Skip to main content
Top
Published in: Metals and Materials International 1/2019

10-07-2018

Fretting Fatigue Behavior of Ti–6Al–4V and Ti–10V–2Fe–3Al Alloys

Authors: Zhi Yan Li, Xiao Long Liu, Guo Qing Wu, Zheng Huang

Published in: Metals and Materials International | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of fretting on fatigue performance of different microstructures for titanium alloy was studied using a high-frequency push–pull fatigue testing machine. Both plain and fretting fatigue curves were obtained for comparative analysis of the fretting effect on fatigue performance of the different titanium alloy. The result shows that the strength, plain fatigue of Ti6Al4V titanium is lower than those of Ti1023 titanium. But the fretting fatigue of Ti6Al4V titanium is higher under each contact stress. The fatigue source depth of Ti1023 alloy is greater than Ti6Al4V alloy. Hardening of Ti1023 alloy is more serious after fretting. The wear mechanism of two titanium alloys is different, Ti1023 titanium alloy is more sensitive to fretting wear.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Leyens, M. Peters (eds.), Titanium and Titanium Alloys: Fundamentals and Applications (Wiley-VCH, Weinheim, 2003) C. Leyens, M. Peters (eds.), Titanium and Titanium Alloys: Fundamentals and Applications (Wiley-VCH, Weinheim, 2003)
2.
go back to reference G. Lutjering, J.C. Williams, Titanium, 2nd edn. (Springer, New York, 2007) G. Lutjering, J.C. Williams, Titanium, 2nd edn. (Springer, New York, 2007)
3.
go back to reference B. Oberwinkler, M. Riedler, W. Eichlseder, Importance of local microstructure for damage tolerant light weight design of Ti–6Al–4V forgings. Int. J. Fatigue 32, 808–814 (2010)CrossRef B. Oberwinkler, M. Riedler, W. Eichlseder, Importance of local microstructure for damage tolerant light weight design of Ti–6Al–4V forgings. Int. J. Fatigue 32, 808–814 (2010)CrossRef
4.
go back to reference H. Knobbe, P. Koster, H. Christ, C. Fritzen, M. Riedler, Initiation and propagation of short fatigue cracks in forged Ti–6Al–4V. Procedia Eng. 2, 931–940 (2010)CrossRef H. Knobbe, P. Koster, H. Christ, C. Fritzen, M. Riedler, Initiation and propagation of short fatigue cracks in forged Ti–6Al–4V. Procedia Eng. 2, 931–940 (2010)CrossRef
5.
go back to reference A. Drechsler, T. Dorr, L. Wagner, Mechanical surface treatments on Ti–10V–2Fe–3Al for improved fatigue resistance. Mater. Sci. Eng. A 243(1–2), 217–220 (1998)CrossRef A. Drechsler, T. Dorr, L. Wagner, Mechanical surface treatments on Ti–10V–2Fe–3Al for improved fatigue resistance. Mater. Sci. Eng. A 243(1–2), 217–220 (1998)CrossRef
6.
go back to reference S.K. Jha, K.S. Ravichandran, High-cycle fatigue resistance in beta-titanium alloys. JOM J. Min. Met. Mater. Soc. 53(3), 30–35 (2000)CrossRef S.K. Jha, K.S. Ravichandran, High-cycle fatigue resistance in beta-titanium alloys. JOM J. Min. Met. Mater. Soc. 53(3), 30–35 (2000)CrossRef
7.
go back to reference R.A. Antoniou, T.C. Radtke, Mechanisms of fretting-fatigue of titanium alloys. Mater. Sci. Eng. A 237(2), 229–240 (1997)CrossRef R.A. Antoniou, T.C. Radtke, Mechanisms of fretting-fatigue of titanium alloys. Mater. Sci. Eng. A 237(2), 229–240 (1997)CrossRef
8.
go back to reference D.L. Anton, M.J. Lutian, L.H. Favrow, D. Logan, B. Annigeri, The effects of contact stress and slip distance on fretting fatigue damage in Ti–6Al–4V/17–4PH contacts, in Symposium on Fretting Fatigue: Current Technology and Practices, Salt Lake City, 1998, ASTM International, West Conshohocken, 2000, pp. 119–140 D.L. Anton, M.J. Lutian, L.H. Favrow, D. Logan, B. Annigeri, The effects of contact stress and slip distance on fretting fatigue damage in Ti–6Al–4V/17–4PH contacts, in Symposium on Fretting Fatigue: Current Technology and Practices, Salt Lake City, 1998, ASTM International, West Conshohocken, 2000, pp. 119–140
9.
go back to reference T. Hattori, V.T. Kien, M. Yamashita, Fretting fatigue life estimations based on fretting mechanisms. Tribol. Int. 44(11), 1389–1393 (2011)CrossRef T. Hattori, V.T. Kien, M. Yamashita, Fretting fatigue life estimations based on fretting mechanisms. Tribol. Int. 44(11), 1389–1393 (2011)CrossRef
10.
go back to reference X. Li, S. Wang, Z. Wang, P. Li, Q.J. Wang, Location of the first yield point and wear mechanism in torsional fretting. Tribol. Int. 66, 265–273 (2013)CrossRef X. Li, S. Wang, Z. Wang, P. Li, Q.J. Wang, Location of the first yield point and wear mechanism in torsional fretting. Tribol. Int. 66, 265–273 (2013)CrossRef
11.
go back to reference Z.Y. Li, X.L. Liu, G.Q. Wu, W. Sha, Observation of fretting fatigue cracks of Ti6Al4V titanium alloy. Mater. Sci. Eng. A 707, 51–57 (2017)CrossRef Z.Y. Li, X.L. Liu, G.Q. Wu, W. Sha, Observation of fretting fatigue cracks of Ti6Al4V titanium alloy. Mater. Sci. Eng. A 707, 51–57 (2017)CrossRef
12.
go back to reference G.Q. Wu, Z. Li, W. Sha et al., Effect of fretting on fatigue performance of Ti-1023 titanium alloy. Wear 309(1–2), 74–81 (2014)CrossRef G.Q. Wu, Z. Li, W. Sha et al., Effect of fretting on fatigue performance of Ti-1023 titanium alloy. Wear 309(1–2), 74–81 (2014)CrossRef
13.
go back to reference S. Mall, S.A. Namjoshi, W.J. Porter, Effects of microstructure on fretting crack initiation behavior of Ti–6Al–4V. Mater. Sci. Eng A 383, 334–340 (2004)CrossRef S. Mall, S.A. Namjoshi, W.J. Porter, Effects of microstructure on fretting crack initiation behavior of Ti–6Al–4V. Mater. Sci. Eng A 383, 334–340 (2004)CrossRef
14.
go back to reference O. Jin, S. Mall, Effect of independent pad displacement on fretting fatigue behavior of Ti–6Al–4V. Wear 253(5–6), 585–596 (2002)CrossRef O. Jin, S. Mall, Effect of independent pad displacement on fretting fatigue behavior of Ti–6Al–4V. Wear 253(5–6), 585–596 (2002)CrossRef
15.
go back to reference J. Takeda, M. Niinomi, T. Akahori, Gunawarman effect of microstructure on fretting fatigue and sliding wear of highly workable titanium alloy Ti–4.5Al–3V–2Mo–2Fe. Int. J. Fatigue 26(9), 1003–1015 (2004)CrossRef J. Takeda, M. Niinomi, T. Akahori, Gunawarman effect of microstructure on fretting fatigue and sliding wear of highly workable titanium alloy Ti–4.5Al–3V–2Mo–2Fe. Int. J. Fatigue 26(9), 1003–1015 (2004)CrossRef
16.
go back to reference G.H. Majzoobi, K. Azadikhah, J. Nemati, The effect of deep rolling and shot peening on fretting fatigue resistance of Aluminum -7075-T6. Mater. Sci. Eng. A 516(1–2), 235–247 (2009)CrossRef G.H. Majzoobi, K. Azadikhah, J. Nemati, The effect of deep rolling and shot peening on fretting fatigue resistance of Aluminum -7075-T6. Mater. Sci. Eng. A 516(1–2), 235–247 (2009)CrossRef
17.
go back to reference H. Lee, S. Mall, Fretting fatigue behavior of Ti–6Al–4V under seawater environment. Mater. Sci. Eng. A 403(1–2), 281–289 (2005) H. Lee, S. Mall, Fretting fatigue behavior of Ti–6Al–4V under seawater environment. Mater. Sci. Eng. A 403(1–2), 281–289 (2005)
18.
19.
go back to reference P.J. Golden, M.J. Shepard, Life prediction of fretting fatigue with advanced surface treatments. Mater. Sci. Eng. A 468–470, 15–22 (2007)CrossRef P.J. Golden, M.J. Shepard, Life prediction of fretting fatigue with advanced surface treatments. Mater. Sci. Eng. A 468–470, 15–22 (2007)CrossRef
20.
go back to reference O.J. McCarthy, J.P. McGarry, S.B. Leen, Microstructure-sensitive prediction and experimental validation of fretting fatigue. Wear 305(1–2), 100–114 (2013)CrossRef O.J. McCarthy, J.P. McGarry, S.B. Leen, Microstructure-sensitive prediction and experimental validation of fretting fatigue. Wear 305(1–2), 100–114 (2013)CrossRef
21.
go back to reference J. Vázquez, C. Navarro, J. Domínguez, Analysis of the effect of a textured surface on fretting fatigue. Wear 305(1–2), 23–35 (2013)CrossRef J. Vázquez, C. Navarro, J. Domínguez, Analysis of the effect of a textured surface on fretting fatigue. Wear 305(1–2), 23–35 (2013)CrossRef
22.
go back to reference J.J. Madge, S.B. Leen, I.R. McColl, P.H. Shipway, Contact-evolution based prediction of fretting fatigue life: effect of slip amplitude. Wear 262(9–10), 1159–1170 (2007)CrossRef J.J. Madge, S.B. Leen, I.R. McColl, P.H. Shipway, Contact-evolution based prediction of fretting fatigue life: effect of slip amplitude. Wear 262(9–10), 1159–1170 (2007)CrossRef
23.
go back to reference J.J. Madge, S.B. Leen, P.H. Shipway, The critical role of fretting wear in the analysis of fretting fatigue. Wear 263(1–6), 542–551 (2007)CrossRef J.J. Madge, S.B. Leen, P.H. Shipway, The critical role of fretting wear in the analysis of fretting fatigue. Wear 263(1–6), 542–551 (2007)CrossRef
24.
go back to reference J.J. Madge, S.B. Leen, P.H. Shipway, A combined wear and crack nucleation –propagation methodology for fretting fatigue prediction. Int. J. Fatigue 30(9), 1509–1528 (2008)CrossRef J.J. Madge, S.B. Leen, P.H. Shipway, A combined wear and crack nucleation –propagation methodology for fretting fatigue prediction. Int. J. Fatigue 30(9), 1509–1528 (2008)CrossRef
25.
go back to reference Y. Berthier, C. Colombie, L. Vinenet, Fretting wear and their effects on fretting fatigue. Tribology 110, 517 (1988)CrossRef Y. Berthier, C. Colombie, L. Vinenet, Fretting wear and their effects on fretting fatigue. Tribology 110, 517 (1988)CrossRef
27.
go back to reference D. Ye, Z. Wang, An approach to investigate pre-nucleation fatigue damage of cyclically loaded metals using Vicker microhardness test. Int. J. Fatigue 23(1), 85–91 (2001)CrossRef D. Ye, Z. Wang, An approach to investigate pre-nucleation fatigue damage of cyclically loaded metals using Vicker microhardness test. Int. J. Fatigue 23(1), 85–91 (2001)CrossRef
28.
go back to reference A. Hutson, H. Lee, S. Mall, Effect of dissimilar metal on fretting fatigue behavior of Ti–6Al–4V. Tribol. Int. 39(10), 1187–1196 (2006)CrossRef A. Hutson, H. Lee, S. Mall, Effect of dissimilar metal on fretting fatigue behavior of Ti–6Al–4V. Tribol. Int. 39(10), 1187–1196 (2006)CrossRef
29.
go back to reference R. Bertolini, S. Bruschi, A. Bordin, Fretting corrosion behavior of additive manufactured and cryogenic-machined Ti6Al4V for biomedical applications. Adv. Eng. Mater. 19(6), 15006–15029 (2017)CrossRef R. Bertolini, S. Bruschi, A. Bordin, Fretting corrosion behavior of additive manufactured and cryogenic-machined Ti6Al4V for biomedical applications. Adv. Eng. Mater. 19(6), 15006–15029 (2017)CrossRef
30.
go back to reference Z. Wei, M. Wang, Study on fretting fatigue behavior of TC4 titanium alloy. Rare Met. Mater. Eng. 35, 7 (2006) Z. Wei, M. Wang, Study on fretting fatigue behavior of TC4 titanium alloy. Rare Met. Mater. Eng. 35, 7 (2006)
31.
go back to reference Z. Wei, M. Wang, L. Li, Fretting fatigue damage behavior of TC4 alloy. Mater. Mech. Eng. 30, 1 (2006) Z. Wei, M. Wang, L. Li, Fretting fatigue damage behavior of TC4 alloy. Mater. Mech. Eng. 30, 1 (2006)
32.
go back to reference S. Wang, B. Ye, Fretting damage and fatigue of high strength titanium alloy. J. Beijing Univ. Aeronaut. Astronaut. No. 4 (1990) S. Wang, B. Ye, Fretting damage and fatigue of high strength titanium alloy. J. Beijing Univ. Aeronaut. Astronaut. No. 4 (1990)
Metadata
Title
Fretting Fatigue Behavior of Ti–6Al–4V and Ti–10V–2Fe–3Al Alloys
Authors
Zhi Yan Li
Xiao Long Liu
Guo Qing Wu
Zheng Huang
Publication date
10-07-2018
Publisher
The Korean Institute of Metals and Materials
Published in
Metals and Materials International / Issue 1/2019
Print ISSN: 1598-9623
Electronic ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-018-0158-8

Other articles of this Issue 1/2019

Metals and Materials International 1/2019 Go to the issue

Premium Partners