8–18 (2014)CrossRef Zenkour, A.: Hygrothermoelastic responses of inhomogeneous piezoelectric and exponentially graded cylinders. Int. J. Press. Vessels Pip. 119, 8–18 (2014)CrossRef
5.
go back to reference Chiba, R., Sugano, Y.: Transient hygrothermoelastic analysis of layered plates with one-dimensional temperature and moisture variations through the thickness. Compos. Struct. 93(9), 2260–2268 (2011)CrossRef Chiba, R., Sugano, Y.: Transient hygrothermoelastic analysis of layered plates with one-dimensional temperature and moisture variations through the thickness. Compos. Struct. 93(9), 2260–2268 (2011)CrossRef
6.
go back to reference Ishihara, M., Ootao, Y., Kameo, Y.: Hygrothermal field considering nonlinear coupling between heat and binary moisture diffusion in porous media. J. Therm. Stresses 37(10), 1173–1200 (2014)CrossRef Ishihara, M., Ootao, Y., Kameo, Y.: Hygrothermal field considering nonlinear coupling between heat and binary moisture diffusion in porous media. J. Therm. Stresses 37(10), 1173–1200 (2014)CrossRef
7.
go back to reference Mitra, K., Kumar, S., Vedevarz, A., Moallemi, M.K.: Experimental evidence of hyperbolic heat conduction in processed meat. ASME J. Heat Transf. 117(3), 568–573 (1995)CrossRef Mitra, K., Kumar, S., Vedevarz, A., Moallemi, M.K.: Experimental evidence of hyperbolic heat conduction in processed meat. ASME J. Heat Transf. 117(3), 568–573 (1995)CrossRef
8.
go back to reference Tzou, D.Y.: Experimental support for the lagging behaviour in heat propagation. J. Thermophys. Heat Transf. 9(4), 686–693 (1995)CrossRef Tzou, D.Y.: Experimental support for the lagging behaviour in heat propagation. J. Thermophys. Heat Transf. 9(4), 686–693 (1995)CrossRef
9.
go back to reference Hetnarski, R.B., Ignaczak, J.: Generalized thermoelasticity. J. Therm. Stresses 22(4–5), 451–476 (1999)MathSciNet Hetnarski, R.B., Ignaczak, J.: Generalized thermoelasticity. J. Therm. Stresses 22(4–5), 451–476 (1999)MathSciNet
10.
go back to reference Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)CrossRef Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)CrossRef
11.
12.
go back to reference Hetnarski, R.B., Ignaczak, J.: Soliton-like waves in a low temperature nonlinear thermoelastic solid. Int. J. Eng. Sci. 34(15), 1767–1787 (1996)MathSciNetCrossRef Hetnarski, R.B., Ignaczak, J.: Soliton-like waves in a low temperature nonlinear thermoelastic solid. Int. J. Eng. Sci. 34(15), 1767–1787 (1996)MathSciNetCrossRef
15.
go back to reference Chandrasekharaiah, D.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51(12), 705–730 (1998)CrossRef Chandrasekharaiah, D.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51(12), 705–730 (1998)CrossRef
16.
go back to reference Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)MathSciNetCrossRef Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)MathSciNetCrossRef
17.
go back to reference Kimmich, R.: Strange kinetics, porous media, and NMR. Chem. Phys. 284(1–2), 253–285 (2002)CrossRef Kimmich, R.: Strange kinetics, porous media, and NMR. Chem. Phys. 284(1–2), 253–285 (2002)CrossRef
18.
go back to reference Fujita, Y.: Integrodifferential equation which interpolates the heat equation and the wave equation. Osaka J. Math. 27(2), 309–321 (1990)MathSciNet Fujita, Y.: Integrodifferential equation which interpolates the heat equation and the wave equation. Osaka J. Math. 27(2), 309–321 (1990)MathSciNet
19.
go back to reference Luchko, Y., Mainardi, F., Povstenko, Y.: Propagation speed of the maximum of the fundamental solution to the fractional diffusion-wave equation. Comput. Math. Appl. 66(5), 774–784 (2013)MathSciNetCrossRef Luchko, Y., Mainardi, F., Povstenko, Y.: Propagation speed of the maximum of the fundamental solution to the fractional diffusion-wave equation. Comput. Math. Appl. 66(5), 774–784 (2013)MathSciNetCrossRef
20.
21.
go back to reference Zanette, D.H.: Macroscopic current in fractional anomalous diffusion. Phys. A 252(1–2), 159–164 (1998)CrossRef Zanette, D.H.: Macroscopic current in fractional anomalous diffusion. Phys. A 252(1–2), 159–164 (1998)CrossRef
22.
go back to reference Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29(1), 129–143 (2002)MathSciNetCrossRef Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29(1), 129–143 (2002)MathSciNetCrossRef
23.
go back to reference Povstenko, Y.: Central symmetric solution to the Neumann problem for a time-fractional diffusion-wave equation in a sphere. Nonlinear Anal. Real World Appl. 13(3), 1229–1238 (2012)MathSciNetCrossRef Povstenko, Y.: Central symmetric solution to the Neumann problem for a time-fractional diffusion-wave equation in a sphere. Nonlinear Anal. Real World Appl. 13(3), 1229–1238 (2012)MathSciNetCrossRef
24.
go back to reference Povstenko, Y.: Fractional heat conduction equation and associated thermal stress. J. Therm. Stresses 28(1), 83–102 (2004)MathSciNetCrossRef Povstenko, Y.: Fractional heat conduction equation and associated thermal stress. J. Therm. Stresses 28(1), 83–102 (2004)MathSciNetCrossRef
25.
go back to reference Sherief, H.H., El-Sayed, A., El-Latief, A.A.: Fractional order theory of thermoelasticity. Int. J. Solids Struct. 47(2), 269–275 (2010)CrossRef Sherief, H.H., El-Sayed, A., El-Latief, A.A.: Fractional order theory of thermoelasticity. Int. J. Solids Struct. 47(2), 269–275 (2010)CrossRef
26.
go back to reference Youssef, H.M.: Theory of fractional order generalized thermoelasticity. ASME J. Heat Transf. 132(6), 061301 (2010)CrossRef Youssef, H.M.: Theory of fractional order generalized thermoelasticity. ASME J. Heat Transf. 132(6), 061301 (2010)CrossRef
27.
go back to reference Ezzat, M.A., El Karamany, A.S.: Theory of fractional order in electro-thermoelasticity. Eur. J. Mech. A. Solids 30(4), 491–500 (2011)CrossRef Ezzat, M.A., El Karamany, A.S.: Theory of fractional order in electro-thermoelasticity. Eur. J. Mech. A. Solids 30(4), 491–500 (2011)CrossRef
28.
go back to reference Jumarie, G.: Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time—application to Merton’s optimal portfolio. Comput. Math. Appl. 59(3), 1142–1164 (2010)MathSciNetCrossRef Jumarie, G.: Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time—application to Merton’s optimal portfolio. Comput. Math. Appl. 59(3), 1142–1164 (2010)MathSciNetCrossRef
29.
go back to reference Povstenko, Y.: Time-fractional thermoelasticity problem for a sphere subjected to the heat flux. Appl. Math. Comput. 257, 327–334 (2015)MathSciNet Povstenko, Y.: Time-fractional thermoelasticity problem for a sphere subjected to the heat flux. Appl. Math. Comput. 257, 327–334 (2015)MathSciNet
30.
go back to reference Andarwa, S., Tabrizi, H.B.: Non-Fourier effect in the presence of coupled heat and moisture transfer. Int. J. Heat Mass Transfer 53(15–16), 3080–3087 (2010)CrossRef Andarwa, S., Tabrizi, H.B.: Non-Fourier effect in the presence of coupled heat and moisture transfer. Int. J. Heat Mass Transfer 53(15–16), 3080–3087 (2010)CrossRef
31.
go back to reference Silva, F.R., Gonçalves, G., Lenzi, M.K., Lenzi, E.K.: An extension of the linear Luikov system equations of heat and mass transfer. Int. J. Heat Mass Transfer 63, 233–238 (2013)CrossRef Silva, F.R., Gonçalves, G., Lenzi, M.K., Lenzi, E.K.: An extension of the linear Luikov system equations of heat and mass transfer. Int. J. Heat Mass Transfer 63, 233–238 (2013)CrossRef
32.
go back to reference Zhang, X.Y., Li, X.F.: Transient response of a hygrothermoelastic cylinder based on fractional diffusion wave theory. J. Therm. Stresses 40(12), 1575–1594 (2017)CrossRef Zhang, X.Y., Li, X.F.: Transient response of a hygrothermoelastic cylinder based on fractional diffusion wave theory. J. Therm. Stresses 40(12), 1575–1594 (2017)CrossRef
33.
go back to reference Peng, Y., Zhang, X.Y., Xie, Y.J., Li, X.F.: Transient hygrothermoelastic response in a cylinder considering non-Fourier hyperbolic heat-moisture coupling. Int. J. Heat Mass Transfer 126, 1094–1103 (2018)CrossRef Peng, Y., Zhang, X.Y., Xie, Y.J., Li, X.F.: Transient hygrothermoelastic response in a cylinder considering non-Fourier hyperbolic heat-moisture coupling. Int. J. Heat Mass Transfer 126, 1094–1103 (2018)CrossRef
38.
go back to reference Sugano, Y., Chuuman, Y.: Analytic solution of transient hygrothermoelastic problem due to coupled heat and moisture diffusion in a hollow circular cylinder. Trans. Jpn Soc. Mech. Eng. 59(564), 1956–1963 (1993)CrossRef Sugano, Y., Chuuman, Y.: Analytic solution of transient hygrothermoelastic problem due to coupled heat and moisture diffusion in a hollow circular cylinder. Trans. Jpn Soc. Mech. Eng. 59(564), 1956–1963 (1993)CrossRef
43.
go back to reference Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions, p. 485. National Bureau of Standards, Washington, D. C. (1965) Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions, p. 485. National Bureau of Standards, Washington, D. C. (1965)
50.
go back to reference Caputo, M.: Linear models of dissipation whose q is almost frequency independent, part II. Geophys. J. Roy. Astron. Soc. 13, 529–539 (1967)CrossRef Caputo, M.: Linear models of dissipation whose q is almost frequency independent, part II. Geophys. J. Roy. Astron. Soc. 13, 529–539 (1967)CrossRef
51.
go back to reference Caputo, M.: Elasticita e Dissipazione. Zanichelli, Bologna (1969) Caputo, M.: Elasticita e Dissipazione. Zanichelli, Bologna (1969)
54.
go back to reference Cattaneo, C.: Sur uneForme de I’equation de la Chaleur eliminant le paradoxed’une propagation instantanee’. C. R. Acad. Sci. 247, 431–433 (1958) Cattaneo, C.: Sur uneForme de I’equation de la Chaleur eliminant le paradoxed’une propagation instantanee’. C. R. Acad. Sci. 247, 431–433 (1958)
55.
go back to reference Vernotte, P.: Les paradoxes de la théorie continue de l’équation de la chaleur. C. R. Acad. Sci. 246, 3154–3155 (1958)MathSciNet Vernotte, P.: Les paradoxes de la théorie continue de l’équation de la chaleur. C. R. Acad. Sci. 246, 3154–3155 (1958)MathSciNet
56.
go back to reference Ezzat, M.A.: Magneto-thermoelasticity with thermoelectric properties and fractional derivative. Heat Transf. Phys. B 406, 30–35 (2011) Ezzat, M.A.: Magneto-thermoelasticity with thermoelectric properties and fractional derivative. Heat Transf. Phys. B 406, 30–35 (2011)
58.
go back to reference Lotfy, K., El-Bary, A.A., Tantawi, R.S.: Effects of variable thermal conductivity of a small semiconductor cavity through the fractional order heat-magneto-photothermal theory. Eur. Phys. J. Plus 134(6), 280 (2019)CrossRef Lotfy, K., El-Bary, A.A., Tantawi, R.S.: Effects of variable thermal conductivity of a small semiconductor cavity through the fractional order heat-magneto-photothermal theory. Eur. Phys. J. Plus 134(6), 280 (2019)CrossRef
59.
go back to reference Lotfy, K., Elidy, E.S., Tantawi, R.S.: Piezo-photo-thermoelasticity transport process for hyperbolic two-temperature theory of semiconductor material. Int. J. Mod. Phys. C 32(7), 2150088 (2021)MathSciNetCrossRef Lotfy, K., Elidy, E.S., Tantawi, R.S.: Piezo-photo-thermoelasticity transport process for hyperbolic two-temperature theory of semiconductor material. Int. J. Mod. Phys. C 32(7), 2150088 (2021)MathSciNetCrossRef
60.
go back to reference Abo-Dahab, S.M., Lotfy, Kh., Gohaly, A.: Rotation and magnetic field effect on surface waves propagation in an elastic layer lying over a generalized thermoelastic diffusive half-space with imperfect boundary. Math. Probl. Eng. 2015, 671783 (2015)MathSciNetCrossRef Abo-Dahab, S.M., Lotfy, Kh., Gohaly, A.: Rotation and magnetic field effect on surface waves propagation in an elastic layer lying over a generalized thermoelastic diffusive half-space with imperfect boundary. Math. Probl. Eng. 2015, 671783 (2015)MathSciNetCrossRef
Metadata
Title
Fractional dual-phase-lag hygrothermoelastic model for a sphere subjected to heat-moisture load
Authors
Shahala Sheikh
Lalsingh Khalsa
Gulshan Makkad
Vinod Varghese
Publication date
02-04-2024
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-024-02583-9

Premium Partners