Skip to main content
Top

2009 | OriginalPaper | Chapter

From Macro to Meso and Nano Material Failure. Quantized Cohesive Model for Fractal Cracks

Author : Michael P. Wnuk*

Published in: Security and Reliability of Damaged Structures and Defective Materials

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

A discretization procedure for the cohesive model of a fractal crack requires that all pertinent entities describing the influence of the cohesive stress that restrains opening of the crack, such as effective stress intensity factor, the modulus of cohesion, extent of the end zone and the opening displacement within the high-strain region adjacent to the crack tip are re-visited and replaced by certain averages over a finite length referred to as either “unit step growth” or “fracture quantum”. Thus, two novel aspects of the model enter the theory: (1) degree of fractality related to the roughness of the newly created surface, and (2) discrete nature of the propagating crack. Both variables are shown to increase the equilibrium length of the cohesive zone. At the point of incipient fracture this length becomes the characteristic material length parameter L

c

.

Novel properties of the present model provide a better insight and an effective tool to explain multiscale nature of fracture process and the associated transitions from nano- to micro- and macro-levels of material response to deformation and fracture. These multiscale features of any real material appear to be inherent defense mechanisms provided by nature.

As the degree of fractality increases, the characteristic material length is shown to rapidly grow to the levels around three orders of magnitude higher than those predicted for the classic case. Such effect is helpful in explaining an unusual size-sensitivity of fracture testing in materials with cementitious bonding such as concrete and certain types of ceramics, where fractal cracks are commonly observed.

In the limit of vanishing quantum fracture and/or reduced degree of fractality the quantized cohesive model of a fractal crack, as presented here, reduces to the well-known classic models of Dugdale—Barenblatt or to the LEFM or the QFM fracture theories.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Metadata
Title
From Macro to Meso and Nano Material Failure. Quantized Cohesive Model for Fractal Cracks
Author
Michael P. Wnuk*
Copyright Year
2009
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-90-481-2792-4_17

Premium Partners