Skip to main content
Top

2019 | OriginalPaper | Chapter

20. From von Neumann Machines to Neuromorphic Platforms

Author : Nikola K. Kasabov

Published in: Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Spiking neural networks (SNN), being highly parallel computational systems, can be implemented on various computational platforms, from the traditional von Neumann machines to the specialised neuromorphic platforms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N. Sengupta, J.I. Espinosa Ramos, E. Tu, S. Marks, N. Scott, J. Weclawski, A. Raj Gollahalli, M. Gholami Doborjeh, Z. Gholami Doborjeh, K. Kumarasinghe, V. Breen, A. Abbott, From von Neumann architecture and Atanasoffs ABC to Neuromorphic Computation and Kasabov’s NeuCube: Principles and Implementations, ed. by Jotzov, et al., Chapter 1 in: Advances in Computational intelligence (Springer, Heidelberg, 2018) N. Sengupta, J.I. Espinosa Ramos, E. Tu, S. Marks, N. Scott, J. Weclawski, A. Raj Gollahalli, M. Gholami Doborjeh, Z. Gholami Doborjeh, K. Kumarasinghe, V. Breen, A. Abbott, From von Neumann architecture and Atanasoffs ABC to Neuromorphic Computation and Kasabov’s NeuCube: Principles and Implementations, ed. by Jotzov, et al., Chapter 1 in: Advances in Computational intelligence (Springer, Heidelberg, 2018)
2.
go back to reference D. Berlinski, The Advent of the Algorithm: The 300-Year Journey from an Idea to the Computer (Houghton Mifflin Harcourt, 2001) D. Berlinski, The Advent of the Algorithm: The 300-Year Journey from an Idea to the Computer (Houghton Mifflin Harcourt, 2001)
3.
go back to reference W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943) W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)
4.
go back to reference Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015) Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015)
5.
go back to reference R.R. Schaller, Moore’s law: past, present and future. IEEE Spectr. 34(6), 52–59 (1997) R.R. Schaller, Moore’s law: past, present and future. IEEE Spectr. 34(6), 52–59 (1997)
6.
go back to reference N. Kasabov, N. Sengupta, N. Scott, From von Neumann, John Atanasoff and ABC to Neuromorphic computation and the Neucube spatio-temporal data machine, in IEEE 8th International Conference on Intelligent Systems (IS) (IEEE, 2016), pp. 15–21 N. Kasabov, N. Sengupta, N. Scott, From von Neumann, John Atanasoff and ABC to Neuromorphic computation and the Neucube spatio-temporal data machine, in IEEE 8th International Conference on Intelligent Systems (IS) (IEEE, 2016), pp. 15–21
7.
go back to reference I. Schuler, Neuromorphic computing: from materials to systems architecture (2016). Accessed 16 July 2016 I. Schuler, Neuromorphic computing: from materials to systems architecture (2016). Accessed 16 July 2016
8.
go back to reference C. Mead, Neuromorphic electronic systems. Proc. IEEE 78(10), 1629–1636 (1990) C. Mead, Neuromorphic electronic systems. Proc. IEEE 78(10), 1629–1636 (1990)
9.
go back to reference T. Delbruck, P. Lichtsteiner, Fast sensory motor control based on event-based hybrid neuromorphic-procedural system, in IEEE International Symposium on Circuits and Systems, 2007. ISCAS 2007 (IEEE, 2007), pp. 845–848 T. Delbruck, P. Lichtsteiner, Fast sensory motor control based on event-based hybrid neuromorphic-procedural system, in IEEE International Symposium on Circuits and Systems, 2007. ISCAS 2007 (IEEE, 2007), pp. 845–848
10.
go back to reference G. Indiveri, B. Linares-Barranco, T.J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, K. Boahen, Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011) G. Indiveri, B. Linares-Barranco, T.J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, K. Boahen, Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011)
11.
go back to reference G. Indiveri, S.-C. Liu, Memory and information processing in neuromorphic systems. Proc. IEEE 103(8), 1379–1397 (2015) G. Indiveri, S.-C. Liu, Memory and information processing in neuromorphic systems. Proc. IEEE 103(8), 1379–1397 (2015)
12.
go back to reference A. Calimera, E. Macii, M. Poncino, The human brain project and neuromorphic computing. Funct. Neurol. 28(3), 191–196 (2013) A. Calimera, E. Macii, M. Poncino, The human brain project and neuromorphic computing. Funct. Neurol. 28(3), 191–196 (2013)
13.
go back to reference J. Hsu, Ibm’s new brain [news]. IEEE Spectr. 51(10), 17–19 (2012) J. Hsu, Ibm’s new brain [news]. IEEE Spectr. 51(10), 17–19 (2012)
14.
go back to reference P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, A.S. Cassidy, J. Sawada, F. Akopyan, B.L. Jackson, N. Imam, C. Guo, Y. Nakamura, et al., A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197), 668–673 (2012) P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, A.S. Cassidy, J. Sawada, F. Akopyan, B.L. Jackson, N. Imam, C. Guo, Y. Nakamura, et al., A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197), 668–673 (2012)
15.
go back to reference B.V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A.R. Chandrasekaran, J.-M. Bussat, R. Alvarez-Icaza, J.V Arthur, P.A Merolla, K. Boahen, Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations. Proc. IEEE 102(5), 699–716 (2012) B.V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A.R. Chandrasekaran, J.-M. Bussat, R. Alvarez-Icaza, J.V Arthur, P.A Merolla, K. Boahen, Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations. Proc. IEEE 102(5), 699–716 (2012)
16.
go back to reference S.B. Furber, D.R. Lester, L.A. Plana, J.D. Garside, E. Painkras, S. Temple, A.D. Brown, Overview of the spinnaker system architecture. IEEE Trans. Comput. 62(12), 2454–2467 (2013) S.B. Furber, D.R. Lester, L.A. Plana, J.D. Garside, E. Painkras, S. Temple, A.D. Brown, Overview of the spinnaker system architecture. IEEE Trans. Comput. 62(12), 2454–2467 (2013)
17.
go back to reference S Moradi, G Indiveri, A VLSI network of spiking neurons with an asynchronous static random access memory, in Biomedical Circuits and Systems Conference (BioCAS) (IEEE, 2011), pp. 277–280 S Moradi, G Indiveri, A VLSI network of spiking neurons with an asynchronous static random access memory, in Biomedical Circuits and Systems Conference (BioCAS) (IEEE, 2011), pp. 277–280
18.
go back to reference N. Scott, N. Kasabov, G. Indiveri, in NeuCube Neuromorphic Framework for Spatio-temporal Brain Data and Its Python Implementation. Proceedings of the 20th International Conference on Neural Information Processing, November 3–7, Daegu, Korea (Springer, Heidelberg, 2013). D. Perrin, Complexity and high-end computing in biology and medicine (2011). Advances in Experimental Medicine and Biology N. Scott, N. Kasabov, G. Indiveri, in NeuCube Neuromorphic Framework for Spatio-temporal Brain Data and Its Python Implementation. Proceedings of the 20th International Conference on Neural Information Processing, November 3–7, Daegu, Korea (Springer, Heidelberg, 2013). D. Perrin, Complexity and high-end computing in biology and medicine (2011). Advances in Experimental Medicine and Biology
19.
go back to reference J. Mitra, T.K. Nayak, An FPGA-based phase measurement system. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 26(1), 133–142 (2017) J. Mitra, T.K. Nayak, An FPGA-based phase measurement system. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 26(1), 133–142 (2017)
20.
go back to reference J. Behrenbeck, Z. Tayeb, C. Bhiri, C. Richter, O. Rhodes, N. Kasabov, S. Furber, G. Cheng, J. Conradt, Classification and Regression of Spatio-Temporal EMG Signals using NeuCube Spiking Neural Network and its implementation on SpiNNaker Neuromorphic Hardware, J Neural Eng, IOP Press, 2018, Article reference: JNE-102499 J. Behrenbeck, Z. Tayeb, C. Bhiri, C. Richter, O. Rhodes, N. Kasabov, S. Furber, G. Cheng, J. Conradt, Classification and Regression of Spatio-Temporal EMG Signals using NeuCube Spiking Neural Network and its implementation on SpiNNaker Neuromorphic Hardware, J Neural Eng, IOP Press, 2018, Article reference: JNE-102499
21.
go back to reference W. Maass, C.M. Bishop, Pulsed Neural Networks (MIT Press, Cambridge, 2001) W. Maass, C.M. Bishop, Pulsed Neural Networks (MIT Press, Cambridge, 2001)
22.
go back to reference E. Capecci, N. Kasabov, G.Y. Wang, Analysis of connectivity in neucube spiking neural network models trained on eeg data for the understanding of functional changes in the brain: a case study on opiate dependence treatment. Neural Netw. 68, 62–77 (2015)CrossRef E. Capecci, N. Kasabov, G.Y. Wang, Analysis of connectivity in neucube spiking neural network models trained on eeg data for the understanding of functional changes in the brain: a case study on opiate dependence treatment. Neural Netw. 68, 62–77 (2015)CrossRef
23.
go back to reference D.F.M. Goodman, Code generation: a strategy for neural network simulators. Neuroinformatics 8(3), 183–196 (2010) D.F.M. Goodman, Code generation: a strategy for neural network simulators. Neuroinformatics 8(3), 183–196 (2010)
24.
go back to reference N. Kasabov, N.M. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, M. Othman, M.G. Doborjeh, N. Murli, R. Hartono, et al., Evolving spatio-temporal data machines based on the neucube neuromorphic framework: design methodology and selected applications. Neural Netw. 78, 1–22 (2016) N. Kasabov, N.M. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, M. Othman, M.G. Doborjeh, N. Murli, R. Hartono, et al., Evolving spatio-temporal data machines based on the neucube neuromorphic framework: design methodology and selected applications. Neural Netw. 78, 1–22 (2016)
25.
go back to reference E.B. Baum, On the capabilities of multilayer perceptrons. J. Complex. 4(3), 193–215 (1988) E.B. Baum, On the capabilities of multilayer perceptrons. J. Complex. 4(3), 193–215 (1988)
26.
go back to reference J. Park, I.W. Sandberg, Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (1991) J. Park, I.W. Sandberg, Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (1991)
27.
go back to reference D.F. Specht, Probabilistic neural networks. Neural Netw. 3(1), 109–118 (1190) D.F. Specht, Probabilistic neural networks. Neural Netw. 3(1), 109–118 (1190)
28.
go back to reference T. Kohonen, The self-organizing map. Neurocomputing 21(1), 1–6 (1998) T. Kohonen, The self-organizing map. Neurocomputing 21(1), 1–6 (1998)
29.
go back to reference N. Kasabov, Evolving Connectionist Systems: The Knowledge Engineering Approach (Springer Science & Business Media, 2007) N. Kasabov, Evolving Connectionist Systems: The Knowledge Engineering Approach (Springer Science & Business Media, 2007)
30.
go back to reference T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke, T. Rückstieß, J. Schmidhuber, Pybrain. J. Mach. Learning Res. 11, 743–746 (2010) T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke, T. Rückstieß, J. Schmidhuber, Pybrain. J. Mach. Learning Res. 11, 743–746 (2010)
32.
go back to reference M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The weka data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009) M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The weka data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)
33.
go back to reference M.R. Berthold, N. Cebron, F. Dill, T.R. Gabriel, T. Kötter, T. Meinl, P. Ohl, C. Sieb, K. Thiel, B. Wiswedel, Knime: The Konstanz Information Miner, in Data Analysis, Machine Learning and Applications (Springer, Heidelberg, 2008), pp. 319–326 M.R. Berthold, N. Cebron, F. Dill, T.R. Gabriel, T. Kötter, T. Meinl, P. Ohl, C. Sieb, K. Thiel, B. Wiswedel, Knime: The Konstanz Information Miner, in Data Analysis, Machine Learning and Applications (Springer, Heidelberg, 2008), pp. 319–326
34.
go back to reference J. Demšar, B. Zupan, G. Leban, T. Curk, Orange: From Experimental Machine Learning to Interactive Data Mining (Springer, Heidelberg, 2004) J. Demšar, B. Zupan, G. Leban, T. Curk, Orange: From Experimental Machine Learning to Interactive Data Mining (Springer, Heidelberg, 2004)
35.
go back to reference M.L. Hines, N.T. Carnevale, The neuron simulation environment. Neural Comput. 9(6), 1179–1209 (1997) M.L. Hines, N.T. Carnevale, The neuron simulation environment. Neural Comput. 9(6), 1179–1209 (1997)
36.
go back to reference R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J.M. Bower, M. Diesmann, A. Morrison, P.H. Goodman, F.C. Harris Jr., et al., Simulation of networks of spiking neurons: a review of tools and strategies. J. Comput. Neurosci. 23(3), 349–398 (2007) R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J.M. Bower, M. Diesmann, A. Morrison, P.H. Goodman, F.C. Harris Jr., et al., Simulation of networks of spiking neurons: a review of tools and strategies. J. Comput. Neurosci. 23(3), 349–398 (2007)
37.
go back to reference J.M. Eppler, M. Helias, E. Muller, M. Diesmann, M.-O. Gewaltig, Pynest: a convenient interface to the nest simulator. Front. Neuroinformatics 2, 12 (2008)CrossRef J.M. Eppler, M. Helias, E. Muller, M. Diesmann, M.-O. Gewaltig, Pynest: a convenient interface to the nest simulator. Front. Neuroinformatics 2, 12 (2008)CrossRef
38.
go back to reference D. Pecevski, T. Natschläger, K. Schuch, Pcsim: a parallel simulation environment for neural circuits fully integrated with python. Front. Neuroinformatics 3, 11 (2009) D. Pecevski, T. Natschläger, K. Schuch, Pcsim: a parallel simulation environment for neural circuits fully integrated with python. Front. Neuroinformatics 3, 11 (2009)
39.
go back to reference T. Natschläger, H. Markram, W. Maass, Computer Models and Analysis Tools for Neural Microcircuits, in Neuroscience Databases (Springer, Heidelberg, 2003), pp. 123–138 T. Natschläger, H. Markram, W. Maass, Computer Models and Analysis Tools for Neural Microcircuits, in Neuroscience Databases (Springer, Heidelberg, 2003), pp. 123–138
40.
go back to reference R. Drewes, Brainlab: a toolkit to aid in the design, simulation, and analysis of spiking neural networks with the NCS environment. Ph.D. thesis, University of Nevada Reno, 2005 R. Drewes, Brainlab: a toolkit to aid in the design, simulation, and analysis of spiking neural networks with the NCS environment. Ph.D. thesis, University of Nevada Reno, 2005
41.
go back to reference E.C. Wilson (2001), Parallel implementation of a large scale biologically realistic neocortical neural network simulator. Ph.D. thesis, University of Nevada Reno, 2001 E.C. Wilson (2001), Parallel implementation of a large scale biologically realistic neocortical neural network simulator. Ph.D. thesis, University of Nevada Reno, 2001
42.
go back to reference D. Pecevski, Oger: Modular learning architectures for large-scale sequential processing D. Pecevski, Oger: Modular learning architectures for large-scale sequential processing
43.
go back to reference D.F.M. Goodman, R. Brette, The brian simulator. Front. Neuroscience 3(2), 192 (2009) D.F.M. Goodman, R. Brette, The brian simulator. Front. Neuroscience 3(2), 192 (2009)
44.
go back to reference M. Diesmann, M.-O. Gewaltig, A.D. Aertsen, Stable propagation of synchronous spiking in cortical neural networks. Nature 402(6761), 529–533 (1999) M. Diesmann, M.-O. Gewaltig, A.D. Aertsen, Stable propagation of synchronous spiking in cortical neural networks. Nature 402(6761), 529–533 (1999)
45.
go back to reference N. Kasabov, Neucube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw. 52, 62–76 (2014)CrossRef N. Kasabov, Neucube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw. 52, 62–76 (2014)CrossRef
46.
go back to reference N. Sengupta, N. Scott, N. Kasabov, Framework for Knowledge Driven Optimisation Based Data Encoding for Brain Data Modelling Using Spiking Neural Network Architecture, in Proceedings of the Fifth International Conference on Fuzzy and Neuro Computing (FANCCO-2015) (Springer, Heidelberg, 2015), pp. 109–118 N. Sengupta, N. Scott, N. Kasabov, Framework for Knowledge Driven Optimisation Based Data Encoding for Brain Data Modelling Using Spiking Neural Network Architecture, in Proceedings of the Fifth International Conference on Fuzzy and Neuro Computing (FANCCO-2015) (Springer, Heidelberg, 2015), pp. 109–118
47.
go back to reference S. Song, K.D. Miller, L.F. Abbott, Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3(9), 919–926 (2000) S. Song, K.D. Miller, L.F. Abbott, Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3(9), 919–926 (2000)
48.
go back to reference S. Fusi, Spike-driven synaptic plasticity for learning correlated patterns of mean firing rates. Rev. Neurosci. 22(1–2), 73–84 (2003) S. Fusi, Spike-driven synaptic plasticity for learning correlated patterns of mean firing rates. Rev. Neurosci. 22(1–2), 73–84 (2003)
49.
go back to reference N. Kasabov, K. Dhoble, N. Nuntalid, G. Indiveri, Dynamic evolving spiking neural networks for on-line spatio-and spectro-temporal pattern recognition. Neural Netw. 41, 188–201 (2013)CrossRef N. Kasabov, K. Dhoble, N. Nuntalid, G. Indiveri, Dynamic evolving spiking neural networks for on-line spatio-and spectro-temporal pattern recognition. Neural Netw. 41, 188–201 (2013)CrossRef
50.
go back to reference A. Mohemmed, S. Schliebs, S. Matsuda, N. Kasabov, Span: spike pattern association neuron for learning spatio-temporal spike patterns. Int. J. Neural Syst. 22(04), 1250012 (2012) A. Mohemmed, S. Schliebs, S. Matsuda, N. Kasabov, Span: spike pattern association neuron for learning spatio-temporal spike patterns. Int. J. Neural Syst. 22(04), 1250012 (2012)
51.
go back to reference S. Marks, J. Estevez, N. Scott, Immersive visualisation of 3-dimensional neural network structures (2015) S. Marks, J. Estevez, N. Scott, Immersive visualisation of 3-dimensional neural network structures (2015)
52.
go back to reference S. Marks, Immersive visualisation of 3-dimensional spiking neural networks. Evol. Syst. (2016) 1–9 S. Marks, Immersive visualisation of 3-dimensional spiking neural networks. Evol. Syst. (2016) 1–9
53.
go back to reference N. Kasabov, Y. Hu, Integrated optimisation method for personalised modelling and case studies for medical decision support. Int. J. Funct. Inf. Personalised Med. 3(3), 236–256 (2010) N. Kasabov, Y. Hu, Integrated optimisation method for personalised modelling and case studies for medical decision support. Int. J. Funct. Inf. Personalised Med. 3(3), 236–256 (2010)
54.
go back to reference M.G. Doborjeh, N. Kasabov, Personalised modelling on integrated clinical and eeg spatio-temporal brain data in the neucube spiking neural network system, in 2016 International Joint Conference on Neural Networks (IJCNN) (IEEE, 2016), pp. 1373–1378 M.G. Doborjeh, N. Kasabov, Personalised modelling on integrated clinical and eeg spatio-temporal brain data in the neucube spiking neural network system, in 2016 International Joint Conference on Neural Networks (IJCNN) (IEEE, 2016), pp. 1373–1378
56.
go back to reference A. Abbott et al., in Proceedings of IJCNN (2016) A. Abbott et al., in Proceedings of IJCNN (2016)
57.
go back to reference H. Esmaeilzadeh, E. Blem, R.S. Amant, K. Sankaralingam, D. Burger, Dark silicon and the end of multicore scaling. ACM SIGARCH Comput. Archit. News 39(3), 365 (2011) H. Esmaeilzadeh, E. Blem, R.S. Amant, K. Sankaralingam, D. Burger, Dark silicon and the end of multicore scaling. ACM SIGARCH Comput. Archit. News 39(3), 365 (2011)
58.
go back to reference D. Perrin, Complexity and high-end computing in biology and medicine. Adv. Exp. Med. Biol. 696, 377–384 (2011) D. Perrin, Complexity and high-end computing in biology and medicine. Adv. Exp. Med. Biol. 696, 377–384 (2011)
59.
go back to reference S. Furber, To Build a Brain. IEEE Spectr. 49(8), 44–49 (2012) S. Furber, To Build a Brain. IEEE Spectr. 49(8), 44–49 (2012)
60.
go back to reference A.P. Davison, D. Brüderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski, L. Perrinet, P. Yger, PyNN: a common interface for neuronal network simulators. Front. Neuroinformatics 2, 11 (2008) A.P. Davison, D. Brüderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski, L. Perrinet, P. Yger, PyNN: a common interface for neuronal network simulators. Front. Neuroinformatics 2, 11 (2008)
61.
go back to reference G. Indiveri, F. Corradi, N. Qiao, Neuromorphic architectures for spiking deep neural networks. IEEE Int. Electron Devices Meeting (IEDM) (2015) G. Indiveri, F. Corradi, N. Qiao, Neuromorphic architectures for spiking deep neural networks. IEEE Int. Electron Devices Meeting (IEDM) (2015)
62.
go back to reference W. Maass, Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10(9), 1659–1671 (1997) W. Maass, Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10(9), 1659–1671 (1997)
Metadata
Title
From von Neumann Machines to Neuromorphic Platforms
Author
Nikola K. Kasabov
Copyright Year
2019
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-57715-8_20

Premium Partner