Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 7/2015

01-07-2015

Frequency dependent impedance and admittance (immittance) data-handling and interpretation using complex plane formalisms via nonlinear regression analysis for smart electronic materials and devices: overview and case studies

Authors: Sudip Bhattacharjee, Mohammad A. Alim

Published in: Journal of Materials Science: Materials in Electronics | Issue 7/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The ac small-signal electrical data handling criteria are discussed with the real-world examples. Both Debye (ideal) and non-Debye (non-ideal) relaxations via semicircular loci in the complex plane formalisms are discussed. Detailed discussion on the analytical methods emphasized both geometric and complex nonlinear least squares (CNLS) fitting procedures. It is shown that the large data collection having small interval within the successive frequencies aids in the accuracy of the methods via matching sets of extracted parameters. For fewer data collection having wide gap in the successive frequencies, two analytical methods do not match for the extracted parameters. It is visualized that both methods are valid and lead to the accuracy to investigate novel electronic materials and devices. The geometric method yields the parameters whereas the CNLS method assumes the parameters for exact fitting.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Andres-Verges, A.R. West, Impedance and modulus spectroscopy of ZnO varistors. J. Electroceram. 1(2), 125–132 (1997)CrossRef M. Andres-Verges, A.R. West, Impedance and modulus spectroscopy of ZnO varistors. J. Electroceram. 1(2), 125–132 (1997)CrossRef
2.
go back to reference D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66, 3850–3856 (1989)CrossRef D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66, 3850–3856 (1989)CrossRef
3.
go back to reference I.M. Hodge, M.D. Ingram, A.R. West, Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J. Electroanal. Chem. 74(2), 125–143 (1976)CrossRef I.M. Hodge, M.D. Ingram, A.R. West, Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J. Electroanal. Chem. 74(2), 125–143 (1976)CrossRef
4.
go back to reference I.M. Hodge, M.D. Ingram, A.R. West, New method for analyzing the ac behavior of polycrystalline solid electrolytes. J. Electroanal. Chem. Interfacial Electrochem. 58(2), 429–432 (1975)CrossRef I.M. Hodge, M.D. Ingram, A.R. West, New method for analyzing the ac behavior of polycrystalline solid electrolytes. J. Electroanal. Chem. Interfacial Electrochem. 58(2), 429–432 (1975)CrossRef
5.
go back to reference M.A. Seitz, Study of heterogeneous composite materials via lumped parameter/complex plane analysis. Int. J. Hybrid Microelectron. (ISHM) 3, 1–7 (1980) M.A. Seitz, Study of heterogeneous composite materials via lumped parameter/complex plane analysis. Int. J. Hybrid Microelectron. (ISHM) 3, 1–7 (1980)
6.
go back to reference K.A. Abdullah, A. Bui, A. Loubiere, Low frequency and low temperature behavior of ZnO-based varistor by ac impedance measurements. J. Appl. Phys. 69, 4046–4052 (1991)CrossRef K.A. Abdullah, A. Bui, A. Loubiere, Low frequency and low temperature behavior of ZnO-based varistor by ac impedance measurements. J. Appl. Phys. 69, 4046–4052 (1991)CrossRef
7.
go back to reference A. Bui, K.A. Abdallah, A. Loubiere, M. Tao, Q.C. Nguyen, Impulse-degradation analysis of ZnO-based varistors by ac impedance measurements. J. Phys. D Appl. Phys. 24, 757–762 (1991)CrossRef A. Bui, K.A. Abdallah, A. Loubiere, M. Tao, Q.C. Nguyen, Impulse-degradation analysis of ZnO-based varistors by ac impedance measurements. J. Phys. D Appl. Phys. 24, 757–762 (1991)CrossRef
8.
go back to reference M.A. Alim, Admittance-frequency response in zinc oxide varistor ceramics. J. Am. Ceram. Soc. 72(1), 28–32 (1989)CrossRef M.A. Alim, Admittance-frequency response in zinc oxide varistor ceramics. J. Am. Ceram. Soc. 72(1), 28–32 (1989)CrossRef
9.
go back to reference M.A. Alim, M.A. Seitz, R.W. Hirthe, Complex plane analysis of trapping phenomena in zinc oxide varistors. J. Appl. Phys. 63(7), 2337–2345 (1988)CrossRef M.A. Alim, M.A. Seitz, R.W. Hirthe, Complex plane analysis of trapping phenomena in zinc oxide varistors. J. Appl. Phys. 63(7), 2337–2345 (1988)CrossRef
10.
go back to reference M.A. Alim, Electrical characterization of engineering materials. Act. Passive Electron. Compon. 19, 139–169 (1996)CrossRef M.A. Alim, Electrical characterization of engineering materials. Act. Passive Electron. Compon. 19, 139–169 (1996)CrossRef
11.
go back to reference M.A. Alim, S. Khanam, M.A. Seitz, Immittance spectroscopy of smart components and novel devices. Act. Passive Electron. Compon. 16, 153–170 (1994)CrossRef M.A. Alim, S. Khanam, M.A. Seitz, Immittance spectroscopy of smart components and novel devices. Act. Passive Electron. Compon. 16, 153–170 (1994)CrossRef
12.
go back to reference M.A. Alim, A.K. Batra, S. Bhattacharjee, M.D. Aggarwal, Complex capacitance in the representation of modulus of the lithium niobate crystals. Phys. B 406, 1088–1095 (2011)CrossRef M.A. Alim, A.K. Batra, S. Bhattacharjee, M.D. Aggarwal, Complex capacitance in the representation of modulus of the lithium niobate crystals. Phys. B 406, 1088–1095 (2011)CrossRef
13.
go back to reference M.A. Alim, S.R. Bissell, A.A. Mobasher, Analysis of the AC electrical data in the Davidson–Cole dielectric representation. Phys. B 403, 3040–3053 (2008)CrossRef M.A. Alim, S.R. Bissell, A.A. Mobasher, Analysis of the AC electrical data in the Davidson–Cole dielectric representation. Phys. B 403, 3040–3053 (2008)CrossRef
14.
go back to reference C.C. Chen, M.M. Nasrallah, H.U. Anderson, M.A. Alim, Immittance response of La0.6Sr0.4Co0.2Fe0.8O3 based electrochemical cells. J. Electrochem. Soc. 142, 491–496 (1995)CrossRef C.C. Chen, M.M. Nasrallah, H.U. Anderson, M.A. Alim, Immittance response of La0.6Sr0.4Co0.2Fe0.8O3 based electrochemical cells. J. Electrochem. Soc. 142, 491–496 (1995)CrossRef
15.
go back to reference A.-M. Azad, L.L.W. Shyan, M.A. Alim, Immittance response of CaSnO3 prepared by self-heat-sustained reaction. J. Mater. Sci. 34, 1175–1187 (1999)CrossRef A.-M. Azad, L.L.W. Shyan, M.A. Alim, Immittance response of CaSnO3 prepared by self-heat-sustained reaction. J. Mater. Sci. 34, 1175–1187 (1999)CrossRef
16.
go back to reference A.-M. Azad, L.L.W. Shyan, M.A. Alim, The AC electrical characterization of the solid-state reaction derived CaSnO3. J. Mater. Sci. 34, 3375–3396 (1999)CrossRef A.-M. Azad, L.L.W. Shyan, M.A. Alim, The AC electrical characterization of the solid-state reaction derived CaSnO3. J. Mater. Sci. 34, 3375–3396 (1999)CrossRef
17.
go back to reference C.C. Wang, W.H. Chen, S.A. Akbar, M.A. Alim, High-temperature A.C. electrical behaviour of polycrystalline calcium zirconate. J. Mater. Sci. 32, 2305–2312 (1997)CrossRef C.C. Wang, W.H. Chen, S.A. Akbar, M.A. Alim, High-temperature A.C. electrical behaviour of polycrystalline calcium zirconate. J. Mater. Sci. 32, 2305–2312 (1997)CrossRef
18.
go back to reference C.C. Wang, V.D. Patton, S.A. Akbar, M.A. Alim, Effect of zirconia doping on the electrical behavior of yttria. J. Mater. Res. 11(2), 422–429 (1996)CrossRef C.C. Wang, V.D. Patton, S.A. Akbar, M.A. Alim, Effect of zirconia doping on the electrical behavior of yttria. J. Mater. Res. 11(2), 422–429 (1996)CrossRef
19.
go back to reference W. Zhu, C.C. Wang, S.A. Akbar, R. Asiaie, P.K. Dutta, M.A. Alim, The AC electrical behavior of hydrothermally synthesized barium titanate ceramics. Jpn. J. Appl. Phys. 35, 6145–6152 (1996)CrossRef W. Zhu, C.C. Wang, S.A. Akbar, R. Asiaie, P.K. Dutta, M.A. Alim, The AC electrical behavior of hydrothermally synthesized barium titanate ceramics. Jpn. J. Appl. Phys. 35, 6145–6152 (1996)CrossRef
20.
go back to reference C.J. Ping, C.J. Peng, H.Y. Lu, S.T. Wu, Lanthanum-magnesium and lanthanum-manganese donor-acceptor Co-doped semiconducting barium titanates. J. Am. Ceram. Soc. 73, 329–334 (1990)CrossRef C.J. Ping, C.J. Peng, H.Y. Lu, S.T. Wu, Lanthanum-magnesium and lanthanum-manganese donor-acceptor Co-doped semiconducting barium titanates. J. Am. Ceram. Soc. 73, 329–334 (1990)CrossRef
21.
go back to reference Y.T. Tsai, W.H. Whitmore, Nonlinear least-squares analyses of complex impedance and admittance data for solid electrolytes. Solid State Ion. 7, 129 (1982)CrossRef Y.T. Tsai, W.H. Whitmore, Nonlinear least-squares analyses of complex impedance and admittance data for solid electrolytes. Solid State Ion. 7, 129 (1982)CrossRef
22.
go back to reference W. Jakubowski, D.H. Whitmore, Analysis of electrolyte polarization in polycrystalline sodium β-alumina by a complex admittance method. J. Am. Ceram. Soc. 62, 381–385 (1979)CrossRef W. Jakubowski, D.H. Whitmore, Analysis of electrolyte polarization in polycrystalline sodium β-alumina by a complex admittance method. J. Am. Ceram. Soc. 62, 381–385 (1979)CrossRef
23.
go back to reference J.E. Bauerle, Studies of solid electrolyte polarization by a complex admittance method. J. Phys. Chem. Solids 30, 2657–2670 (1969)CrossRef J.E. Bauerle, Studies of solid electrolyte polarization by a complex admittance method. J. Phys. Chem. Solids 30, 2657–2670 (1969)CrossRef
24.
go back to reference F.A. Grant, Use of complex conductivity in the representation of dielectric phenomena. J. Appl. Phys. 29(1), 76–80 (1958)CrossRef F.A. Grant, Use of complex conductivity in the representation of dielectric phenomena. J. Appl. Phys. 29(1), 76–80 (1958)CrossRef
25.
go back to reference S. Havriliak, S. Negami, A complex plane analysis of dispersions in some polymer systems. J. Polym. Sci. C 14, 99–117 (1966)CrossRef S. Havriliak, S. Negami, A complex plane analysis of dispersions in some polymer systems. J. Polym. Sci. C 14, 99–117 (1966)CrossRef
26.
go back to reference T.M. Gur, I.D. Raistrick, R.A. Huggins, AC admittance on stabilized zirconia with porous platinum electrodes. Solid State Ion. 1, 251–271 (1980)CrossRef T.M. Gur, I.D. Raistrick, R.A. Huggins, AC admittance on stabilized zirconia with porous platinum electrodes. Solid State Ion. 1, 251–271 (1980)CrossRef
27.
go back to reference E.A. Cooper, T.O. Mason, M.E. Biznek, U. Balachandran, Impedance spectra during solid-state powder reactions of oxide superconductors. J. Am. Ceram. Soc. 73, 154–157 (1990)CrossRef E.A. Cooper, T.O. Mason, M.E. Biznek, U. Balachandran, Impedance spectra during solid-state powder reactions of oxide superconductors. J. Am. Ceram. Soc. 73, 154–157 (1990)CrossRef
28.
go back to reference S. Trolier-McKinstry, R.E. Newnham, Sensors, actuators, and smart materials. MRS Bull. 18, 27–33 (1993) S. Trolier-McKinstry, R.E. Newnham, Sensors, actuators, and smart materials. MRS Bull. 18, 27–33 (1993)
29.
go back to reference R.E. Newnham, G.R. Ruschau, Smart electroceramics. J. Am. Ceram. Soc. 74, 463–480 (1991)CrossRef R.E. Newnham, G.R. Ruschau, Smart electroceramics. J. Am. Ceram. Soc. 74, 463–480 (1991)CrossRef
30.
go back to reference R.E. Newnham, Composite electroceramics. Annu. Rev. Mater. Sci. 16, 47–68 (1986)CrossRef R.E. Newnham, Composite electroceramics. Annu. Rev. Mater. Sci. 16, 47–68 (1986)CrossRef
31.
go back to reference K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics: alternating current. J. Chem. Phys. 9, 341–351 (1941)CrossRef K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics: alternating current. J. Chem. Phys. 9, 341–351 (1941)CrossRef
32.
go back to reference D.W. Davidson, R.H. Cole, Dielectric relaxation in glycerine. J. Chem. Phys. 18(10), 1417 (1950)CrossRef D.W. Davidson, R.H. Cole, Dielectric relaxation in glycerine. J. Chem. Phys. 18(10), 1417 (1950)CrossRef
33.
go back to reference J.R. Macdonald, Impedance Spectroscopy: Emphasizing Solid Materials and Systems (Wiley, New York, 1987) J.R. Macdonald, Impedance Spectroscopy: Emphasizing Solid Materials and Systems (Wiley, New York, 1987)
34.
go back to reference E. Barsoukv, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications (Wiley, New York, 2005)CrossRef E. Barsoukv, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications (Wiley, New York, 2005)CrossRef
35.
go back to reference M.E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy (Wiley, New York, 2008)CrossRef M.E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy (Wiley, New York, 2008)CrossRef
36.
go back to reference V.F. Lvovich, Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena (Wiley, New York, 2012)CrossRef V.F. Lvovich, Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena (Wiley, New York, 2012)CrossRef
37.
go back to reference J.R. Macdonald, Impedance spectroscopy: old problems and new developments. Elecrrochim. Acta 35(10), 1483–1492 (1990)CrossRef J.R. Macdonald, Impedance spectroscopy: old problems and new developments. Elecrrochim. Acta 35(10), 1483–1492 (1990)CrossRef
38.
go back to reference C.P. Smyth, Dielectric Behavior and Structure (McGraw-Hill, New York, 1955) C.P. Smyth, Dielectric Behavior and Structure (McGraw-Hill, New York, 1955)
39.
go back to reference J. Gimsa, D. Wachner, A unified resistor-capacitor model for impedance, dielectrophoresis, electrorotation, and induced transmembrane potential. Biophys. J. 75, 1107–1116 (1998)CrossRef J. Gimsa, D. Wachner, A unified resistor-capacitor model for impedance, dielectrophoresis, electrorotation, and induced transmembrane potential. Biophys. J. 75, 1107–1116 (1998)CrossRef
40.
go back to reference T.G. Paunescu, S.I. Helman, cAMP activation of apical membrane Cl2 channels: theoretical considerations for impedance analysis. Biophys. J. 81, 838–851 (2001)CrossRef T.G. Paunescu, S.I. Helman, cAMP activation of apical membrane Cl2 channels: theoretical considerations for impedance analysis. Biophys. J. 81, 838–851 (2001)CrossRef
41.
go back to reference H.G.L. Coster, The double fixed charge membrane: low frequency dielectric dispersion. Biophys. J. 13, 118–132 (1973)CrossRef H.G.L. Coster, The double fixed charge membrane: low frequency dielectric dispersion. Biophys. J. 13, 118–132 (1973)CrossRef
42.
go back to reference Y.-Z. We, S. Sridhar, A new graphical representation for dielectric data. J. Chem. Phys. 99(4), 3119–3124 (1993)CrossRef Y.-Z. We, S. Sridhar, A new graphical representation for dielectric data. J. Chem. Phys. 99(4), 3119–3124 (1993)CrossRef
43.
go back to reference R. Thangavel, V. Sabarinathan, S. Ramasamy, J. Kumar, Investigations on the growth of zinc oxide crystals from molten hydrous KOH solution and on the impedance analysis of zinc oxide crystals. Mater. Lett. 61, 4090–4093 (2007)CrossRef R. Thangavel, V. Sabarinathan, S. Ramasamy, J. Kumar, Investigations on the growth of zinc oxide crystals from molten hydrous KOH solution and on the impedance analysis of zinc oxide crystals. Mater. Lett. 61, 4090–4093 (2007)CrossRef
44.
go back to reference N. Priyantha, P. Jayaweera, D.D. Macdonald, A. Sun, An electrochemical impedance study of alloy 22 in NaCl brine at elevated temperature. I. Corrosion behavior. J. Electroanal. Chem. 572, 409–419 (2004)CrossRef N. Priyantha, P. Jayaweera, D.D. Macdonald, A. Sun, An electrochemical impedance study of alloy 22 in NaCl brine at elevated temperature. I. Corrosion behavior. J. Electroanal. Chem. 572, 409–419 (2004)CrossRef
45.
go back to reference D.D. Macdonald, A. Sun, N. Priyantha, P. Jayaweera, An electrochemical impedance study of alloy-22 in NaCl brine at elevated temperature: II. Reaction mechanism analysis. J. Electroanal. Chem. 572, 421–431 (2004)CrossRef D.D. Macdonald, A. Sun, N. Priyantha, P. Jayaweera, An electrochemical impedance study of alloy-22 in NaCl brine at elevated temperature: II. Reaction mechanism analysis. J. Electroanal. Chem. 572, 421–431 (2004)CrossRef
46.
go back to reference L. Yang, C. Ruan, Y. Li, Detection of viable Salmonella typhimurium by impedance measurement of electrode capacitance and medium resistance. Biosens. Bioelectron. 19, 495–502 (2003)CrossRef L. Yang, C. Ruan, Y. Li, Detection of viable Salmonella typhimurium by impedance measurement of electrode capacitance and medium resistance. Biosens. Bioelectron. 19, 495–502 (2003)CrossRef
47.
go back to reference G.W. Walter, A review of impedance plot methods used for corrosion performance analysis of painted metals. Corros. Sci. 26(9), 681–703 (1986)CrossRef G.W. Walter, A review of impedance plot methods used for corrosion performance analysis of painted metals. Corros. Sci. 26(9), 681–703 (1986)CrossRef
48.
go back to reference M.E. Orazem, P. Shukla, M.A. Membrino, Extension of the measurement model approach for deconvolution of underlying distributions for impedance measurements. Electrochim. Acta 47, 2027–2034 (2002)CrossRef M.E. Orazem, P. Shukla, M.A. Membrino, Extension of the measurement model approach for deconvolution of underlying distributions for impedance measurements. Electrochim. Acta 47, 2027–2034 (2002)CrossRef
49.
go back to reference C. Andrade, V.M. Blanco, A. Collazo, M. Keddam, X.R. Novoa, H. Takenouti, Cement paste hardening process studied by impedance spectroscopy. Electrochim. Acta 44, 4313–4318 (1999)CrossRef C. Andrade, V.M. Blanco, A. Collazo, M. Keddam, X.R. Novoa, H. Takenouti, Cement paste hardening process studied by impedance spectroscopy. Electrochim. Acta 44, 4313–4318 (1999)CrossRef
50.
go back to reference E. Siebert, A. Hammouche, M. Kleitz, Impedance spectroscopy analysis of La1−xSrMnO3-yttira-stabilized zirconia electrode kinetics. Elecrrochim. Acta 40(11), 1741–1753 (1995)CrossRef E. Siebert, A. Hammouche, M. Kleitz, Impedance spectroscopy analysis of La1−xSrMnO3-yttira-stabilized zirconia electrode kinetics. Elecrrochim. Acta 40(11), 1741–1753 (1995)CrossRef
51.
52.
go back to reference M.A. Alim, S. Bhattacharjee, S. Khanam, N. Muna, and S. Runa, Ni–Cd batteries for automotive applications: the ac electrical data of the Ni–Cd battery in the Havriliak–Negami dielectric representation, in Autonomous Vehicles: Intelligent Transport Systems and Smart Technologies, chap. 17, ed. by N. Bizon, L. Dascalescu, and N. M. Tabatabaei (Nova Science, New York, 2014), pp. 453–483. ISBN:978-1-63321-324-1 M.A. Alim, S. Bhattacharjee, S. Khanam, N. Muna, and S. Runa, Ni–Cd batteries for automotive applications: the ac electrical data of the Ni–Cd battery in the Havriliak–Negami dielectric representation, in Autonomous Vehicles: Intelligent Transport Systems and Smart Technologies, chap. 17, ed. by N. Bizon, L. Dascalescu, and N. M. Tabatabaei (Nova Science, New York, 2014), pp. 453–483. ISBN:978-1-63321-324-1
53.
go back to reference J.R. Macdonald, Comparison and application of two methods for the least squares analysis of immittance data. Solid State Ion. 58, 97–107 (1992)CrossRef J.R. Macdonald, Comparison and application of two methods for the least squares analysis of immittance data. Solid State Ion. 58, 97–107 (1992)CrossRef
54.
go back to reference P.B. Macedo, C.T. Moynihan, R. Bose, The role of ionic diffusion in polarization in vitreous ionic conductors. Phys. Chem. Glasses 13, 171–179 (1972) P.B. Macedo, C.T. Moynihan, R. Bose, The role of ionic diffusion in polarization in vitreous ionic conductors. Phys. Chem. Glasses 13, 171–179 (1972)
55.
go back to reference J.H. Sluyters, On the impedance of galvanic cells, I. Recl. Trav. Chim. Pays-Bas 79, 1092–1100 (1960)CrossRef J.H. Sluyters, On the impedance of galvanic cells, I. Recl. Trav. Chim. Pays-Bas 79, 1092–1100 (1960)CrossRef
56.
go back to reference J.R. Macdonald, J.A. Garber, Analysis of impedance and admittance data for solids and liquids. J. Electrochem. Soc. 124(7), 1022–1030 (1977)CrossRef J.R. Macdonald, J.A. Garber, Analysis of impedance and admittance data for solids and liquids. J. Electrochem. Soc. 124(7), 1022–1030 (1977)CrossRef
57.
go back to reference D.F. Sterba, AC electrical impedance monitoring and modeling of crop growth and development: tomato fruit ripening. M.S. thesis, Marquette University, Milwaukee (1981) D.F. Sterba, AC electrical impedance monitoring and modeling of crop growth and development: tomato fruit ripening. M.S. thesis, Marquette University, Milwaukee (1981)
58.
go back to reference K. Levenberg, A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944) K. Levenberg, A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944)
59.
go back to reference D.W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)CrossRef D.W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)CrossRef
60.
go back to reference N.S. Hari, P. Padmini, T.R.N. Kutty, Complex impedance analyses of n-BaTiO3 ceramics showing positive temperature coefficient of resistance. J. Mater. Sci. Mater. Sci. 8, 15–22 (1997)CrossRef N.S. Hari, P. Padmini, T.R.N. Kutty, Complex impedance analyses of n-BaTiO3 ceramics showing positive temperature coefficient of resistance. J. Mater. Sci. Mater. Sci. 8, 15–22 (1997)CrossRef
61.
go back to reference A.H. Eid, S. Mahmoud, The A.C. impedance of polycrystalline CuInS2 thin films. J. Mater. Sci.: Mater. Electron. 8, 259–264 (1997) A.H. Eid, S. Mahmoud, The A.C. impedance of polycrystalline CuInS2 thin films. J. Mater. Sci.: Mater. Electron. 8, 259–264 (1997)
62.
go back to reference D.K. Pradhan, B.K. Samantaray, R.N.P. Choudhary, A.K. Thakur, Complex impedance analysis of NaLaTiO4 electroceramics. J. Mater. Sci.: Mater. Electron. 17, 157–164 (2006) D.K. Pradhan, B.K. Samantaray, R.N.P. Choudhary, A.K. Thakur, Complex impedance analysis of NaLaTiO4 electroceramics. J. Mater. Sci.: Mater. Electron. 17, 157–164 (2006)
63.
go back to reference M.A. Ponce, P.R. Bueno, J. Varela, M.S. Castro, C.M. Aldao, Impedance spectroscopy analysis of SnO2 thick-films gas sensors. J. Mater. Sci.: Mater. Electron. 19, 1169–1175 (2008) M.A. Ponce, P.R. Bueno, J. Varela, M.S. Castro, C.M. Aldao, Impedance spectroscopy analysis of SnO2 thick-films gas sensors. J. Mater. Sci.: Mater. Electron. 19, 1169–1175 (2008)
64.
go back to reference P. Dhak, D. Dhak, M. Das, P. Pramanik, Dielectric and impedance spectroscopy study of Ba0.8Bi2.133Nb1.6Ta0.4O9 ferroelectric ceramics, prepared by chemical route. J. Mater. Sci.: Mater. Electron. 22, 1750–1760 (2011) P. Dhak, D. Dhak, M. Das, P. Pramanik, Dielectric and impedance spectroscopy study of Ba0.8Bi2.133Nb1.6Ta0.4O9 ferroelectric ceramics, prepared by chemical route. J. Mater. Sci.: Mater. Electron. 22, 1750–1760 (2011)
65.
go back to reference B. Pati, B.C. Sutar, B.N. Parida, P.R. Das, R.N.P. Choudhury, Dielectric and impedance spectroscopy of barium orthovanadate ceramics. J. Mater. Sci.: Mater. Electron. 24, 1608–1616 (2013) B. Pati, B.C. Sutar, B.N. Parida, P.R. Das, R.N.P. Choudhury, Dielectric and impedance spectroscopy of barium orthovanadate ceramics. J. Mater. Sci.: Mater. Electron. 24, 1608–1616 (2013)
66.
go back to reference D.K. Mahato, T.P. Sinha, Electrical impedance and electric modulus approach of double perovskite Pr2ZnZrO6 ceramics. J. Mater. Sci.: Mater. Electron. 24, 4399–4405 (2013) D.K. Mahato, T.P. Sinha, Electrical impedance and electric modulus approach of double perovskite Pr2ZnZrO6 ceramics. J. Mater. Sci.: Mater. Electron. 24, 4399–4405 (2013)
67.
go back to reference M. Prabu, A. Chandrabose, Complex impedance spectroscopy studies of PLZT (5/52/48) ceramics synthesized by sol–gel route. J. Mater. Sci.: Mater. Electron. 24, 4560–4565 (2013) M. Prabu, A. Chandrabose, Complex impedance spectroscopy studies of PLZT (5/52/48) ceramics synthesized by sol–gel route. J. Mater. Sci.: Mater. Electron. 24, 4560–4565 (2013)
68.
go back to reference B.C. Sutar, R.N.P. Choudhary, P.R. Das, Dielectric and impedance spectroscopy of Sr(Bi0.5Ta0.5)O3 electroceramics. J. Mater. Sci.: Mater. Electron. 25, 4278–4285 (2014) B.C. Sutar, R.N.P. Choudhary, P.R. Das, Dielectric and impedance spectroscopy of Sr(Bi0.5Ta0.5)O3 electroceramics. J. Mater. Sci.: Mater. Electron. 25, 4278–4285 (2014)
69.
go back to reference N.R. Draper, H. Smith, Nonlinear Regression Analysis (Wiley, New York, 1998) N.R. Draper, H. Smith, Nonlinear Regression Analysis (Wiley, New York, 1998)
70.
go back to reference M.E. Orazem, A systematic approach toward error structure identification for impedance spectroscopy. J. Electroanal. Chem. 572, 317–327 (2004)CrossRef M.E. Orazem, A systematic approach toward error structure identification for impedance spectroscopy. J. Electroanal. Chem. 572, 317–327 (2004)CrossRef
Metadata
Title
Frequency dependent impedance and admittance (immittance) data-handling and interpretation using complex plane formalisms via nonlinear regression analysis for smart electronic materials and devices: overview and case studies
Authors
Sudip Bhattacharjee
Mohammad A. Alim
Publication date
01-07-2015
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 7/2015
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-015-3034-z

Other articles of this Issue 7/2015

Journal of Materials Science: Materials in Electronics 7/2015 Go to the issue