Skip to main content
Top
Published in: Rock Mechanics and Rock Engineering 7/2018

04-04-2018 | Original Paper

Fracturing Mechanism of Compressed Hollow-Cylinder Sandstone Evaluated by X-ray Micro-CT Scanning

Author: Sheng-Qi Yang

Published in: Rock Mechanics and Rock Engineering | Issue 7/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Triaxial compression experiments under confining pressures of 16 and 35 MPa were first carried out for hollow-cylinder sandstone specimens using a rock mechanics testing system. Four hollow-cylinder sandstone specimens were compressed to various deformation positions before or after the peak strength. Then, the compressed hollow-cylinder sandstone specimens were analysed using a three-dimensional X-ray micro computed tomography (CT) scanning system. Based on the horizontal and vertical cross-sectional CT images, the internal damage behaviour of hollow-cylinder sandstone specimens was evaluated. It can be seen that the crack system of hollow-cylinder sandstone specimens with higher compressed deformation after the peak strength are more complicated than those with lower compressed deformation close to the peak strength. In the present study, the hollow-cylinder sandstone specimens with lower compressed deformation are only dominated by some internal wall fractures resulting mainly from shear cracks, whereas the hollow-cylinder sandstone specimens with higher compressed deformation are mainly dominated by two shear fractures, as well as some tensile cracks. For the same axial stress level, hollow-cylinder sandstone under a higher confining pressure has a more complicated crack system than that under a lower confining pressure. The experimental results demonstrated that the three-dimensional cracks in the hollow specimen under triaxial compression are first initiated from the internal wall due to shear slippage, and then propagate towards the top or bottom boundary of the specimen in shear fracture mode. To better explain the internal crack evolution mechanism of hollow-cylinder sandstone during the entire loading, a conceptual model of hollow-cylinder sandstone material under the action of confining pressure is proposed. At the same time, the effect of the borehole size on the internal damage behaviour of the compressed specimen after the peak strength is also discussed. The investigated conclusions are significant for predicting the instability occurring around deep well bores in petroleum engineering and for ensuring the safety of deep excavation damage zones in tunnel engineering.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alsayed MI (2002) Utilising the Hoek triaxial cell for multiaxial testing of hollow rock cylinders. Int J Rock Mech Min Sci 39:355–366CrossRef Alsayed MI (2002) Utilising the Hoek triaxial cell for multiaxial testing of hollow rock cylinders. Int J Rock Mech Min Sci 39:355–366CrossRef
go back to reference Fairhurst CE, Hudson JA (1999) Draft ISRM suggested method for the complete stress–strain curve for the intact rock in uniaxial compression. Int J Rock Mech Min Sci 36(3):279–289CrossRef Fairhurst CE, Hudson JA (1999) Draft ISRM suggested method for the complete stress–strain curve for the intact rock in uniaxial compression. Int J Rock Mech Min Sci 36(3):279–289CrossRef
go back to reference Feng XT, Chen SL, Zhou H (2004) Real-time computerized tomography (CT) experiments on sandstone damage evolution during triaxial compression with chemical corrosion. Int J Rock Mech Min Sci 41(2):181–192CrossRef Feng XT, Chen SL, Zhou H (2004) Real-time computerized tomography (CT) experiments on sandstone damage evolution during triaxial compression with chemical corrosion. Int J Rock Mech Min Sci 41(2):181–192CrossRef
go back to reference Ge XR, Ren JX, Pu YB, Ma W, Zhu YL (2001) Real-in time CT test of the rock meso-damage propagation law. Sci China (Ser E) 44(3):328–336CrossRef Ge XR, Ren JX, Pu YB, Ma W, Zhu YL (2001) Real-in time CT test of the rock meso-damage propagation law. Sci China (Ser E) 44(3):328–336CrossRef
go back to reference Hawkes I, Mellor M (1970) Uniaxial testing in rock mechanics laboratories. Eng Geol 4:177–285CrossRef Hawkes I, Mellor M (1970) Uniaxial testing in rock mechanics laboratories. Eng Geol 4:177–285CrossRef
go back to reference Hirono T, Takahashi M, Nakashima S (2003) In situ visualization of fluid flow image within deformed rock by X-ray CT. Eng Geol 70:37–46CrossRef Hirono T, Takahashi M, Nakashima S (2003) In situ visualization of fluid flow image within deformed rock by X-ray CT. Eng Geol 70:37–46CrossRef
go back to reference Kawakata H, Cho A, Kiyama T, Yanagidani T, Kusunose K, Shimada M (1999) Three-dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan. Tectonophysics 313:293–305CrossRef Kawakata H, Cho A, Kiyama T, Yanagidani T, Kusunose K, Shimada M (1999) Three-dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan. Tectonophysics 313:293–305CrossRef
go back to reference Lee DH, Juang CH, Chen JW, Lin HM, Shieh WH (1999) Stress paths and mechanical behavior of a sandstone in hollow cylinder tests. Int J Rock Mech Min Sci 36:857–870CrossRef Lee DH, Juang CH, Chen JW, Lin HM, Shieh WH (1999) Stress paths and mechanical behavior of a sandstone in hollow cylinder tests. Int J Rock Mech Min Sci 36:857–870CrossRef
go back to reference Meier T, Rybacki E, Backers T, Dresen G (2015) Influence of bedding angle on borehole stability: a laboratory investigation of transverse isotropic oil shale. Rock Mech Rock Eng 48(4):1535–1546CrossRef Meier T, Rybacki E, Backers T, Dresen G (2015) Influence of bedding angle on borehole stability: a laboratory investigation of transverse isotropic oil shale. Rock Mech Rock Eng 48(4):1535–1546CrossRef
go back to reference Mogi K (1966) Some precise measurements of fracture strength of rocks under uniform compressive stress. Rock Mech Eng Geol 4:41–55 Mogi K (1966) Some precise measurements of fracture strength of rocks under uniform compressive stress. Rock Mech Eng Geol 4:41–55
go back to reference Sufian A, Russell AR (2013) Microstructural pore changes and energy dissipation in Gosford sandstone during pre-failure loading using X-ray CT. Int J Rock Mech Min Sci 57:119–131 Sufian A, Russell AR (2013) Microstructural pore changes and energy dissipation in Gosford sandstone during pre-failure loading using X-ray CT. Int J Rock Mech Min Sci 57:119–131
go back to reference Wong TF, David C, Zhu W (1997) The transition from brittle faulting to cataclastic flow in porous sandstones: mechanical deformation. J Geophys Res 102(B2):3009–3025CrossRef Wong TF, David C, Zhu W (1997) The transition from brittle faulting to cataclastic flow in porous sandstones: mechanical deformation. J Geophys Res 102(B2):3009–3025CrossRef
go back to reference Yang SQ (2016) Experimental study on deformation, peak strength and crack damage behavior of hollow sandstone under conventional triaxial compression. Eng Geol 213:11–24CrossRef Yang SQ (2016) Experimental study on deformation, peak strength and crack damage behavior of hollow sandstone under conventional triaxial compression. Eng Geol 213:11–24CrossRef
go back to reference Yang SQ, Jiang YZ, Xu WY, Chen XQ (2008) Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression. Int J Solids Struct 45:4796–4819CrossRef Yang SQ, Jiang YZ, Xu WY, Chen XQ (2008) Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression. Int J Solids Struct 45:4796–4819CrossRef
go back to reference Yang SQ, Ranjith PG, Gui YL (2015) Experimental study of mechanical behavior and X-ray micro CT observations of sandstone under conventional triaxial compression. Geotech Test J 38(2):179–197CrossRef Yang SQ, Ranjith PG, Gui YL (2015) Experimental study of mechanical behavior and X-ray micro CT observations of sandstone under conventional triaxial compression. Geotech Test J 38(2):179–197CrossRef
go back to reference Yang SQ, Ju Y, Gao F, Gui YL (2016) Strength, deformability and X-ray micro-CT observations of deeply buried marble under different confining pressures. Rock Mech Rock Eng 49(11):4227–4244CrossRef Yang SQ, Ju Y, Gao F, Gui YL (2016) Strength, deformability and X-ray micro-CT observations of deeply buried marble under different confining pressures. Rock Mech Rock Eng 49(11):4227–4244CrossRef
go back to reference Yang SQ, Ranjith PG, Jing HW, Tian WL, Ju Y (2017) An experimental investigation on thermal damage and failure mechanics behavior of granite after exposure to different high temperature treatments. Geothermics 65:180–197CrossRef Yang SQ, Ranjith PG, Jing HW, Tian WL, Ju Y (2017) An experimental investigation on thermal damage and failure mechanics behavior of granite after exposure to different high temperature treatments. Geothermics 65:180–197CrossRef
go back to reference Zhao GF, Russell AR, Zhao XB, Khalili N (2014) Strain rate dependency of uniaxial tensile strength in Gosford sandstone by the Distinct Lattice Spring Model with X-ray micro CT. Int J Solids Struct 51:1587–1600CrossRef Zhao GF, Russell AR, Zhao XB, Khalili N (2014) Strain rate dependency of uniaxial tensile strength in Gosford sandstone by the Distinct Lattice Spring Model with X-ray micro CT. Int J Solids Struct 51:1587–1600CrossRef
go back to reference Zhou XP, Zhang YX, Ha QL (2008) Real-time computerized tomography (CT) experiments on limestone damage evolution during unloading. Theor Appl Fract Mec 50:49–56CrossRef Zhou XP, Zhang YX, Ha QL (2008) Real-time computerized tomography (CT) experiments on limestone damage evolution during unloading. Theor Appl Fract Mec 50:49–56CrossRef
Metadata
Title
Fracturing Mechanism of Compressed Hollow-Cylinder Sandstone Evaluated by X-ray Micro-CT Scanning
Author
Sheng-Qi Yang
Publication date
04-04-2018
Publisher
Springer Vienna
Published in
Rock Mechanics and Rock Engineering / Issue 7/2018
Print ISSN: 0723-2632
Electronic ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-018-1466-5

Other articles of this Issue 7/2018

Rock Mechanics and Rock Engineering 7/2018 Go to the issue