Skip to main content
Top
Published in: Strength of Materials 3/2019

15-08-2019

Fractional Order Thermoelastic Wave Assessment in a Nanoscale Beam Using the Eigenvalue Technique

Authors: I. Abbas, F. Alzahrani, A. N. Abdalla, F. Berto

Published in: Strength of Materials | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents an analytical approach associated with Laplace transforms and a sequential concept over time to obtain the increment of temperature in nanoscale beam with fractional order heat conduction clamped from both ends. The governing equations are written in the forms of differential equations of matrix-vector in the domain of the Laplace transforms and are then solved by the eigenvalue technique. The analytical solutions are obtained for the increment of temperature, displacement, lateral deflection, and stresses in the Laplace domain. Numerical simulations are provided for silicon-like nanoscale beam material, with graphical display of calculated results. The physical implications of distributions of physical variables considered in this article are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. A. Biot, “Thermoelasticity and irreversible thermodynamics,” J. Appl. Phys., 27, No. 3, 240–253 (1956).CrossRef M. A. Biot, “Thermoelasticity and irreversible thermodynamics,” J. Appl. Phys., 27, No. 3, 240–253 (1956).CrossRef
2.
go back to reference H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, 15, No. 5, 299–309 (1967).CrossRef H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, 15, No. 5, 299–309 (1967).CrossRef
3.
go back to reference A. E. Green and K. A. Lindsay, “Thermoelasticity,” J. Elasticity, 2, No. 1, 1–7 (1972).CrossRef A. E. Green and K. A. Lindsay, “Thermoelasticity,” J. Elasticity, 2, No. 1, 1–7 (1972).CrossRef
5.
go back to reference I. A. Abbas, “Three-phase lag model on thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a cylindrical cavity,” J. Comput. Theor. Nanos., 11, No. 4, 987–992 (2014).CrossRef I. A. Abbas, “Three-phase lag model on thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a cylindrical cavity,” J. Comput. Theor. Nanos., 11, No. 4, 987–992 (2014).CrossRef
6.
go back to reference I. A. Abbas and H. M. Youssef, “A nonlinear generalized thermoelasticity model of temperature-dependent materials using finite element method,” Int. J. Thermophys., 33, No. 7, 1302–1313 (2012).CrossRef I. A. Abbas and H. M. Youssef, “A nonlinear generalized thermoelasticity model of temperature-dependent materials using finite element method,” Int. J. Thermophys., 33, No. 7, 1302–1313 (2012).CrossRef
7.
go back to reference H. H. Sherief and F. A. Megahed, “Two-dimensional problems for thermoelasticity, with two relaxation times in spherical regions under axisymmetric distributions,” Int. J. Eng. Sci., 37, No. 3, 299–314 (1999).CrossRef H. H. Sherief and F. A. Megahed, “Two-dimensional problems for thermoelasticity, with two relaxation times in spherical regions under axisymmetric distributions,” Int. J. Eng. Sci., 37, No. 3, 299–314 (1999).CrossRef
8.
go back to reference I. A. Abbas, “A GN model based upon two-temperature generalized thermoelastic theory in an unbounded medium with a spherical cavity,” Appl. Math. Comput., 245, 108–115 (2014). I. A. Abbas, “A GN model based upon two-temperature generalized thermoelastic theory in an unbounded medium with a spherical cavity,” Appl. Math. Comput., 245, 108–115 (2014).
9.
go back to reference I. A. Abbas, “Fractional order GN model on thermoelastic interaction in an infinite fibre-reinforced anisotropic plate containing a circular hole,” J. Comput. Theor. Nanos., 11, No. 2, 380–384 (2014).CrossRef I. A. Abbas, “Fractional order GN model on thermoelastic interaction in an infinite fibre-reinforced anisotropic plate containing a circular hole,” J. Comput. Theor. Nanos., 11, No. 2, 380–384 (2014).CrossRef
10.
go back to reference M. Marin and A. Ochsner, “The effect of a dipolar structure on the Hölder stability in Green–Naghdi thermoelasticity,” Continuum Mech. Thermodyn., 29, No. 6, 1365– 1374 (2017).CrossRef M. Marin and A. Ochsner, “The effect of a dipolar structure on the Hölder stability in Green–Naghdi thermoelasticity,” Continuum Mech. Thermodyn., 29, No. 6, 1365– 1374 (2017).CrossRef
11.
go back to reference M. Hassan, M. Marin, Abdullah Alsharif, and R. Ellahi, “Convective heat transfer flow of nanofluid in a porous medium over wavy surface,” Phys. Lett. A, 382, No. 38, 2749–2753 (2018).CrossRef M. Hassan, M. Marin, Abdullah Alsharif, and R. Ellahi, “Convective heat transfer flow of nanofluid in a porous medium over wavy surface,” Phys. Lett. A, 382, No. 38, 2749–2753 (2018).CrossRef
12.
go back to reference R. Kumar and I. A. Abbas, “Deformation due to thermal source in micropolar thermoelastic media with thermal and conductive temperatures,” J. Comput. Theor. Nanos., 10, No. 9, 2241–2247 (2013).CrossRef R. Kumar and I. A. Abbas, “Deformation due to thermal source in micropolar thermoelastic media with thermal and conductive temperatures,” J. Comput. Theor. Nanos., 10, No. 9, 2241–2247 (2013).CrossRef
13.
go back to reference I. A. Abbas, “A problem on functional graded material under fractional order theory of thermoelasticity,” Theor. Appl. Fract. Mech., 74, 18–22 (2014).CrossRef I. A. Abbas, “A problem on functional graded material under fractional order theory of thermoelasticity,” Theor. Appl. Fract. Mech., 74, 18–22 (2014).CrossRef
14.
go back to reference A.-E.-N. N. Abd-Alla and I. Abbas, “A problem of generalized magnetothermoelasticity for an infinitely long, perfectly conducting cylinder,” J. Therm. Stresses, 25, No. 11, 1009–1025 (2002).CrossRef A.-E.-N. N. Abd-Alla and I. Abbas, “A problem of generalized magnetothermoelasticity for an infinitely long, perfectly conducting cylinder,” J. Therm. Stresses, 25, No. 11, 1009–1025 (2002).CrossRef
15.
go back to reference I. A. Abbas and H. M. Youssef, “Two-temperature generalized thermoelasticity under ramp-type heating by finite element method,” Meccanica, 48, No. 2, 331–339 (2013).CrossRef I. A. Abbas and H. M. Youssef, “Two-temperature generalized thermoelasticity under ramp-type heating by finite element method,” Meccanica, 48, No. 2, 331–339 (2013).CrossRef
16.
go back to reference I. A. Abbas, “Finite element analysis of the thermoelastic interactions in an unbounded body with a cavity,” Forsch. Ingenieurwes., 71, Nos. 3–4, 215–222 (2007).CrossRef I. A. Abbas, “Finite element analysis of the thermoelastic interactions in an unbounded body with a cavity,” Forsch. Ingenieurwes., 71, Nos. 3–4, 215–222 (2007).CrossRef
17.
go back to reference M. A. Ezzat and A. S. El-Karamany, “Fractional order theory of a perfect conducting thermoelastic medium,” Can. J. Phys., 89, No. 3, 311–318 (2011).CrossRef M. A. Ezzat and A. S. El-Karamany, “Fractional order theory of a perfect conducting thermoelastic medium,” Can. J. Phys., 89, No. 3, 311–318 (2011).CrossRef
18.
go back to reference M. A. Ezzat and A. S. El Karamany, “Theory of fractional order in electrothermoelasticity,” Eur. J. Mech. A-Solid., 30, No. 4, 491–500 (2011).CrossRef M. A. Ezzat and A. S. El Karamany, “Theory of fractional order in electrothermoelasticity,” Eur. J. Mech. A-Solid., 30, No. 4, 491–500 (2011).CrossRef
19.
go back to reference M. A. Ezzat, “Theory of fractional order in generalized thermoelectric MHD,” Appl. Math. Model., 35, No. 10, 4965–4978 (2011).CrossRef M. A. Ezzat, “Theory of fractional order in generalized thermoelectric MHD,” Appl. Math. Model., 35, No. 10, 4965–4978 (2011).CrossRef
21.
go back to reference H. H. Sherief, A. M. A. El-Sayed, and A. M. Abd El-Latief, “Fractional order theory of thermoelasticity,” Int. J. Solids Struct., 47, No. 2, 269–275 (2010).CrossRef H. H. Sherief, A. M. A. El-Sayed, and A. M. Abd El-Latief, “Fractional order theory of thermoelasticity,” Int. J. Solids Struct., 47, No. 2, 269–275 (2010).CrossRef
22.
go back to reference H. Sherief and A. M. Abd El-Latief, “Effect of variable thermal conductivity on a half-space under the fractional order theory of thermoelasticity,” Int. J. Mech. Sci., 74, 185–189 (2013).CrossRef H. Sherief and A. M. Abd El-Latief, “Effect of variable thermal conductivity on a half-space under the fractional order theory of thermoelasticity,” Int. J. Mech. Sci., 74, 185–189 (2013).CrossRef
23.
go back to reference R. Kumar, V. Gupta, and I. A. Abbas, “Plane deformation due to thermal source in fractional order thermoelastic media,” J. Comput. Theor. Nanos., 10, No. 10, 2520– 2525 (2013).CrossRef R. Kumar, V. Gupta, and I. A. Abbas, “Plane deformation due to thermal source in fractional order thermoelastic media,” J. Comput. Theor. Nanos., 10, No. 10, 2520– 2525 (2013).CrossRef
24.
go back to reference K. Y. Yasumura, T. D. Stowe, T. W. Kenny, and D. Rugar, “Thermoelastic energy dissipation in silicon nitride microcantilever structures,” Bull. Am. Phys. Soc., 44, 540 (1999). K. Y. Yasumura, T. D. Stowe, T. W. Kenny, and D. Rugar, “Thermoelastic energy dissipation in silicon nitride microcantilever structures,” Bull. Am. Phys. Soc., 44, 540 (1999).
25.
go back to reference G. Rezazadeh, A. S. Vahdat, S. Tayefeh-rezaei, and C. Cetinkaya, “Thermoelastic damping in a micro-beam resonator using modified couple stress theory,” Acta Mech., 223, No. 6, 1137–1152 (2012).CrossRef G. Rezazadeh, A. S. Vahdat, S. Tayefeh-rezaei, and C. Cetinkaya, “Thermoelastic damping in a micro-beam resonator using modified couple stress theory,” Acta Mech., 223, No. 6, 1137–1152 (2012).CrossRef
26.
go back to reference Y. Sun, D. Fang, and A. K. Soh, “Thermoelastic damping in micro-beam resonators,” Int. J. Solids Struct., 43, No. 10, 3213–3229 (2006).CrossRef Y. Sun, D. Fang, and A. K. Soh, “Thermoelastic damping in micro-beam resonators,” Int. J. Solids Struct., 43, No. 10, 3213–3229 (2006).CrossRef
27.
go back to reference J. N. Sharma and D. Grover, “Thermoelastic vibration analysis of Mems/Nems plate resonators with voids,” Acta Mech., 223, No. 1, 167–187 (2012).CrossRef J. N. Sharma and D. Grover, “Thermoelastic vibration analysis of Mems/Nems plate resonators with voids,” Acta Mech., 223, No. 1, 167–187 (2012).CrossRef
28.
go back to reference J. N. Sharma and D. Grover, “Thermoelastic vibrations in micro-/nano-scale beam resonators with voids,” J. Sound Vib., 330, No. 12, 2964–2977 (2011).CrossRef J. N. Sharma and D. Grover, “Thermoelastic vibrations in micro-/nano-scale beam resonators with voids,” J. Sound Vib., 330, No. 12, 2964–2977 (2011).CrossRef
29.
go back to reference A. M. Zenkour, A. E. Abouelregal, and I. A. Abbas, “Generalized thermoelastic vibration of an axially moving clamped microbeam subjected to ramp-type thermal loading,” J. Therm. Stresses, 37, No. 11, 1302–1323 (2014).CrossRef A. M. Zenkour, A. E. Abouelregal, and I. A. Abbas, “Generalized thermoelastic vibration of an axially moving clamped microbeam subjected to ramp-type thermal loading,” J. Therm. Stresses, 37, No. 11, 1302–1323 (2014).CrossRef
30.
go back to reference I. A. Abbas, “A GN model for thermoelastic interaction in a microscale beam subjected to a moving heat source,” Acta Mech., 226, No. 8, 2527–2536 (2015).CrossRef I. A. Abbas, “A GN model for thermoelastic interaction in a microscale beam subjected to a moving heat source,” Acta Mech., 226, No. 8, 2527–2536 (2015).CrossRef
31.
go back to reference J. N. Sharma, “Thermoelastic damping and frequency shift in micro/nanoscale anisotropic beams,” J. Therm. Stresses, 34, No. 7, 650–666 (2011).CrossRef J. N. Sharma, “Thermoelastic damping and frequency shift in micro/nanoscale anisotropic beams,” J. Therm. Stresses, 34, No. 7, 650–666 (2011).CrossRef
32.
go back to reference Y. X. Sun, Y. Jiang, and J. L. Yang, “Thermoelastic damping of the axisymmetric vibration of laminated trilayered circular plate resonators,” Appl. Mech. Mater., 313–314, 600–603 (2013).CrossRef Y. X. Sun, Y. Jiang, and J. L. Yang, “Thermoelastic damping of the axisymmetric vibration of laminated trilayered circular plate resonators,” Appl. Mech. Mater., 313–314, 600–603 (2013).CrossRef
33.
go back to reference A. S. El-Karamany and M. A. Ezzat, “On fractional thermoelasticity,” Math. Mech. Solids, 16, No. 3, 334–346 (2011).CrossRef A. S. El-Karamany and M. A. Ezzat, “On fractional thermoelasticity,” Math. Mech. Solids, 16, No. 3, 334–346 (2011).CrossRef
34.
go back to reference M. A. Ezzat, “Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer,” Physica B, 406, No. 1, 30–35 (2011).CrossRef M. A. Ezzat, “Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer,” Physica B, 406, No. 1, 30–35 (2011).CrossRef
35.
go back to reference N. C. Das, A. Lahiri, and R. R. Giri, “Eigenvalue approach to generalized thermoelasticity,” Indian J. Pure Appl. Math., 28, No. 12, 1573–1594 (1997). N. C. Das, A. Lahiri, and R. R. Giri, “Eigenvalue approach to generalized thermoelasticity,” Indian J. Pure Appl. Math., 28, No. 12, 1573–1594 (1997).
36.
go back to reference H. M. Youssef and I. A. Abbas, “Fractional order generalized thermoelasticity with variable thermal conductivity,” J. Vibroeng., 16, No. 8, 4077–4087 (2014). H. M. Youssef and I. A. Abbas, “Fractional order generalized thermoelasticity with variable thermal conductivity,” J. Vibroeng., 16, No. 8, 4077–4087 (2014).
37.
go back to reference D. Y. Tzou, Macro- to Micro-Scale Heat Transfer: The Lagging Behavior, CRC Press (1996). D. Y. Tzou, Macro- to Micro-Scale Heat Transfer: The Lagging Behavior, CRC Press (1996).
38.
go back to reference D. Grover, “Transverse vibrations in micro-scale viscothermoelastic beam resonators,” Arch. Appl. Mech., 83, No. 2, 303–314 (2013).CrossRef D. Grover, “Transverse vibrations in micro-scale viscothermoelastic beam resonators,” Arch. Appl. Mech., 83, No. 2, 303–314 (2013).CrossRef
Metadata
Title
Fractional Order Thermoelastic Wave Assessment in a Nanoscale Beam Using the Eigenvalue Technique
Authors
I. Abbas
F. Alzahrani
A. N. Abdalla
F. Berto
Publication date
15-08-2019
Publisher
Springer US
Published in
Strength of Materials / Issue 3/2019
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-019-00089-2

Other articles of this Issue 3/2019

Strength of Materials 3/2019 Go to the issue

Premium Partners