Skip to main content
Top

2020 | OriginalPaper | Chapter

11. From Discrete and Iterative Deconvolution Operators to Machine Learning for Premixed Turbulent Combustion Modeling

Authors : P. Domingo, Z. Nikolaou, A. Seltz, L. Vervisch

Published in: Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Following the rapid and continuous progress of computing power, allowing for increasing the mesh resolution in large eddy simulation (LES), new modeling strategies appear which are based on a direct treatment of the now well resolved, but still not fully resolved scalar signals. Along this line, deconvolution or inverse filtering, either based on discrete or iterative operators, is first discussed. Recent results obtained from a direct numerical simulation (DNS) database and LES of a premixed turbulent jet flame are presented. The analysis confirms the potential of deconvolution to approximate the unclosed non-linear terms and the SGS fluxes. Then, the introduction of machine learning in turbulent combustion modeling is illustrated in the context of convolutional neural networks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
A resolution of 50 \(\upmu \)m would be necessary to fully resolve the flame (i.e., DNS) with tabulated chemistry and between 10 \(\upmu \)m and 80 \(\upmu \)m to resolve the Kolmogorov scale.
 
Literature
1.
go back to reference R.W. Bilger, S.B. Pope, K.N.C. Bray, J.F. Driscoll, Paradigms in turbulent combustion research. Proc. Combust. Inst 30(1), 21–42 (2005) R.W. Bilger, S.B. Pope, K.N.C. Bray, J.F. Driscoll, Paradigms in turbulent combustion research. Proc. Combust. Inst 30(1), 21–42 (2005)
2.
go back to reference L.Y.M. Gicquel, G. Staffelbach, T. Poinsot, Large Eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 38(6), 782–817 (2012) L.Y.M. Gicquel, G. Staffelbach, T. Poinsot, Large Eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 38(6), 782–817 (2012)
3.
go back to reference T. Poinsot, Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 36(1), 1–28 (2017)MathSciNet T. Poinsot, Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 36(1), 1–28 (2017)MathSciNet
4.
go back to reference E. Mastorakos, Forced ignition of turbulent spray flames. Proc. Combust. Inst. 36(2), 2367–2383 (2017) E. Mastorakos, Forced ignition of turbulent spray flames. Proc. Combust. Inst. 36(2), 2367–2383 (2017)
5.
go back to reference C. Locci, L. Vervisch, B. Farcy, N. Perret, Selective non-catalytic reduction (SNCR) of nitrogen oxide emissions: a perspective from numerical modeling. Flow Turbul. Combust. 100(2), 301–340 (2018) C. Locci, L. Vervisch, B. Farcy, N. Perret, Selective non-catalytic reduction (SNCR) of nitrogen oxide emissions: a perspective from numerical modeling. Flow Turbul. Combust. 100(2), 301–340 (2018)
6.
go back to reference K.N.C. Bray, The challenge of turbulent combustion. Symp. (Int.) Combust. 26, 1–26 (1996) K.N.C. Bray, The challenge of turbulent combustion. Symp. (Int.) Combust. 26, 1–26 (1996)
7.
go back to reference N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, 2000) N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, 2000)
8.
go back to reference D. Veynante, L. Vervisch, Turbulent combustion modeling. Prog. Energy Combust. Sci. 28, 193–266 (2002) D. Veynante, L. Vervisch, Turbulent combustion modeling. Prog. Energy Combust. Sci. 28, 193–266 (2002)
9.
go back to reference H. Pitsch, Large Eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)MathSciNetMATH H. Pitsch, Large Eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)MathSciNetMATH
10.
go back to reference M. Lesieur, O. Métais, P. Comte, Large-Eddy Simulations of Turbulence (Cambridge University Press, Cambridge UK, 2005)MATH M. Lesieur, O. Métais, P. Comte, Large-Eddy Simulations of Turbulence (Cambridge University Press, Cambridge UK, 2005)MATH
11.
go back to reference Z. Nikolaou, L. Vervisch, A priori assessment of an iterative deconvolution method for les sub-grid scale variance modelling. Flow Turbul. Combust. 101(1), 33–53 (2018) Z. Nikolaou, L. Vervisch, A priori assessment of an iterative deconvolution method for les sub-grid scale variance modelling. Flow Turbul. Combust. 101(1), 33–53 (2018)
12.
go back to reference F. Katopodes, R.L. Street, M. Xue, J.H. Ferziger, Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci. 62(7), 2058–2077 (2004) F. Katopodes, R.L. Street, M. Xue, J.H. Ferziger, Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci. 62(7), 2058–2077 (2004)
13.
go back to reference P. Domingo, L. Vervisch, Large Eddy simulation of premixed turbulent combustion using approximate deconvolution and explicit flame filtering. Proc. Combust. Inst. 35(2), 1349–1357 (2015) P. Domingo, L. Vervisch, Large Eddy simulation of premixed turbulent combustion using approximate deconvolution and explicit flame filtering. Proc. Combust. Inst. 35(2), 1349–1357 (2015)
14.
go back to reference Q. Wang, M. Ihme, Regularized deconvolution method for turbulent combustion modeling. Combust. Flame 176, 125–142 (2017) Q. Wang, M. Ihme, Regularized deconvolution method for turbulent combustion modeling. Combust. Flame 176, 125–142 (2017)
15.
go back to reference C. Mehl, J. Idier, B. Fiorina, Evaluation of deconvolution modelling applied to numerical combustion. Combust. Theory Model. 22(1), 38–70 (2018)MathSciNet C. Mehl, J. Idier, B. Fiorina, Evaluation of deconvolution modelling applied to numerical combustion. Combust. Theory Model. 22(1), 38–70 (2018)MathSciNet
16.
go back to reference A.W. Vreman, R.J.M. Bastiaans, B.J. Geurts, A similarity sub-grid model for premixed turbulent combustion. Flow Turbul. Combust. 82(2), 233–248 (2009)MATH A.W. Vreman, R.J.M. Bastiaans, B.J. Geurts, A similarity sub-grid model for premixed turbulent combustion. Flow Turbul. Combust. 82(2), 233–248 (2009)MATH
17.
go back to reference Y.-C. Chen, N. Peters, G.A. Schneemann, N. Wruck, U. Renz, M.S. Mansour, The detailed flame structure of highly stretched turbulent premixed methane-air flames. Combust. Flame 107(3), 223–244 (1996) Y.-C. Chen, N. Peters, G.A. Schneemann, N. Wruck, U. Renz, M.S. Mansour, The detailed flame structure of highly stretched turbulent premixed methane-air flames. Combust. Flame 107(3), 223–244 (1996)
18.
go back to reference L. Bouheraoua, P. Domingo, G. Ribert, Large-eddy simulation of a supersonic lifted jet flame: Analysis of the turbulent flame base. Combust. Flame 179, 199–218 (2017) L. Bouheraoua, P. Domingo, G. Ribert, Large-eddy simulation of a supersonic lifted jet flame: Analysis of the turbulent flame base. Combust. Flame 179, 199–218 (2017)
19.
go back to reference O. Gicquel, N. Darabiha, D. Thevenin, Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28, 1901–1908 (2000) O. Gicquel, N. Darabiha, D. Thevenin, Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28, 1901–1908 (2000)
20.
go back to reference J.A. van Oijen, F.A. Lammers, L.P.H. de Goey, Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 127(3), 2124–2134 (2001) J.A. van Oijen, F.A. Lammers, L.P.H. de Goey, Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 127(3), 2124–2134 (2001)
22.
go back to reference G. Godel, P. Domingo, L. Vervisch, Tabulation of nox chemistry for large-eddy simulation of non-premixed turbulent flames. Proc. Combust. Inst. 32, 1555–1561 (2009) G. Godel, P. Domingo, L. Vervisch, Tabulation of nox chemistry for large-eddy simulation of non-premixed turbulent flames. Proc. Combust. Inst. 32, 1555–1561 (2009)
23.
go back to reference F. Ducros, F. Laporte, T. Soulères, V. Guinot, P. Moinat, B. Caruelle, High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible flows. J. Comput. Phys. 161, 114–139 (2000)MathSciNetMATH F. Ducros, F. Laporte, T. Soulères, V. Guinot, P. Moinat, B. Caruelle, High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible flows. J. Comput. Phys. 161, 114–139 (2000)MathSciNetMATH
24.
go back to reference G. Lodato, P. Domingo, L. Vervisch, Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows. J. Comput. Phys 227(10), 5105–5143 (2008)MathSciNetMATH G. Lodato, P. Domingo, L. Vervisch, Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows. J. Comput. Phys 227(10), 5105–5143 (2008)MathSciNetMATH
25.
go back to reference M. Klein, A. Sadiki, J. Janicka, A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186(2), 652–665 (2002)MATH M. Klein, A. Sadiki, J. Janicka, A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186(2), 652–665 (2002)MATH
26.
go back to reference P. Domingo, L. Vervisch, Dns and approximate deconvolution as a tool to analyse one-dimensional filtered flame sub-grid scale modeling. Combust. Flame 177, 109–122 (2017) P. Domingo, L. Vervisch, Dns and approximate deconvolution as a tool to analyse one-dimensional filtered flame sub-grid scale modeling. Combust. Flame 177, 109–122 (2017)
27.
go back to reference P.H. Van Cittert, Zum einfluss der spaltbreite auf die intensitätverteilung in spektralinien. II, Z. Physik 69, 298–308 (1931) P.H. Van Cittert, Zum einfluss der spaltbreite auf die intensitätverteilung in spektralinien. II, Z. Physik 69, 298–308 (1931)
28.
go back to reference P.A. Jansson, in Deconvolution with Applications in Spectroscopy (Academic, New York, 1984), pp. 67–134 P.A. Jansson, in Deconvolution with Applications in Spectroscopy (Academic, New York, 1984), pp. 67–134
29.
go back to reference Z.M. Nikolaou, N. Swaminathan, Direct numerical simulation of complex fuel combustion with detailed chemistry: physical insight and mean reaction rate modeling. Combust. Sci. Tech. 187, 1759–1789 (2015) Z.M. Nikolaou, N. Swaminathan, Direct numerical simulation of complex fuel combustion with detailed chemistry: physical insight and mean reaction rate modeling. Combust. Sci. Tech. 187, 1759–1789 (2015)
30.
go back to reference R.S. Cant, Senga2 user guide. cued/a?thermo/tr67. Technical report (2012) R.S. Cant, Senga2 user guide. cued/a?thermo/tr67. Technical report (2012)
31.
go back to reference Z. Nikolaou, R.S. Cant, L. Vervisch, Scalar flux modelling in turbulent flames using iterative deconvolution. Phys. Rev. Fluids. 3(4), 043201 (2018) Z. Nikolaou, R.S. Cant, L. Vervisch, Scalar flux modelling in turbulent flames using iterative deconvolution. Phys. Rev. Fluids. 3(4), 043201 (2018)
32.
go back to reference R.A. Clark, Evaluation of sub-grid scalar models using an accurately simulated turbulent flow. J. Fluid Mech. 91(1) (1979)MATH R.A. Clark, Evaluation of sub-grid scalar models using an accurately simulated turbulent flow. J. Fluid Mech. 91(1) (1979)MATH
33.
go back to reference D. Veynante, A. Trouvé, K.N.C. Bray, T. Mantel, Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech. 332, 263–293 (1997)MATH D. Veynante, A. Trouvé, K.N.C. Bray, T. Mantel, Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech. 332, 263–293 (1997)MATH
34.
go back to reference Z.M. Nikolaou, Y. Minamoto, L. Vervisch, Unresolved stress tensor modeling in turbulent premixed v-flames using iterative deconvolution: An a priori assessment. Phys. Rev. Fluids 4, 063202 (2019) Z.M. Nikolaou, Y. Minamoto, L. Vervisch, Unresolved stress tensor modeling in turbulent premixed v-flames using iterative deconvolution: An a priori assessment. Phys. Rev. Fluids 4, 063202 (2019)
35.
go back to reference L. Cifuentes, C. Dopazo, J. Martin, P. Domingo, L. Vervisch, Local volumetric dilatation rate and scalar geometries in a premixed methane-air turbulent jet flame. Proc. Combust. Inst. 35(2), 1295–1303 (2015) L. Cifuentes, C. Dopazo, J. Martin, P. Domingo, L. Vervisch, Local volumetric dilatation rate and scalar geometries in a premixed methane-air turbulent jet flame. Proc. Combust. Inst. 35(2), 1295–1303 (2015)
36.
go back to reference L. Cifuentes, C. Dopazo, J. Martin, P. Domingo, L. Vervisch, Effects of the local flow topologies upon the structure of a premixed methane-air turbulent jet flame. Flow Turbul. Combust. 96(2), 535–546 (2016) L. Cifuentes, C. Dopazo, J. Martin, P. Domingo, L. Vervisch, Effects of the local flow topologies upon the structure of a premixed methane-air turbulent jet flame. Flow Turbul. Combust. 96(2), 535–546 (2016)
37.
go back to reference P. Domingo, L. Vervisch, D. Veynante, Large-Eddy Simulation of a lifted methane-air jet flame in a vitiated coflow. Combust. Flame 152(3), 415–432 (2008) P. Domingo, L. Vervisch, D. Veynante, Large-Eddy Simulation of a lifted methane-air jet flame in a vitiated coflow. Combust. Flame 152(3), 415–432 (2008)
38.
go back to reference A.W. Vreman, An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Phys. Fluids. 16(10), 3670–3681 (2004)MATH A.W. Vreman, An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Phys. Fluids. 16(10), 3670–3681 (2004)MATH
39.
go back to reference A. Seltz, P. Domingo, L. Vervisch, Z. Nikolaou, Direct mapping from LES resolved scales to filtered-flame generated manifolds using convolutional neural networks. Combust. Flame 210, 71–82 (2019) A. Seltz, P. Domingo, L. Vervisch, Z. Nikolaou, Direct mapping from LES resolved scales to filtered-flame generated manifolds using convolutional neural networks. Combust. Flame 210, 71–82 (2019)
41.
go back to reference J. Schmidhuber, Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015) J. Schmidhuber, Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)
42.
go back to reference Y. Lecun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015) Y. Lecun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015)
43.
go back to reference P.-T. de Boer, D.P. Kroese, S.S. Mannor, R.Y. Rubinstein, A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)MathSciNetMATH P.-T. de Boer, D.P. Kroese, S.S. Mannor, R.Y. Rubinstein, A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)MathSciNetMATH
Metadata
Title
From Discrete and Iterative Deconvolution Operators to Machine Learning for Premixed Turbulent Combustion Modeling
Authors
P. Domingo
Z. Nikolaou
A. Seltz
L. Vervisch
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-44718-2_11

Premium Partner