Skip to main content

2019 | OriginalPaper | Buchkapitel

From Modular Forms to Differential Equations for Feynman Integrals

verfasst von : Johannes Broedel, Claude Duhr, Falko Dulat, Brenda Penante, Lorenzo Tancredi

Erschienen in: Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In these proceedings we discuss a representation for modular forms that is more suitable for their application to the calculation of Feynman integrals in the context of iterated integrals and the differential equation method. In particular, we show that for every modular form we can find a representation in terms of powers of complete elliptic integrals of the first kind multiplied by algebraic functions. We illustrate this result on several examples. In particular, we show how to explicitly rewrite elliptic multiple zeta values as iterated integrals over powers of complete elliptic integrals and rational functions, and we discuss how to use our results in the context of the system of differential equations satisfied by the sunrise and kite integrals.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The notation \(j'(\tau )= j(2\tau )\) is standard in this context in the mathematics literature, though we emphasise that \(j'(\tau )\) does not correspond to the derivative of \(j(\tau )\).
 
2
There are exceptions for small values of the weight and the level.
 
3
We define the genus of a congruence subgroup \(\varGamma \) to be the genus of the modular curve \(X_{\varGamma }\).
 
Literatur
3.
Zurück zum Zitat J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, E. Imamoglu, M. van Hoeij, A. von Manteuffel, C.G. Raab, C.S. Radu, C. Schneider, Iterative and iterative-noniterative integral solutions in 3-loop massive QCD calculations. PoS(RADCOR2017)069, arXiv:1711.09742 [hep-ph] J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, E. Imamoglu, M. van Hoeij, A. von Manteuffel, C.G. Raab, C.S. Radu, C. Schneider, Iterative and iterative-noniterative integral solutions in 3-loop massive QCD calculations. PoS(RADCOR2017)069, arXiv:​1711.​09742 [hep-ph]
4.
Zurück zum Zitat J. Ablinger, J. Blümlein, A. De Freitas, M. van Hoeij, E. Imamoglu, C.G. Raab, C.S. Radu, C. Schneider, Iterated elliptic and hypergeometric integrals for Feynman diagrams. J. Math. Phys. 59(6), 062305 (2018), arXiv:1706.01299 [hep-th]MathSciNetCrossRef J. Ablinger, J. Blümlein, A. De Freitas, M. van Hoeij, E. Imamoglu, C.G. Raab, C.S. Radu, C. Schneider, Iterated elliptic and hypergeometric integrals for Feynman diagrams. J. Math. Phys. 59(6), 062305 (2018), arXiv:​1706.​01299 [hep-th]MathSciNetCrossRef
5.
Zurück zum Zitat L. Adams, E. Chaubey, S. Weinzierl, Analytic results for the planar double box integral relevant to top-pair production with a closed top loop (2018) L. Adams, E. Chaubey, S. Weinzierl, Analytic results for the planar double box integral relevant to top-pair production with a closed top loop (2018)
6.
Zurück zum Zitat L. Adams, E. Chaubey, S. Weinzierl, The planar double box integral for top pair production with a closed top loop to all orders in the dimensional regularisation parameter (2018) L. Adams, E. Chaubey, S. Weinzierl, The planar double box integral for top pair production with a closed top loop to all orders in the dimensional regularisation parameter (2018)
7.
Zurück zum Zitat L. Adams, S. Weinzierl, Feynman integrals and iterated integrals of modular forms (2017) L. Adams, S. Weinzierl, Feynman integrals and iterated integrals of modular forms (2017)
8.
Zurück zum Zitat L. Adams, S. Weinzierl, The \(\varepsilon \)-form of the differential equations for Feynman integrals in the elliptic case. Phys. Lett. B 781, 270–278 (2018) L. Adams, S. Weinzierl, The \(\varepsilon \)-form of the differential equations for Feynman integrals in the elliptic case. Phys. Lett. B 781, 270–278 (2018)
9.
10.
Zurück zum Zitat R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, F. Moriello, V.A. Smirnov, Two-loop planar master integrals for Higgs\(\rightarrow 3\) partons with full heavy-quark mass dependence. JHEP 12, 096 (2016) R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, F. Moriello, V.A. Smirnov, Two-loop planar master integrals for Higgs\(\rightarrow 3\) partons with full heavy-quark mass dependence. JHEP 12, 096 (2016)
11.
Zurück zum Zitat J. Broedel, C. Duhr, F. Dulat, B. Penante, L. Tancredi, Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series (2018) J. Broedel, C. Duhr, F. Dulat, B. Penante, L. Tancredi, Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series (2018)
12.
Zurück zum Zitat J. Broedel, C. Duhr, F. Dulat, L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves I: general formalism (2017) J. Broedel, C. Duhr, F. Dulat, L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves I: general formalism (2017)
13.
Zurück zum Zitat J. Broedel, C. Duhr, F. Dulat, L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves II: an application to the sunrise integral (2017) J. Broedel, C. Duhr, F. Dulat, L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves II: an application to the sunrise integral (2017)
14.
Zurück zum Zitat J. Broedel, C.R. Mafra, N. Matthes, O. Schlotterer, Elliptic multiple zeta values and one-loop superstring amplitudes. JHEP 07, 112 (2015) J. Broedel, C.R. Mafra, N. Matthes, O. Schlotterer, Elliptic multiple zeta values and one-loop superstring amplitudes. JHEP 07, 112 (2015)
15.
Zurück zum Zitat J. Broedel, N. Matthes, G. Richter, O. Schlotterer, Twisted elliptic multiple zeta values and non-planar one-loop open-string amplitudes. J. Phys. A 51(28), 285401 (2018)MathSciNetCrossRef J. Broedel, N. Matthes, G. Richter, O. Schlotterer, Twisted elliptic multiple zeta values and non-planar one-loop open-string amplitudes. J. Phys. A 51(28), 285401 (2018)MathSciNetCrossRef
16.
Zurück zum Zitat J. Broedel, N. Matthes, O. Schlotterer, Relations between elliptic multiple zeta values and a special derivation algebra. J. Phys. A 49(15), 155203 (2016)MathSciNetCrossRef J. Broedel, N. Matthes, O. Schlotterer, Relations between elliptic multiple zeta values and a special derivation algebra. J. Phys. A 49(15), 155203 (2016)MathSciNetCrossRef
17.
Zurück zum Zitat J. Broedel, O. Schlotterer, F. Zerbini, From elliptic multiple zeta values to modular graph functions: open and closed strings at one loop (2018) J. Broedel, O. Schlotterer, F. Zerbini, From elliptic multiple zeta values to modular graph functions: open and closed strings at one loop (2018)
18.
Zurück zum Zitat R. Broker, K. Lauter, A.V. Sutherland, Modular polynomials via isogeny volcanoes. Math. Comput. 81, 1201–1231 (2012)MathSciNetCrossRef R. Broker, K. Lauter, A.V. Sutherland, Modular polynomials via isogeny volcanoes. Math. Comput. 81, 1201–1231 (2012)MathSciNetCrossRef
19.
Zurück zum Zitat F. Brown, Multiple modular values and the relative completion of the fundamental group of \(M_{1,1}\) (2014) F. Brown, Multiple modular values and the relative completion of the fundamental group of \(M_{1,1}\) (2014)
20.
Zurück zum Zitat F. Brown, A. Levin, Multiple elliptic polylogarithms (2011) F. Brown, A. Levin, Multiple elliptic polylogarithms (2011)
21.
Zurück zum Zitat J.H. Bruinier, K. Ono, A.V. Sutherland, Class polynomials for nonholomorphic modular functions. J. Number Theory 161, 204–229 (2016)MathSciNetCrossRef J.H. Bruinier, K. Ono, A.V. Sutherland, Class polynomials for nonholomorphic modular functions. J. Number Theory 161, 204–229 (2016)MathSciNetCrossRef
22.
Zurück zum Zitat F. Diamond, B. Sturmfels, J. Shurman, A First Course in Modular Forms. Graduate Texts in Mathematics (Springer Science and Business Media, Berlin, 2005) F. Diamond, B. Sturmfels, J. Shurman, A First Course in Modular Forms. Graduate Texts in Mathematics (Springer Science and Business Media, Berlin, 2005)
23.
Zurück zum Zitat T. Gehrmann, E. Remiddi, Differential equations for two loop four point functions. Nucl. Phys. B 580, 485–518 (2000)MathSciNetCrossRef T. Gehrmann, E. Remiddi, Differential equations for two loop four point functions. Nucl. Phys. B 580, 485–518 (2000)MathSciNetCrossRef
24.
Zurück zum Zitat J.M. Henn, Multiloop integrals in dimensional regularization made simple. Phys. Rev. Lett. 110, 251601 (2013) J.M. Henn, Multiloop integrals in dimensional regularization made simple. Phys. Rev. Lett. 110, 251601 (2013)
25.
Zurück zum Zitat A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation. Phys. Lett. B 254, 158–164 (1991)MathSciNetCrossRef A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation. Phys. Lett. B 254, 158–164 (1991)MathSciNetCrossRef
26.
Zurück zum Zitat S. Laporta, E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph. Nucl. Phys. B 704, 349–386 (2005)MathSciNetCrossRef S. Laporta, E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph. Nucl. Phys. B 704, 349–386 (2005)MathSciNetCrossRef
27.
Zurück zum Zitat R.S. Maier, On rationally parametrized modular equations. ArXiv Mathematics e-prints (2006) R.S. Maier, On rationally parametrized modular equations. ArXiv Mathematics e-prints (2006)
28.
Zurück zum Zitat A. Primo, L. Tancredi, Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph. Nucl. Phys. B 921, 316–356 (2017)MathSciNetCrossRef A. Primo, L. Tancredi, Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph. Nucl. Phys. B 921, 316–356 (2017)MathSciNetCrossRef
29.
Zurück zum Zitat A. Primo, L. Tancredi, On the maximal cut of Feynman integrals and the solution of their differential equations. Nucl. Phys. B 916, 94–116 (2017)MathSciNetCrossRef A. Primo, L. Tancredi, On the maximal cut of Feynman integrals and the solution of their differential equations. Nucl. Phys. B 916, 94–116 (2017)MathSciNetCrossRef
30.
Zurück zum Zitat E. Remiddi, Differential equations for Feynman graph amplitudes. Nuovo Cim. A 110, 1435–1452 (1997) E. Remiddi, Differential equations for Feynman graph amplitudes. Nuovo Cim. A 110, 1435–1452 (1997)
31.
Zurück zum Zitat E. Remiddi, L. Tancredi, Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral. Nucl. Phys. B 907, 400–444 (2016)MathSciNetCrossRef E. Remiddi, L. Tancredi, Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral. Nucl. Phys. B 907, 400–444 (2016)MathSciNetCrossRef
32.
Zurück zum Zitat E. Remiddi, L. Tancredi, An elliptic generalization of multiple polylogarithms. Nucl. Phys. B 925, 212–251 (2017)MathSciNetCrossRef E. Remiddi, L. Tancredi, An elliptic generalization of multiple polylogarithms. Nucl. Phys. B 925, 212–251 (2017)MathSciNetCrossRef
33.
Zurück zum Zitat A. von Manteuffel, L. Tancredi, A non-planar two-loop three-point function beyond multiple polylogarithms. JHEP 06, 127 (2017) A. von Manteuffel, L. Tancredi, A non-planar two-loop three-point function beyond multiple polylogarithms. JHEP 06, 127 (2017)
34.
Zurück zum Zitat A. Weil, Elliptic Functions According to Eisenstein and Kronecker. Classics in Mathematics (Springer, Berlin, 1999) A. Weil, Elliptic Functions According to Eisenstein and Kronecker. Classics in Mathematics (Springer, Berlin, 1999)
35.
Zurück zum Zitat Y. Yifan, Transformation formulas for generalized dedekind eta functions. Bull. Lond. Math. Soc. 36(5), 671–682 (2016) Y. Yifan, Transformation formulas for generalized dedekind eta functions. Bull. Lond. Math. Soc. 36(5), 671–682 (2016)
Metadaten
Titel
From Modular Forms to Differential Equations for Feynman Integrals
verfasst von
Johannes Broedel
Claude Duhr
Falko Dulat
Brenda Penante
Lorenzo Tancredi
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-04480-0_6

Premium Partner