Skip to main content
Top

2019 | OriginalPaper | Chapter

From Modular Forms to Differential Equations for Feynman Integrals

Authors : Johannes Broedel, Claude Duhr, Falko Dulat, Brenda Penante, Lorenzo Tancredi

Published in: Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In these proceedings we discuss a representation for modular forms that is more suitable for their application to the calculation of Feynman integrals in the context of iterated integrals and the differential equation method. In particular, we show that for every modular form we can find a representation in terms of powers of complete elliptic integrals of the first kind multiplied by algebraic functions. We illustrate this result on several examples. In particular, we show how to explicitly rewrite elliptic multiple zeta values as iterated integrals over powers of complete elliptic integrals and rational functions, and we discuss how to use our results in the context of the system of differential equations satisfied by the sunrise and kite integrals.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The notation \(j'(\tau )= j(2\tau )\) is standard in this context in the mathematics literature, though we emphasise that \(j'(\tau )\) does not correspond to the derivative of \(j(\tau )\).
 
2
There are exceptions for small values of the weight and the level.
 
3
We define the genus of a congruence subgroup \(\varGamma \) to be the genus of the modular curve \(X_{\varGamma }\).
 
Literature
3.
go back to reference J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, E. Imamoglu, M. van Hoeij, A. von Manteuffel, C.G. Raab, C.S. Radu, C. Schneider, Iterative and iterative-noniterative integral solutions in 3-loop massive QCD calculations. PoS(RADCOR2017)069, arXiv:1711.09742 [hep-ph] J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, E. Imamoglu, M. van Hoeij, A. von Manteuffel, C.G. Raab, C.S. Radu, C. Schneider, Iterative and iterative-noniterative integral solutions in 3-loop massive QCD calculations. PoS(RADCOR2017)069, arXiv:​1711.​09742 [hep-ph]
4.
go back to reference J. Ablinger, J. Blümlein, A. De Freitas, M. van Hoeij, E. Imamoglu, C.G. Raab, C.S. Radu, C. Schneider, Iterated elliptic and hypergeometric integrals for Feynman diagrams. J. Math. Phys. 59(6), 062305 (2018), arXiv:1706.01299 [hep-th]MathSciNetCrossRef J. Ablinger, J. Blümlein, A. De Freitas, M. van Hoeij, E. Imamoglu, C.G. Raab, C.S. Radu, C. Schneider, Iterated elliptic and hypergeometric integrals for Feynman diagrams. J. Math. Phys. 59(6), 062305 (2018), arXiv:​1706.​01299 [hep-th]MathSciNetCrossRef
5.
go back to reference L. Adams, E. Chaubey, S. Weinzierl, Analytic results for the planar double box integral relevant to top-pair production with a closed top loop (2018) L. Adams, E. Chaubey, S. Weinzierl, Analytic results for the planar double box integral relevant to top-pair production with a closed top loop (2018)
6.
go back to reference L. Adams, E. Chaubey, S. Weinzierl, The planar double box integral for top pair production with a closed top loop to all orders in the dimensional regularisation parameter (2018) L. Adams, E. Chaubey, S. Weinzierl, The planar double box integral for top pair production with a closed top loop to all orders in the dimensional regularisation parameter (2018)
7.
go back to reference L. Adams, S. Weinzierl, Feynman integrals and iterated integrals of modular forms (2017) L. Adams, S. Weinzierl, Feynman integrals and iterated integrals of modular forms (2017)
8.
go back to reference L. Adams, S. Weinzierl, The \(\varepsilon \)-form of the differential equations for Feynman integrals in the elliptic case. Phys. Lett. B 781, 270–278 (2018) L. Adams, S. Weinzierl, The \(\varepsilon \)-form of the differential equations for Feynman integrals in the elliptic case. Phys. Lett. B 781, 270–278 (2018)
9.
10.
go back to reference R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, F. Moriello, V.A. Smirnov, Two-loop planar master integrals for Higgs\(\rightarrow 3\) partons with full heavy-quark mass dependence. JHEP 12, 096 (2016) R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, F. Moriello, V.A. Smirnov, Two-loop planar master integrals for Higgs\(\rightarrow 3\) partons with full heavy-quark mass dependence. JHEP 12, 096 (2016)
11.
go back to reference J. Broedel, C. Duhr, F. Dulat, B. Penante, L. Tancredi, Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series (2018) J. Broedel, C. Duhr, F. Dulat, B. Penante, L. Tancredi, Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series (2018)
12.
go back to reference J. Broedel, C. Duhr, F. Dulat, L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves I: general formalism (2017) J. Broedel, C. Duhr, F. Dulat, L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves I: general formalism (2017)
13.
go back to reference J. Broedel, C. Duhr, F. Dulat, L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves II: an application to the sunrise integral (2017) J. Broedel, C. Duhr, F. Dulat, L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves II: an application to the sunrise integral (2017)
14.
go back to reference J. Broedel, C.R. Mafra, N. Matthes, O. Schlotterer, Elliptic multiple zeta values and one-loop superstring amplitudes. JHEP 07, 112 (2015) J. Broedel, C.R. Mafra, N. Matthes, O. Schlotterer, Elliptic multiple zeta values and one-loop superstring amplitudes. JHEP 07, 112 (2015)
15.
go back to reference J. Broedel, N. Matthes, G. Richter, O. Schlotterer, Twisted elliptic multiple zeta values and non-planar one-loop open-string amplitudes. J. Phys. A 51(28), 285401 (2018)MathSciNetCrossRef J. Broedel, N. Matthes, G. Richter, O. Schlotterer, Twisted elliptic multiple zeta values and non-planar one-loop open-string amplitudes. J. Phys. A 51(28), 285401 (2018)MathSciNetCrossRef
16.
go back to reference J. Broedel, N. Matthes, O. Schlotterer, Relations between elliptic multiple zeta values and a special derivation algebra. J. Phys. A 49(15), 155203 (2016)MathSciNetCrossRef J. Broedel, N. Matthes, O. Schlotterer, Relations between elliptic multiple zeta values and a special derivation algebra. J. Phys. A 49(15), 155203 (2016)MathSciNetCrossRef
17.
go back to reference J. Broedel, O. Schlotterer, F. Zerbini, From elliptic multiple zeta values to modular graph functions: open and closed strings at one loop (2018) J. Broedel, O. Schlotterer, F. Zerbini, From elliptic multiple zeta values to modular graph functions: open and closed strings at one loop (2018)
18.
go back to reference R. Broker, K. Lauter, A.V. Sutherland, Modular polynomials via isogeny volcanoes. Math. Comput. 81, 1201–1231 (2012)MathSciNetCrossRef R. Broker, K. Lauter, A.V. Sutherland, Modular polynomials via isogeny volcanoes. Math. Comput. 81, 1201–1231 (2012)MathSciNetCrossRef
19.
go back to reference F. Brown, Multiple modular values and the relative completion of the fundamental group of \(M_{1,1}\) (2014) F. Brown, Multiple modular values and the relative completion of the fundamental group of \(M_{1,1}\) (2014)
20.
go back to reference F. Brown, A. Levin, Multiple elliptic polylogarithms (2011) F. Brown, A. Levin, Multiple elliptic polylogarithms (2011)
21.
go back to reference J.H. Bruinier, K. Ono, A.V. Sutherland, Class polynomials for nonholomorphic modular functions. J. Number Theory 161, 204–229 (2016)MathSciNetCrossRef J.H. Bruinier, K. Ono, A.V. Sutherland, Class polynomials for nonholomorphic modular functions. J. Number Theory 161, 204–229 (2016)MathSciNetCrossRef
22.
go back to reference F. Diamond, B. Sturmfels, J. Shurman, A First Course in Modular Forms. Graduate Texts in Mathematics (Springer Science and Business Media, Berlin, 2005) F. Diamond, B. Sturmfels, J. Shurman, A First Course in Modular Forms. Graduate Texts in Mathematics (Springer Science and Business Media, Berlin, 2005)
23.
go back to reference T. Gehrmann, E. Remiddi, Differential equations for two loop four point functions. Nucl. Phys. B 580, 485–518 (2000)MathSciNetCrossRef T. Gehrmann, E. Remiddi, Differential equations for two loop four point functions. Nucl. Phys. B 580, 485–518 (2000)MathSciNetCrossRef
24.
go back to reference J.M. Henn, Multiloop integrals in dimensional regularization made simple. Phys. Rev. Lett. 110, 251601 (2013) J.M. Henn, Multiloop integrals in dimensional regularization made simple. Phys. Rev. Lett. 110, 251601 (2013)
25.
go back to reference A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation. Phys. Lett. B 254, 158–164 (1991)MathSciNetCrossRef A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation. Phys. Lett. B 254, 158–164 (1991)MathSciNetCrossRef
26.
go back to reference S. Laporta, E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph. Nucl. Phys. B 704, 349–386 (2005)MathSciNetCrossRef S. Laporta, E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph. Nucl. Phys. B 704, 349–386 (2005)MathSciNetCrossRef
27.
go back to reference R.S. Maier, On rationally parametrized modular equations. ArXiv Mathematics e-prints (2006) R.S. Maier, On rationally parametrized modular equations. ArXiv Mathematics e-prints (2006)
28.
go back to reference A. Primo, L. Tancredi, Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph. Nucl. Phys. B 921, 316–356 (2017)MathSciNetCrossRef A. Primo, L. Tancredi, Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph. Nucl. Phys. B 921, 316–356 (2017)MathSciNetCrossRef
29.
go back to reference A. Primo, L. Tancredi, On the maximal cut of Feynman integrals and the solution of their differential equations. Nucl. Phys. B 916, 94–116 (2017)MathSciNetCrossRef A. Primo, L. Tancredi, On the maximal cut of Feynman integrals and the solution of their differential equations. Nucl. Phys. B 916, 94–116 (2017)MathSciNetCrossRef
30.
go back to reference E. Remiddi, Differential equations for Feynman graph amplitudes. Nuovo Cim. A 110, 1435–1452 (1997) E. Remiddi, Differential equations for Feynman graph amplitudes. Nuovo Cim. A 110, 1435–1452 (1997)
31.
go back to reference E. Remiddi, L. Tancredi, Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral. Nucl. Phys. B 907, 400–444 (2016)MathSciNetCrossRef E. Remiddi, L. Tancredi, Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral. Nucl. Phys. B 907, 400–444 (2016)MathSciNetCrossRef
32.
go back to reference E. Remiddi, L. Tancredi, An elliptic generalization of multiple polylogarithms. Nucl. Phys. B 925, 212–251 (2017)MathSciNetCrossRef E. Remiddi, L. Tancredi, An elliptic generalization of multiple polylogarithms. Nucl. Phys. B 925, 212–251 (2017)MathSciNetCrossRef
33.
go back to reference A. von Manteuffel, L. Tancredi, A non-planar two-loop three-point function beyond multiple polylogarithms. JHEP 06, 127 (2017) A. von Manteuffel, L. Tancredi, A non-planar two-loop three-point function beyond multiple polylogarithms. JHEP 06, 127 (2017)
34.
go back to reference A. Weil, Elliptic Functions According to Eisenstein and Kronecker. Classics in Mathematics (Springer, Berlin, 1999) A. Weil, Elliptic Functions According to Eisenstein and Kronecker. Classics in Mathematics (Springer, Berlin, 1999)
35.
go back to reference Y. Yifan, Transformation formulas for generalized dedekind eta functions. Bull. Lond. Math. Soc. 36(5), 671–682 (2016) Y. Yifan, Transformation formulas for generalized dedekind eta functions. Bull. Lond. Math. Soc. 36(5), 671–682 (2016)
Metadata
Title
From Modular Forms to Differential Equations for Feynman Integrals
Authors
Johannes Broedel
Claude Duhr
Falko Dulat
Brenda Penante
Lorenzo Tancredi
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-04480-0_6

Premium Partner