Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 5/2020

30-01-2020

From core–shell particles to dense Ba0.8Sr0.2Zr0.1Ti0.9O3@Bi2O3–Fe2O3–SiO2 ceramics with low sintering temperature and improved dielectric, energy storage properties

Published in: Journal of Materials Science: Materials in Electronics | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To achieve high energy storage in dielectric ceramics, a new designed material Ba0.8Sr0.2Zr0.1Ti0.9O3@Bi2O3–Fe2O3–SiO2 with core–shell structure was fabricated by the monodispersed submicron Ba0.8Sr0.2Zr0.1Ti0.9O3 particles (diameter ~ 180 nm) coated with the 25-nm-thick shell of Bi2O3–Fe2O3–SiO2. The influences of Bi2O3–Fe2O3–SiO2 amount, Bi/Fe ratio, and sintering temperature on the phase composition, microstructure, and ceramic electrical properties were investigated. X-ray diffraction analysis of the ceramics revealed the formation of perovskite Ba0.8Sr0.2Zr0.1Ti0.9O3 when the Bi2O3–Fe2O3–SiO2 amount was below 6.0 wt%. The secondary phases Bi2Fe4O9 and Bi4Ti3O12 formed in ceramics when the Bi2O3–Fe2O3–SiO2 amount exceeded 6.0 wt%, as the ceramic grain core–shell structure collapsed. Based on FESEM images, the densification of ceramics can be tenderly controlled at low sintering temperature, and the ceramic grains can maintain their core–shell structure. As the Bi2O3–Fe2O3–SiO2 amount, the ratio of Bi to Fe, and the sintering temperature increase, the ceramic room temperature dielectric constant increases up to a maximum value then decreases. The energy storage density exhibits a similar tendency to increase first and then decrease. Fine-grained Ba0.8Sr0.2Zr0.1Ti0.9O3@Bi2O3–Fe2O3–SiO2 ceramics with Bi/Fe ratio of 1.04 and 6.0 wt% Bi2O3–Fe2O3–SiO2 sintered at 1120 °C had a dielectric constant of 2599, the maximum energy storage density of 1.50 J/cm3 under 29.31 kV/mm. This work proposed a novel method to enhance electrical properties of functional materials, which could be potentially used in the fabrication of capacitors with high energy storage performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Z.T. Yang, H.L. Du, L. Jin, Q.Y. Hu, S.B. Qu, Z.N. Yang, Y. Yu, X.Y. Wei, Z. Xu, J. Eur. Ceram. Soc. 39, 2899–2907 (2019)CrossRef Z.T. Yang, H.L. Du, L. Jin, Q.Y. Hu, S.B. Qu, Z.N. Yang, Y. Yu, X.Y. Wei, Z. Xu, J. Eur. Ceram. Soc. 39, 2899–2907 (2019)CrossRef
3.
go back to reference N. Zhao, P.F. Liang, D. Wu, X.L. Chao, Z.P. Yang, Ceram. Int. 45, 22991–22997 (2019)CrossRef N. Zhao, P.F. Liang, D. Wu, X.L. Chao, Z.P. Yang, Ceram. Int. 45, 22991–22997 (2019)CrossRef
5.
go back to reference W.B. Li, D. Zhou, L.X. Pang, R. Xu, J. Mater. Chem. A 5, 19607–19612 (2017)CrossRef W.B. Li, D. Zhou, L.X. Pang, R. Xu, J. Mater. Chem. A 5, 19607–19612 (2017)CrossRef
6.
go back to reference Y.H. Huang, Y.J. Wu, B. Liu, T.N. Yang, J. Mater. Chem. A 6, 4477–4484 (2018)CrossRef Y.H. Huang, Y.J. Wu, B. Liu, T.N. Yang, J. Mater. Chem. A 6, 4477–4484 (2018)CrossRef
7.
go back to reference B.W. Ricketts, G. Triani, A.D. Hilton, J. Mater. Sci. Mater. Electron. 11, 513–517 (2000)CrossRef B.W. Ricketts, G. Triani, A.D. Hilton, J. Mater. Sci. Mater. Electron. 11, 513–517 (2000)CrossRef
8.
go back to reference X.G. Tang, X.X. Wang, K.H. Chew, H.L.W. Chan, Solid State Commun. 136, 89–93 (2005)CrossRef X.G. Tang, X.X. Wang, K.H. Chew, H.L.W. Chan, Solid State Commun. 136, 89–93 (2005)CrossRef
9.
go back to reference Y. Li, H.B. Cheng, H.W. Xu, Y.X. Zhang, P. Yan, T. Huang, C.M. Wang, Z.G. Hu, J. Ouyang, Ceram. Int. 42, 10191–10196 (2016)CrossRef Y. Li, H.B. Cheng, H.W. Xu, Y.X. Zhang, P. Yan, T. Huang, C.M. Wang, Z.G. Hu, J. Ouyang, Ceram. Int. 42, 10191–10196 (2016)CrossRef
11.
go back to reference R. Ma, B. Cui, Y.J. Wang, S.Y. Wang, Y.Y. Wang, Mater. Res. Bull. 111, 311–319 (2019)CrossRef R. Ma, B. Cui, Y.J. Wang, S.Y. Wang, Y.Y. Wang, Mater. Res. Bull. 111, 311–319 (2019)CrossRef
12.
go back to reference R. Ma, B. Cui, M.Q. Shangguan, S.H. Wang, Y.J. Wang, Z.G. Chang, Y.Y. Wang, J. Alloy. Compd. 690, 438–445 (2017)CrossRef R. Ma, B. Cui, M.Q. Shangguan, S.H. Wang, Y.J. Wang, Z.G. Chang, Y.Y. Wang, J. Alloy. Compd. 690, 438–445 (2017)CrossRef
13.
go back to reference X.M. Zhu, C.L. Mai, M.Y. Li, J. Non-Cryst, Solids 388, 55–61 (2014) X.M. Zhu, C.L. Mai, M.Y. Li, J. Non-Cryst, Solids 388, 55–61 (2014)
14.
15.
16.
go back to reference E.K. Abdel-Khalek, E.A. Mohamed, S.M. Salem, I. Kashif, J. Non-Cryst, Solids 492, 41–49 (2018) E.K. Abdel-Khalek, E.A. Mohamed, S.M. Salem, I. Kashif, J. Non-Cryst, Solids 492, 41–49 (2018)
17.
go back to reference S. Yotthuan, T. Suriwong, S. Pinitsoontorn, T. Bongkarn, Integr. Ferroelectr. 187, 100–112 (2018)CrossRef S. Yotthuan, T. Suriwong, S. Pinitsoontorn, T. Bongkarn, Integr. Ferroelectr. 187, 100–112 (2018)CrossRef
18.
go back to reference Z. Liu, Z. Li, Y. Yan, M. Zhang, D. Zhang, Y. Hao, Ceram. Int. 44, 23263–23266 (2018)CrossRef Z. Liu, Z. Li, Y. Yan, M. Zhang, D. Zhang, Y. Hao, Ceram. Int. 44, 23263–23266 (2018)CrossRef
19.
go back to reference A.V. Egorysheva, T.I. Milenov, O.G. Ellert, G.V. Avdeev, P.M. Rafailov, N.N. Efimov, V.M. Novotortsev, Solid State Sci. 40, 31 (2015)CrossRef A.V. Egorysheva, T.I. Milenov, O.G. Ellert, G.V. Avdeev, P.M. Rafailov, N.N. Efimov, V.M. Novotortsev, Solid State Sci. 40, 31 (2015)CrossRef
20.
go back to reference N. Liu, R. Liang, X. Zhao, C. Xu, Z. Zhou, X. Dong, J. Am. Ceram. Soc. 101, 3259–3265 (2018)CrossRef N. Liu, R. Liang, X. Zhao, C. Xu, Z. Zhou, X. Dong, J. Am. Ceram. Soc. 101, 3259–3265 (2018)CrossRef
21.
go back to reference N. Liu, R. Liang, Z. Zhou, X. Dong, J. Mater. Chem. C 6, 10211–10217 (2018)CrossRef N. Liu, R. Liang, Z. Zhou, X. Dong, J. Mater. Chem. C 6, 10211–10217 (2018)CrossRef
22.
go back to reference Y. Liu, B. Cui, Y. Wang, R. Ma, M.Q. Shangguan, X.T. Zhao, S.H. Wang, Q.Y. Li, Y.Y. Wang, J. Am. Ceram. Soc. 99, 1664–1670 (2016)CrossRef Y. Liu, B. Cui, Y. Wang, R. Ma, M.Q. Shangguan, X.T. Zhao, S.H. Wang, Q.Y. Li, Y.Y. Wang, J. Am. Ceram. Soc. 99, 1664–1670 (2016)CrossRef
23.
go back to reference S. Mornet, C. Elissalde, V. Hornebecq, O. Bidault, E. Duguet, A. Brisson, M. Maglione, Chem. Mater. 17, 4530–4536 (2005)CrossRef S. Mornet, C. Elissalde, V. Hornebecq, O. Bidault, E. Duguet, A. Brisson, M. Maglione, Chem. Mater. 17, 4530–4536 (2005)CrossRef
24.
go back to reference Y. Takahashi, K. Meguro, H. Naganuma, N. Terakado, T. Fujiwara, Appl. Phys. Lett. 104, 221901 (2014)CrossRef Y. Takahashi, K. Meguro, H. Naganuma, N. Terakado, T. Fujiwara, Appl. Phys. Lett. 104, 221901 (2014)CrossRef
25.
go back to reference L.F. Zhu, X.W. Lei, L. Zhao, M. Irfan Hussain, G.Z. Zhao, B.P. Zhang, Ceram. Int. 45, 20266–20275 (2019)CrossRef L.F. Zhu, X.W. Lei, L. Zhao, M. Irfan Hussain, G.Z. Zhao, B.P. Zhang, Ceram. Int. 45, 20266–20275 (2019)CrossRef
26.
go back to reference G. Chen, X.D. Peng, C.L. Fu, W. Cai, R.L. Gao, P.G. Fan, X. Yi, H.Q. Yang, C. Ji, H.L. Yong, Ceram. Int. 44, 16880–16889 (2018)CrossRef G. Chen, X.D. Peng, C.L. Fu, W. Cai, R.L. Gao, P.G. Fan, X. Yi, H.Q. Yang, C. Ji, H.L. Yong, Ceram. Int. 44, 16880–16889 (2018)CrossRef
27.
28.
go back to reference J.W. Zhai, X. Yao, X.G. Cheng, L.Y. Zhang, H. Chen, Mater. Sci. Eng. B 94, 164–169 (2002)CrossRef J.W. Zhai, X. Yao, X.G. Cheng, L.Y. Zhang, H. Chen, Mater. Sci. Eng. B 94, 164–169 (2002)CrossRef
29.
go back to reference Q.M. Hang, Z.B. Xing, X.H. Zhu, M. Yu, Y. Song, J.M. Zhu, Z.G. Liu, Ceram. Int. 38S, S411–S414 (2012)CrossRef Q.M. Hang, Z.B. Xing, X.H. Zhu, M. Yu, Y. Song, J.M. Zhu, Z.G. Liu, Ceram. Int. 38S, S411–S414 (2012)CrossRef
30.
32.
go back to reference X. Wang, S. Liu, L. Zhang, J. Wang, Y. Zhao, Ceram. Int. 44, S216–S219 (2018)CrossRef X. Wang, S. Liu, L. Zhang, J. Wang, Y. Zhao, Ceram. Int. 44, S216–S219 (2018)CrossRef
Metadata
Title
From core–shell particles to dense Ba0.8Sr0.2Zr0.1Ti0.9O3@Bi2O3–Fe2O3–SiO2 ceramics with low sintering temperature and improved dielectric, energy storage properties
Publication date
30-01-2020
Published in
Journal of Materials Science: Materials in Electronics / Issue 5/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-02948-0

Other articles of this Issue 5/2020

Journal of Materials Science: Materials in Electronics 5/2020 Go to the issue