Skip to main content
Top

2019 | OriginalPaper | Chapter

19. Deep Learning of Multisensory Streaming Data for Predictive Modelling with Applications in Finance, Ecology, Transport and Environment

Author : Nikola K. Kasabov

Published in: Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents methods for using eSNN and BI-SNN for deep, incremental learning and predictive modelling of streaming data and for deep knowledge representation. The methods are applied for predictive modelling in the areas of finance, ecology, transport and environment using respective multisensory streaming data. Each of these applications require specific model design in terms of data preparation, SNN model parameters, experimental setting and validation. Each of the methods are illustrated with case study problems and data, but their applicability can be extended to a wider class of problems where multisensory streaming data is available.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference N. Kasabov, N. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, M. Othman, M. Doborjeh, N. Murli, R. Hartono, J. Espinosa-Ramos, L. Zhou, F. Alvi, G. Wang, D. Taylor, V. Feigin, S. Gulyaev, M. Mahmoudh, Z.G. Hou, J. Yang, Design methodology and selected applications of evolving spatio-temporal data machines in the NeuCube neuromorphic framework. Neural Netw. 78, 1–14 (2016). https://doi.org/10.1016/j.neunet.2015.09.011CrossRef N. Kasabov, N. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, M. Othman, M. Doborjeh, N. Murli, R. Hartono, J. Espinosa-Ramos, L. Zhou, F. Alvi, G. Wang, D. Taylor, V. Feigin, S. Gulyaev, M. Mahmoudh, Z.G. Hou, J. Yang, Design methodology and selected applications of evolving spatio-temporal data machines in the NeuCube neuromorphic framework. Neural Netw. 78, 1–14 (2016). https://​doi.​org/​10.​1016/​j.​neunet.​2015.​09.​011CrossRef
2.
go back to reference E. Tu, N. Kasabov, J. Yang, Mapping temporal variables into the NeuCube for improved pattern recognition, predictive modeling, and understanding of stream data. IEEE Trans. Neural Netw. Learn. Syst. 28(6), 1305–1317 (2017)MathSciNetCrossRef E. Tu, N. Kasabov, J. Yang, Mapping temporal variables into the NeuCube for improved pattern recognition, predictive modeling, and understanding of stream data. IEEE Trans. Neural Netw. Learn. Syst. 28(6), 1305–1317 (2017)MathSciNetCrossRef
3.
go back to reference N. Kasabov, NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw. 52, 62–76 (2014)CrossRef N. Kasabov, NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw. 52, 62–76 (2014)CrossRef
4.
go back to reference C. Chu, Y. Ni, G.J.S.C. Tan, J. Ashburton, Kernel regression for fMRI pattern prediction. Neuroimage 56(9), 662–673 (2011)CrossRef C. Chu, Y. Ni, G.J.S.C. Tan, J. Ashburton, Kernel regression for fMRI pattern prediction. Neuroimage 56(9), 662–673 (2011)CrossRef
5.
go back to reference M. Gholami Doborjeh, N. Kasabov, Mapping, learning, visualisation and classification of fMRI data in the NeuCube evolving spiking neural network framework. IEEE Trans. Neural Netw. Learn. Syst. 28(4), 887–899 (2015) M. Gholami Doborjeh, N. Kasabov, Mapping, learning, visualisation and classification of fMRI data in the NeuCube evolving spiking neural network framework. IEEE Trans. Neural Netw. Learn. Syst. 28(4), 887–899 (2015)
7.
go back to reference T.M. Mitchell, R. Hutchinson, M.A. Just, R.S.F.P. Niculescu, X. Wang, Classifying instantaneous cognitive states from fMRI data, in AMIA Annual Symposium Proceedings (American Medical Informatics Association, 2003), p. 465 T.M. Mitchell, R. Hutchinson, M.A. Just, R.S.F.P. Niculescu, X. Wang, Classifying instantaneous cognitive states from fMRI data, in AMIA Annual Symposium Proceedings (American Medical Informatics Association, 2003), p. 465
8.
go back to reference N. Murli, N. Kasabov, B. Handaga, Classification of fMRI data in the NeuCube evolving spiking neural network architecture, in Proceedings ICONIP (Springer), pp. 421–428 N. Murli, N. Kasabov, B. Handaga, Classification of fMRI data in the NeuCube evolving spiking neural network architecture, in Proceedings ICONIP (Springer), pp. 421–428
10.
go back to reference N. Kasabov, V. Feigin, Z.-G. Hou, Y. Chen, L. Liang, R. Krishnamurthi et al., Evolving spiking neural networks for personalised modelling, classification and prediction of spatio-temporal patterns with a case study on stroke. Neurocomputing 134, 269–279 (2014)CrossRef N. Kasabov, V. Feigin, Z.-G. Hou, Y. Chen, L. Liang, R. Krishnamurthi et al., Evolving spiking neural networks for personalised modelling, classification and prediction of spatio-temporal patterns with a case study on stroke. Neurocomputing 134, 269–279 (2014)CrossRef
11.
go back to reference J. Schmidhuber, Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2014)CrossRef J. Schmidhuber, Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2014)CrossRef
12.
go back to reference J. Liu, Y. Chen, Y. Chuo, H. Tsai, Variations of ionospheric total electron content during the chi-chi earthquake. Geophys. Res. Lett. 28(7), 1383–1386 (2001)CrossRef J. Liu, Y. Chen, Y. Chuo, H. Tsai, Variations of ionospheric total electron content during the chi-chi earthquake. Geophys. Res. Lett. 28(7), 1383–1386 (2001)CrossRef
14.
go back to reference D. Buonomano, W. Maass, State-dependent computations: spatio-temporal processing in cortical networks. Nat. Rev. Neurosci. 10, 113–125 (2009)CrossRef D. Buonomano, W. Maass, State-dependent computations: spatio-temporal processing in cortical networks. Nat. Rev. Neurosci. 10, 113–125 (2009)CrossRef
15.
go back to reference W. Gerstner, A.K. Kreiter, H.M.H.A.V. Markram, Theory and simulation in neuroscience. Proc. Natl. Acad. Sci. U S A 94(24), 12740–12741 (1997)CrossRef W. Gerstner, A.K. Kreiter, H.M.H.A.V. Markram, Theory and simulation in neuroscience. Proc. Natl. Acad. Sci. U S A 94(24), 12740–12741 (1997)CrossRef
16.
go back to reference W. Gerstner, H. Sprekeler, G. Deco, Theory and simulation in neuroscience. Science 338, 60–65 (2012)CrossRef W. Gerstner, H. Sprekeler, G. Deco, Theory and simulation in neuroscience. Science 338, 60–65 (2012)CrossRef
18.
go back to reference S. Fusi, Spike-driven synaptic plasticity for learning correlated patterns of mean firing rates. Rev. Neurosci. 14(1–2), 73–84 (2003) S. Fusi, Spike-driven synaptic plasticity for learning correlated patterns of mean firing rates. Rev. Neurosci. 14(1–2), 73–84 (2003)
19.
go back to reference E.M. Izhikevich, Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15(5), 1063–1070 (2004)CrossRef E.M. Izhikevich, Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15(5), 1063–1070 (2004)CrossRef
20.
go back to reference N. Kasabov, J. Hu, Y. Chen, N. Scott, Y. Turkova, Spatio-temporal EEG data classification in the NeuCube 3D SNN environment: methodology and examples, in Proceedings of the International Conference on Neural Information Processing (Springer, Daegu, Korea, 2013), pp. 63–69 N. Kasabov, J. Hu, Y. Chen, N. Scott, Y. Turkova, Spatio-temporal EEG data classification in the NeuCube 3D SNN environment: methodology and examples, in Proceedings of the International Conference on Neural Information Processing (Springer, Daegu, Korea, 2013), pp. 63–69
21.
go back to reference A. Mohemmed, N. Kasabov, Incremental learning algorithm for spatio-temporal spike pattern classification, in Proceedings of the IEEE world congress on computational intelligence, Brisbane, Australia, pp. 1227–1232 A. Mohemmed, N. Kasabov, Incremental learning algorithm for spatio-temporal spike pattern classification, in Proceedings of the IEEE world congress on computational intelligence, Brisbane, Australia, pp. 1227–1232
22.
go back to reference N. Kasabov, E. Capecci, Spiking neural network methodology for modelling, classification and understanding of EEG data measuring cognitive processes. Inf. Sci. 294, 565–575 (2015)MathSciNetCrossRef N. Kasabov, E. Capecci, Spiking neural network methodology for modelling, classification and understanding of EEG data measuring cognitive processes. Inf. Sci. 294, 565–575 (2015)MathSciNetCrossRef
23.
go back to reference S. Soltic, N. Kasabov, Knowledge extraction from evolving spiking neural networks with rank order population coding. Int. J. Neural Syst. 20(6), 437–445 (2010)CrossRef S. Soltic, N. Kasabov, Knowledge extraction from evolving spiking neural networks with rank order population coding. Int. J. Neural Syst. 20(6), 437–445 (2010)CrossRef
24.
go back to reference N. Kasabov, K. Dhoble, N. Nuntalid, G. Indiveri, Dynamic evolving spiking neural networks for on-line spatio-and spectro-temporal pattern recognition. Neural Netw. 41, 188–201 (2013)CrossRef N. Kasabov, K. Dhoble, N. Nuntalid, G. Indiveri, Dynamic evolving spiking neural networks for on-line spatio-and spectro-temporal pattern recognition. Neural Netw. 41, 188–201 (2013)CrossRef
25.
go back to reference N. Kasabov, Evolving Connectionist Systems (Springer, Berlin, 2007)MATH N. Kasabov, Evolving Connectionist Systems (Springer, Berlin, 2007)MATH
26.
go back to reference M. Defoin-Platel, S. Schliebs, N. Kasabov, Quantum-inspired evolutionary algorithm: a multi-model EDA. IEEE Trans. Evol. Comput. 13(6), 1218–1232 (2009)CrossRef M. Defoin-Platel, S. Schliebs, N. Kasabov, Quantum-inspired evolutionary algorithm: a multi-model EDA. IEEE Trans. Evol. Comput. 13(6), 1218–1232 (2009)CrossRef
28.
go back to reference C.-Y. Lin, K.-L. Tsai, S.-C. Wang, C.-H. Hsieh, H.-M. Chang, A.-S. Chiang, The neuron navigator: exploring the information pathway through the neural maze, in 2011 IEEE Pacific Visualization Symposium, PacificVis (2011), pp. 35–42 C.-Y. Lin, K.-L. Tsai, S.-C. Wang, C.-H. Hsieh, H.-M. Chang, A.-S. Chiang, The neuron navigator: exploring the information pathway through the neural maze, in 2011 IEEE Pacific Visualization Symposium, PacificVis (2011), pp. 35–42
29.
go back to reference A. von Kapri, T. Rick, T.C. Potjans, M. Diesmann, T. Kuhlen, Towards the visualization of spiking neurons in virtual reality. Stud. Health Technol. Inform. 163, 685–687 (2011) A. von Kapri, T. Rick, T.C. Potjans, M. Diesmann, T. Kuhlen, Towards the visualization of spiking neurons in virtual reality. Stud. Health Technol. Inform. 163, 685–687 (2011)
30.
go back to reference S. Marks, VR Visualisation of NeuCube, Evolving Systems (Springer, Berlin, 2017) S. Marks, VR Visualisation of NeuCube, Evolving Systems (Springer, Berlin, 2017)
31.
go back to reference R. Khansama, V. Ravi, N. Sengupta, A.R. Gollahalli, N. Kasabov, I. Bilbao-Quintana, Stock market movement prediction using evolving spiking neural networks, Evolving Systems, 2018 R. Khansama, V. Ravi, N. Sengupta, A.R. Gollahalli, N. Kasabov, I. Bilbao-Quintana, Stock market movement prediction using evolving spiking neural networks, Evolving Systems, 2018
36.
go back to reference K.-I. Oyama, Y. Kakinami, J.-Y. Liu, M. Kamogawa, T. Kodama, Reduction of electron temperature in low-latitude ionosphere at 600 km before and after large earthquakes. J. Geophys. Res. Space Phys. (1978–2012) 113(A11) (2008) K.-I. Oyama, Y. Kakinami, J.-Y. Liu, M. Kamogawa, T. Kodama, Reduction of electron temperature in low-latitude ionosphere at 600 km before and after large earthquakes. J. Geophys. Res. Space Phys. (1978–2012) 113(A11) (2008)
38.
go back to reference R.J. Geller, D.D. Jackson, Y.Y. Kagan, F. Mulargia, Enhanced: earthquakes cannot be predicted. Science 275(5306), 1616–1620 (1997)CrossRef R.J. Geller, D.D. Jackson, Y.Y. Kagan, F. Mulargia, Enhanced: earthquakes cannot be predicted. Science 275(5306), 1616–1620 (1997)CrossRef
39.
go back to reference S. Pulinets, A. Legen’Ka, T. Gaivoronskaya, V.K. Depuev, Main phenomenological features of ionospheric precursors of strong earth- quakes. J. Atmos. Solar Terr. Phys. 65(16), 1337–1347 (2003)CrossRef S. Pulinets, A. Legen’Ka, T. Gaivoronskaya, V.K. Depuev, Main phenomenological features of ionospheric precursors of strong earth- quakes. J. Atmos. Solar Terr. Phys. 65(16), 1337–1347 (2003)CrossRef
40.
go back to reference D. Ghosh, A. Deb, R. Sengupta, Anomalous radon emission as precursor of earthquake. J. Appl. Geophys. 69(2), 67–81 (2009)CrossRef D. Ghosh, A. Deb, R. Sengupta, Anomalous radon emission as precursor of earthquake. J. Appl. Geophys. 69(2), 67–81 (2009)CrossRef
41.
go back to reference Y. Li, Y. Liu, Z. Jiang, J. Guan, G. Yi, S. Cheng, B. Yang, T. Fu, Z. Wang, Behavioral change related to Wenchuan devastating earthquake in mice. Bioelectromagnetics 30(8), 613–620 (2009)CrossRef Y. Li, Y. Liu, Z. Jiang, J. Guan, G. Yi, S. Cheng, B. Yang, T. Fu, Z. Wang, Behavioral change related to Wenchuan devastating earthquake in mice. Bioelectromagnetics 30(8), 613–620 (2009)CrossRef
42.
go back to reference R.A. Grant, T. Halliday, Predicting the unpredictable; evidence of pre-seismic anticipatory behaviour in the common toad. J. Zool. 281(4), 263–271 (2010) R.A. Grant, T. Halliday, Predicting the unpredictable; evidence of pre-seismic anticipatory behaviour in the common toad. J. Zool. 281(4), 263–271 (2010)
43.
go back to reference I. Sovic´, K. Sˇ ariri, M. Zˇ ivcˇic´, High frequency microseismic noise as possible earthquake precursor. Res. Geophys. 3(1), e2 (2013)CrossRef I. Sovic´, K. Sˇ ariri, M. Zˇ ivcˇic´, High frequency microseismic noise as possible earthquake precursor. Res. Geophys. 3(1), e2 (2013)CrossRef
44.
go back to reference G. Sobolev, A. Lyubushin, Microseismic impulses as earthquake precursors. Izv. Phys. Solid Earth 42(9), 721–733 (2006)CrossRef G. Sobolev, A. Lyubushin, Microseismic impulses as earthquake precursors. Izv. Phys. Solid Earth 42(9), 721–733 (2006)CrossRef
45.
go back to reference Q. Huang, Search for reliable precursors: a case study of the seismic quiescence of the 2000 western Tottori prefecture earthquake. J. Geophys. Res. Solid Earth (1978–2012) 111(B4) (2006) Q. Huang, Search for reliable precursors: a case study of the seismic quiescence of the 2000 western Tottori prefecture earthquake. J. Geophys. Res. Solid Earth (1978–2012) 111(B4) (2006)
46.
go back to reference Y.-M. Wu, L.-Y. Chiao, Seismic quiescence before the 1999 chi-chi, Taiwan, mw 7.6 earthquake. Bull. Seismol. Soc. Am. 96(1), 321–327 (2006)CrossRef Y.-M. Wu, L.-Y. Chiao, Seismic quiescence before the 1999 chi-chi, Taiwan, mw 7.6 earthquake. Bull. Seismol. Soc. Am. 96(1), 321–327 (2006)CrossRef
47.
go back to reference J. Reyes, A. Morales-Esteban, F. Mart´ınez-A´ lvarez, Neural networks to predict earthquakes in chile. Appl. Soft Comput. 13(2), 1314–1328 (2013)CrossRef J. Reyes, A. Morales-Esteban, F. Mart´ınez-A´ lvarez, Neural networks to predict earthquakes in chile. Appl. Soft Comput. 13(2), 1314–1328 (2013)CrossRef
48.
go back to reference A. Morales-Esteban, F. Martínez-Álvarez, J. Reyes, Earthquake prediction in seismogenic areas of the iberian peninsula based on computational intelligence. Tectonophysics 593, 121–134 (2013)CrossRef A. Morales-Esteban, F. Martínez-Álvarez, J. Reyes, Earthquake prediction in seismogenic areas of the iberian peninsula based on computational intelligence. Tectonophysics 593, 121–134 (2013)CrossRef
49.
go back to reference M. Shibli, A novel approach to predict earthquakes using adaptive neural fuzzy inference system and conservation of energy-angular momentum. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. ISSN (2011), pp. 2150–7988 M. Shibli, A novel approach to predict earthquakes using adaptive neural fuzzy inference system and conservation of energy-angular momentum. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. ISSN (2011), pp. 2150–7988
50.
go back to reference A. Zamani, M.R. Sorbi, A.A. Safavi, Application of neural network and ANFIS model for earthquake occurrence in Iran. Earth Sci. Inf. 6(2), 71–85 (2013)CrossRef A. Zamani, M.R. Sorbi, A.A. Safavi, Application of neural network and ANFIS model for earthquake occurrence in Iran. Earth Sci. Inf. 6(2), 71–85 (2013)CrossRef
51.
go back to reference E. Joelianto, S. Widiyantoro, M. Ichsan, Time series estimation on earthquake events using ANFIS with mapping function. Int. J. Artif. Intell. 3(A09), 37–63 (2008) E. Joelianto, S. Widiyantoro, M. Ichsan, Time series estimation on earthquake events using ANFIS with mapping function. Int. J. Artif. Intell. 3(A09), 37–63 (2008)
52.
go back to reference A. Ikram, U. Qamar, A rule-based expert system for earthquake prediction. J. Intell. Inf. Syst. 43(2), 205–230 (2014)CrossRef A. Ikram, U. Qamar, A rule-based expert system for earthquake prediction. J. Intell. Inf. Syst. 43(2), 205–230 (2014)CrossRef
53.
go back to reference N. Kasabov, N. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, M. Othman, M.G. Doborjeh, N. Murli, J.I. Espinosa-Ramos et al., Evolving spatio-temporal data machines based on the neucube neuromorphic framework: design methodology and selected applications. Neural Netw. (2015) N. Kasabov, N. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, M. Othman, M.G. Doborjeh, N. Murli, J.I. Espinosa-Ramos et al., Evolving spatio-temporal data machines based on the neucube neuromorphic framework: design methodology and selected applications. Neural Netw. (2015)
54.
go back to reference T. Petersen, K. Gledhill, M. Chadwick, N.H. Gale, J. Ristau, The New Zealand national seismograph network. Seismol. Res. Lett. 82(1), 9–20 (2011)CrossRef T. Petersen, K. Gledhill, M. Chadwick, N.H. Gale, J. Ristau, The New Zealand national seismograph network. Seismol. Res. Lett. 82(1), 9–20 (2011)CrossRef
55.
go back to reference P.S.P Maciaga, N.K. Kasabov, M. Kryszkiewicza, R. Benbenik, Prediction of hourly air pollution in London area using evolving spiking neural networks. Environ. Modelling Software, Elsevier (2018/2019) P.S.P Maciaga, N.K. Kasabov, M. Kryszkiewicza, R. Benbenik, Prediction of hourly air pollution in London area using evolving spiking neural networks. Environ. Modelling Software, Elsevier (2018/2019)
56.
go back to reference Square Kilometer Array (SKA) Project: https://www.skatelescope.org Square Kilometer Array (SKA) Project: https://​www.​skatelescope.​org
57.
go back to reference N. Kasabov (ed.), Springer Handbook of Bio-/Neuroinformatics (Springer, Berlin, 2014) N. Kasabov (ed.), Springer Handbook of Bio-/Neuroinformatics (Springer, Berlin, 2014)
58.
go back to reference N. Kasabov, To spike or not to spike: a probabilistic spiking neuron model. Neural Netw. 23(1), 16–19 (2010)CrossRef N. Kasabov, To spike or not to spike: a probabilistic spiking neuron model. Neural Netw. 23(1), 16–19 (2010)CrossRef
59.
go back to reference S. Schliebs, N. Kasabov, Evolving spiking neural network—a survey. Evolving Syst. 4(2), 87–98 (2013)CrossRef S. Schliebs, N. Kasabov, Evolving spiking neural network—a survey. Evolving Syst. 4(2), 87–98 (2013)CrossRef
60.
go back to reference B. Schrauwen, J. Van Campenhout, BSA, a fast and accurate spike train encoding scheme, in Proceedings of the International Joint Conference on Neural Networks, vol. 4 (IEEE Piscataway, NJ, 2003), pp. 2825–2830 B. Schrauwen, J. Van Campenhout, BSA, a fast and accurate spike train encoding scheme, in Proceedings of the International Joint Conference on Neural Networks, vol. 4 (IEEE Piscataway, NJ, 2003), pp. 2825–2830
61.
go back to reference R. Hartono, PhD Thesis, Auckland University of Technology (2018) R. Hartono, PhD Thesis, Auckland University of Technology (2018)
62.
go back to reference J.L. Lobo, I. Laña, J. Del Ser, M.N. Bilbao, N. Kasabov, Evolving spiking neural networks for online learning over drifting data streams. Neural Netw. 108, 1–19 (2018) J.L. Lobo, I. Laña, J. Del Ser, M.N. Bilbao, N. Kasabov, Evolving spiking neural networks for online learning over drifting data streams. Neural Netw. 108, 1–19 (2018)
Metadata
Title
Deep Learning of Multisensory Streaming Data for Predictive Modelling with Applications in Finance, Ecology, Transport and Environment
Author
Nikola K. Kasabov
Copyright Year
2019
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-57715-8_19

Premium Partner