Skip to main content
Top
Published in: Wireless Personal Communications 4/2019

09-02-2019

FSB-System: A Detection System for Fire, Suffocation, and Burn Based on Fuzzy Decision Making, MCDM, and RGB Model in Wireless Sensor Networks

Author: Mohammad Samadi Gharajeh

Published in: Wireless Personal Communications | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wireless sensor networks (WSNs) are composed of low-power, large-scale, low-cost sensor nodes to sense environmental conditions (e.g., temperature). Fire is one of the most common hazards in the world so that detection of the fires can prevent a lot of damages to the lives. Fire detection process can be improved by using knowledge-based systems such as fuzzy decision making and multi-criteria decision making (MCDM). This paper proposes a detection system, called FSB-System, to predict the fire, suffocation, and burn probabilities over areas using fuzzy theory, MCDM, and an RGB model. The system uses sensing data of the temperature, smoke, and light sensors to determine appropriate, assorted decisions under different conditions. Three fuzzy controllers are suggested in FSB-System: fire fuzzy controller (namely FFC), suffocation fuzzy controller (namely SFC), and burn fuzzy controller (namely BFC). FFC determines the fire probability, SFC measures the suffocation probability, and BFC calculates the burn probability. Sensor nodes are randomly scattered over areas in a way that they form multiple clusters. Non-cluster heads (NCHs) transmit their sensing data to cluster heads (CHs). Furthermore, CHs transmit the gathered data to the native sink to report environmental conditions toward a base station (e.g., a fire department). The number of sinks is determined by a suggested MCDM controller based on network size and the number of clusters. Simulation results demonstrate that the proposed system surpasses the threshold methods in terms of remaining energy, the number of alive nodes, network lifetime, the number of wrong alerts, and financial losses. This system can be applied in various environments including forests, buildings, etc.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRef Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRef
2.
go back to reference Cheraghlou, M. N., Babaie, S., & Samadi, M. (2012). LRC: Novel fault tolerant local re-clustering protocol for wireless sensor network. Journal of Computing, 4(8), 99–104. Cheraghlou, M. N., Babaie, S., & Samadi, M. (2012). LRC: Novel fault tolerant local re-clustering protocol for wireless sensor network. Journal of Computing, 4(8), 99–104.
3.
go back to reference Gharajeh, M. S., & Khanmohammadi, S. (2013). Static three-dimensional fuzzy routing based on the receiving probability in wireless sensor networks. Computers, 2(4), 152–175.CrossRef Gharajeh, M. S., & Khanmohammadi, S. (2013). Static three-dimensional fuzzy routing based on the receiving probability in wireless sensor networks. Computers, 2(4), 152–175.CrossRef
4.
go back to reference Gharajeh, M. S. (2014). Determining the state of the sensor nodes based on fuzzy theory in WSNs. International Journal of Computers Communications & Control, 9(4), 419–429.CrossRef Gharajeh, M. S. (2014). Determining the state of the sensor nodes based on fuzzy theory in WSNs. International Journal of Computers Communications & Control, 9(4), 419–429.CrossRef
5.
go back to reference Peng, S., Wang, T., & Low, C. P. (2015). Energy neutral clustering for energy harvesting wireless sensors networks. Ad Hoc Networks, 28, 1–16.CrossRef Peng, S., Wang, T., & Low, C. P. (2015). Energy neutral clustering for energy harvesting wireless sensors networks. Ad Hoc Networks, 28, 1–16.CrossRef
6.
go back to reference Yilmaz, A., Javed, O., & Shah, M. (2006). Object tracking: A survey. ACM Computing Surveys (CSUR), 38(4), 1–45.CrossRef Yilmaz, A., Javed, O., & Shah, M. (2006). Object tracking: A survey. ACM Computing Surveys (CSUR), 38(4), 1–45.CrossRef
7.
go back to reference Kafi, M. A., Challal, Y., Djenouri, D., Doudou, M., Bouabdallah, A., & Badache, N. (2013). A study of wireless sensor networks for urban traffic monitoring: Applications and architectures. Procedia Computer Science, 19, 617–626.CrossRef Kafi, M. A., Challal, Y., Djenouri, D., Doudou, M., Bouabdallah, A., & Badache, N. (2013). A study of wireless sensor networks for urban traffic monitoring: Applications and architectures. Procedia Computer Science, 19, 617–626.CrossRef
8.
go back to reference Shih, E. I., Shoeb, A. H., & Guttag, J. V. (2009). Sensor selection for energy-efficient ambulatory medical monitoring. In Proceedings of the 7th international conference on mobile systems, applications, and services, 2009, New York (pp. 347–358). Shih, E. I., Shoeb, A. H., & Guttag, J. V. (2009). Sensor selection for energy-efficient ambulatory medical monitoring. In Proceedings of the 7th international conference on mobile systems, applications, and services, 2009, New York (pp. 347–358).
9.
go back to reference Keally, M., Zhou, G., & Xing, G. (2010). Watchdog: Confident event detection in heterogeneous sensor networks. In: IEEE 16th real-time and embedded technology and applications symposium (RTAS), Stockholm, April 12–15, 2010 (pp. 279–288). Keally, M., Zhou, G., & Xing, G. (2010). Watchdog: Confident event detection in heterogeneous sensor networks. In: IEEE 16th real-time and embedded technology and applications symposium (RTAS), Stockholm, April 12–15, 2010 (pp. 279–288).
10.
go back to reference Lin, K. (2013). Research on adaptive target tracking in vehicle sensor networks. Journal of Network and Computer Applications, 36(5), 1316–1323.CrossRef Lin, K. (2013). Research on adaptive target tracking in vehicle sensor networks. Journal of Network and Computer Applications, 36(5), 1316–1323.CrossRef
11.
go back to reference Olivares, A., Olivares, G., Mula, F., Górriz, J. M., & Ramírez, J. (2011). Wagyromag: Wireless sensor network for monitoring and processing human body movement in healthcare applications. Journal of Systems Architecture, 57(10), 905–915.CrossRef Olivares, A., Olivares, G., Mula, F., Górriz, J. M., & Ramírez, J. (2011). Wagyromag: Wireless sensor network for monitoring and processing human body movement in healthcare applications. Journal of Systems Architecture, 57(10), 905–915.CrossRef
12.
go back to reference He, T., Krishnamurthy, S., Luo, L., Yan, T., Gu, L., Stoleru, R., et al. (2006). VigilNet: An integrated sensor network system for energy-efficient surveillance. ACM Transactions on Sensor Networks (TOSN), 2(1), 1–38.CrossRef He, T., Krishnamurthy, S., Luo, L., Yan, T., Gu, L., Stoleru, R., et al. (2006). VigilNet: An integrated sensor network system for energy-efficient surveillance. ACM Transactions on Sensor Networks (TOSN), 2(1), 1–38.CrossRef
13.
go back to reference Wenshen, J., Ligang, P., Yuange, Q., Jihua, W., & Wenfu, W. (2011). Agro-food farmland environmental monitoring techniques and equipment. Procedia Environmental Sciences, 10, 2247–2255.CrossRef Wenshen, J., Ligang, P., Yuange, Q., Jihua, W., & Wenfu, W. (2011). Agro-food farmland environmental monitoring techniques and equipment. Procedia Environmental Sciences, 10, 2247–2255.CrossRef
14.
go back to reference Bonvoisin, J., Lelah, A., Mathieux, F., & Brissaud, D. (2012). An environmental assessment method for wireless sensor networks. Journal of Cleaner Production, 33, 145–154.CrossRef Bonvoisin, J., Lelah, A., Mathieux, F., & Brissaud, D. (2012). An environmental assessment method for wireless sensor networks. Journal of Cleaner Production, 33, 145–154.CrossRef
15.
go back to reference Othman, M. F., & Shazali, K. (2012). Wireless sensor network applications: A study in environment monitoring system. Procedia Engineering, 41, 1204–1210.CrossRef Othman, M. F., & Shazali, K. (2012). Wireless sensor network applications: A study in environment monitoring system. Procedia Engineering, 41, 1204–1210.CrossRef
16.
go back to reference Sahoo, P. K., Sheu, J. P., & Hsieh, K. Y. (2013). Target tracking and boundary node selection algorithms of wireless sensor networks for internet services. Information Sciences, 230, 21–38.MathSciNetCrossRef Sahoo, P. K., Sheu, J. P., & Hsieh, K. Y. (2013). Target tracking and boundary node selection algorithms of wireless sensor networks for internet services. Information Sciences, 230, 21–38.MathSciNetCrossRef
17.
go back to reference Bottero, M., Chiara, B. D., & Deflorio, F. P. (2013). Wireless sensor networks for traffic monitoring in a logistic centre. Transportation Research Part C: Emerging Technologies, 26, 99–124.CrossRef Bottero, M., Chiara, B. D., & Deflorio, F. P. (2013). Wireless sensor networks for traffic monitoring in a logistic centre. Transportation Research Part C: Emerging Technologies, 26, 99–124.CrossRef
18.
go back to reference Vaidehi, V., Vardhini, M., Yogeshwaran, H., Inbasagar, G., Bhargavi, R., & Hemalathac, C. S. (2013). Agent based health monitoring of elderly people in indoor environments using wireless sensor networks. Procedia Computer Science, 19, 64–71.CrossRef Vaidehi, V., Vardhini, M., Yogeshwaran, H., Inbasagar, G., Bhargavi, R., & Hemalathac, C. S. (2013). Agent based health monitoring of elderly people in indoor environments using wireless sensor networks. Procedia Computer Science, 19, 64–71.CrossRef
19.
go back to reference Janssens, A., Necheva, C., Tanner, V., & Turai, I. (2013). The new basic safety standards directive and its implications for environmental monitoring. Journal of Environmental Radioactivity, 125, 99–104.CrossRef Janssens, A., Necheva, C., Tanner, V., & Turai, I. (2013). The new basic safety standards directive and its implications for environmental monitoring. Journal of Environmental Radioactivity, 125, 99–104.CrossRef
20.
go back to reference Felemban, E., Lee, C. G., & Ekici, E. (2006). MMSPEED: multipath multi-SPEED protocol for QoS guarantee of reliability and timeliness in wireless sensor networks. IEEE Transactions on Mobile Computing, 5(6), 738–754.CrossRef Felemban, E., Lee, C. G., & Ekici, E. (2006). MMSPEED: multipath multi-SPEED protocol for QoS guarantee of reliability and timeliness in wireless sensor networks. IEEE Transactions on Mobile Computing, 5(6), 738–754.CrossRef
21.
go back to reference Flammini, A., Ferrari, P., Marioli, D., Sisinni, E., & Taroni, A. (2009). Wired and wireless sensor networks for industrial applications. Microelectronics Journal, 40(9), 1322–1336.CrossRef Flammini, A., Ferrari, P., Marioli, D., Sisinni, E., & Taroni, A. (2009). Wired and wireless sensor networks for industrial applications. Microelectronics Journal, 40(9), 1322–1336.CrossRef
22.
go back to reference Kirchner, P., Oberländer, J., Friedrich, P., Berger, J., Rysstad, G., Keusgen, M., et al. (2012). Realization of a calorimetric gas sensor on polyimide foil for applications in aseptic food industry. Sensors and Actuators B: Chemical, 170, 60–66.CrossRef Kirchner, P., Oberländer, J., Friedrich, P., Berger, J., Rysstad, G., Keusgen, M., et al. (2012). Realization of a calorimetric gas sensor on polyimide foil for applications in aseptic food industry. Sensors and Actuators B: Chemical, 170, 60–66.CrossRef
23.
go back to reference Zhang, K. (2012). Design of real time monitor system of manufacture process of iron and steel industry based on new style sensors. Energy Procedia, 16, 627–632.CrossRef Zhang, K. (2012). Design of real time monitor system of manufacture process of iron and steel industry based on new style sensors. Energy Procedia, 16, 627–632.CrossRef
24.
go back to reference Nauman, Z., Iqbal, S., Khan, M. I., & Tahir, M. (2011). WSN-based fire detection and escape system with multi-modal feedback. In: Multimedia communications, services and security (pp. 251–260). Nauman, Z., Iqbal, S., Khan, M. I., & Tahir, M. (2011). WSN-based fire detection and escape system with multi-modal feedback. In: Multimedia communications, services and security (pp. 251–260).
25.
go back to reference Bouabdellah, K., Noureddine, H., & Larbi, S. (2013). Using wireless sensor networks for reliable forest fires detection. Procedia Computer Science, 19, 794–801.CrossRef Bouabdellah, K., Noureddine, H., & Larbi, S. (2013). Using wireless sensor networks for reliable forest fires detection. Procedia Computer Science, 19, 794–801.CrossRef
26.
go back to reference Pande, V., Elmannai, W., & Elleithy, K. (2013). Classification and detection of fire on WSN using IMB400 multimedia sensor board. In: IEEE Long Island systems, applications and technology conference (LISAT), Farmingdale, NY, May 3–3, 2013 (pp. 1–6). Pande, V., Elmannai, W., & Elleithy, K. (2013). Classification and detection of fire on WSN using IMB400 multimedia sensor board. In: IEEE Long Island systems, applications and technology conference (LISAT), Farmingdale, NY, May 3–3, 2013 (pp. 1–6).
27.
go back to reference Mao, J., Jannotti, J., Akdere, M., & Cetintemel, U. (2008). Event-based constraints for sensornet programming. In Proceedings of the second international conference on distributed event-based systems, New York, 2008 (pp. 103–113). Mao, J., Jannotti, J., Akdere, M., & Cetintemel, U. (2008). Event-based constraints for sensornet programming. In Proceedings of the second international conference on distributed event-based systems, New York, 2008 (pp. 103–113).
28.
go back to reference Deligiannakis, A., & Kotidis, Y. (2011). Detecting proximity events in sensor networks. Information Systems, 36(7), 1044–1063.CrossRef Deligiannakis, A., & Kotidis, Y. (2011). Detecting proximity events in sensor networks. Information Systems, 36(7), 1044–1063.CrossRef
29.
go back to reference Fawzy, A., Mokhtar, H. M. O., & Hegazy, O. (2013). Outliers detection and classification in wireless sensor networks. Egyptian Informatics Journal, 14(2), 157–164.CrossRef Fawzy, A., Mokhtar, H. M. O., & Hegazy, O. (2013). Outliers detection and classification in wireless sensor networks. Egyptian Informatics Journal, 14(2), 157–164.CrossRef
30.
go back to reference Vu, C. T., Beyah, R. A., & Yingshu, L. (2007). Composite event detection in wireless sensor networks. IEEE International Performance, Computing, and Communications Conference, New Orleans, LA, 11–13, 264–271. Vu, C. T., Beyah, R. A., & Yingshu, L. (2007). Composite event detection in wireless sensor networks. IEEE International Performance, Computing, and Communications Conference, New Orleans, LA, 11–13, 264–271.
31.
go back to reference Yun, M., Bragg, D., Arora, A., & Choi, H. A. (2011). Battle event detection using sensor networks and distributed query processing. In IEEE conference on computer communications workshops (INFOCOM WKSHPS), Shanghai, April 10–15, 2011 (pp. 750–755). Yun, M., Bragg, D., Arora, A., & Choi, H. A. (2011). Battle event detection using sensor networks and distributed query processing. In IEEE conference on computer communications workshops (INFOCOM WKSHPS), Shanghai, April 10–15, 2011 (pp. 750–755).
32.
go back to reference Wittenburg, G., Dziengel, N., Adler, S., Kasmi, Z., Ziegert, M., & Schiller, J. (2012). Cooperative event detection in wireless sensor networks. IEEE Communications Magazine, 50(12), 124–131.CrossRef Wittenburg, G., Dziengel, N., Adler, S., Kasmi, Z., Ziegert, M., & Schiller, J. (2012). Cooperative event detection in wireless sensor networks. IEEE Communications Magazine, 50(12), 124–131.CrossRef
34.
go back to reference Govindan, R., Hellerstein, J., Hong, W., Madden, S., Franklin, M., & Shenker, S. (2002). The sensor network as a database. Technical Report 02-771, Computer Science Department, University of Southern California, 2002. Govindan, R., Hellerstein, J., Hong, W., Madden, S., Franklin, M., & Shenker, S. (2002). The sensor network as a database. Technical Report 02-771, Computer Science Department, University of Southern California, 2002.
35.
go back to reference Madden, S., Franklin, M. J., Hellerstein, J. M., & Hong, W. (2003). The design of an acquisitional query processor for sensor networks. In Proceedings of the 2003 ACM SIGMOD international conference on management of data, USA, New York, 2003 (pp. 491–502). Madden, S., Franklin, M. J., Hellerstein, J. M., & Hong, W. (2003). The design of an acquisitional query processor for sensor networks. In Proceedings of the 2003 ACM SIGMOD international conference on management of data, USA, New York, 2003 (pp. 491–502).
36.
go back to reference Li, S., Son, S. H., & Stankovic, J. A. (2003). Event detection services using data service middleware in distributed sensor networks. In Information processing in sensor networks (pp. 502–517). Li, S., Son, S. H., & Stankovic, J. A. (2003). Event detection services using data service middleware in distributed sensor networks. In Information processing in sensor networks (pp. 502–517).
37.
go back to reference Sayakkara, A., Goonetillake, M., & Zoysa, K. D. (2012). Declarative interface for in-network actuation on wireless sensor-actuator networks. In IEEE 3rd international conference on networked embedded systems for every application (NESEA), Liverpool, December 13–14, 2012 (pp. 1–8). Sayakkara, A., Goonetillake, M., & Zoysa, K. D. (2012). Declarative interface for in-network actuation on wireless sensor-actuator networks. In IEEE 3rd international conference on networked embedded systems for every application (NESEA), Liverpool, December 13–14, 2012 (pp. 1–8).
38.
go back to reference Jiao, B., Son, S., & Stankovic, J. (2005). GEM: Generic event service middleware for wireless sensor networks. In INSS, USA. Jiao, B., Son, S., & Stankovic, J. (2005). GEM: Generic event service middleware for wireless sensor networks. In INSS, USA.
39.
go back to reference Kapitanova, K., & Son, S. H. (2009). MEDAL: A compact event description and analysis language for wireless sensor networks. In Sixth international conference on networked sensing systems (INSS) (pp. 1–4). Kapitanova, K., & Son, S. H. (2009). MEDAL: A compact event description and analysis language for wireless sensor networks. In Sixth international conference on networked sensing systems (INSS) (pp. 1–4).
40.
go back to reference Osterlind, F., Pramsten, E., Roberthson, D., Eriksson, J., Finne, N., & Voigt, T. (2007). Integrating building automation systems and wireless sensor networks. IEEE Conference on Emerging Technologies and Factory Automation, Patras, 25–28, 1376–1379. Osterlind, F., Pramsten, E., Roberthson, D., Eriksson, J., Finne, N., & Voigt, T. (2007). Integrating building automation systems and wireless sensor networks. IEEE Conference on Emerging Technologies and Factory Automation, Patras, 25–28, 1376–1379.
41.
go back to reference Díaz-Ramírez, A., Tafoya, L. A., Atempa, J. A., & Mejía-Alvarezb, P. (2012). Wireless sensor networks and fusion information methods for forest fire detection. Procedia Technology, 3, 69–79.CrossRef Díaz-Ramírez, A., Tafoya, L. A., Atempa, J. A., & Mejía-Alvarezb, P. (2012). Wireless sensor networks and fusion information methods for forest fire detection. Procedia Technology, 3, 69–79.CrossRef
42.
go back to reference Yu, L., Wang, N., & Meng, X. (2005). Real-time forest fire detection with wireless sensor networks. International Conference on Wireless Communications, Networking and Mobile Computing, 2, 1214–1217. Yu, L., Wang, N., & Meng, X. (2005). Real-time forest fire detection with wireless sensor networks. International Conference on Wireless Communications, Networking and Mobile Computing, 2, 1214–1217.
43.
go back to reference Zhang, J., Li, W., Yin, Z., Liu, S., & Guo, X. (2009). Forest fire detection system based on wireless sensor network. In: 4th IEEE conference on industrial electronics and applications, Xi’an, May 25–27, 2009 (pp. 520–523). Zhang, J., Li, W., Yin, Z., Liu, S., & Guo, X. (2009). Forest fire detection system based on wireless sensor network. In: 4th IEEE conference on industrial electronics and applications, Xi’an, May 25–27, 2009 (pp. 520–523).
44.
go back to reference Hartung, C., Han, R., Seielstad, C., & Holbrook, S. (2006). FireWxNet: A multi-tiered portable wireless system for monitoring weather conditions in wildland fire environments. In Proceedings of the 4th international conference on mobile systems, applications and services (pp. 28–41). Hartung, C., Han, R., Seielstad, C., & Holbrook, S. (2006). FireWxNet: A multi-tiered portable wireless system for monitoring weather conditions in wildland fire environments. In Proceedings of the 4th international conference on mobile systems, applications and services (pp. 28–41).
45.
go back to reference Song, W. S., & Hong, S. H. (2007). A reference model of fire detection and monitoring system using BACnet. Building and Environment, 42(2), 1000–1010.CrossRef Song, W. S., & Hong, S. H. (2007). A reference model of fire detection and monitoring system using BACnet. Building and Environment, 42(2), 1000–1010.CrossRef
46.
go back to reference Chen, T. H., Wu, P. H., & Chiou, Y. C. (2004). An early fire-detection method based on image processing. In International conference on image processing (ICIP), Singapore, October 24–27, 2004 (Vol. 3, pp. 1707–1710). Chen, T. H., Wu, P. H., & Chiou, Y. C. (2004). An early fire-detection method based on image processing. In International conference on image processing (ICIP), Singapore, October 24–27, 2004 (Vol. 3, pp. 1707–1710).
47.
go back to reference Joseph, J. V. M., Pandurangam, M., & Somasekharan, M. (2007). Fire detection system: A device for document preservation in a library environment: Guidance for selection to installation of an ideal system. In Information Science & Technology, Kalpakkam, Tamil Nadu, 2007 (pp. 73–80). Joseph, J. V. M., Pandurangam, M., & Somasekharan, M. (2007). Fire detection system: A device for document preservation in a library environment: Guidance for selection to installation of an ideal system. In Information Science & Technology, Kalpakkam, Tamil Nadu, 2007 (pp. 73–80).
48.
go back to reference Blagojevich, M., Petkovich, D., & Simich, D. (2001). A new algorithm for adaptive alarm threshold in fire detection system. NIST Special Publication SP, National Institute of Standards & Technology, 2001 (pp. 201–209). Blagojevich, M., Petkovich, D., & Simich, D. (2001). A new algorithm for adaptive alarm threshold in fire detection system. NIST Special Publication SP, National Institute of Standards & Technology, 2001 (pp. 201–209).
49.
go back to reference Milke, J. A., & McAvoy, T. J. (1995). Analysis of signature patterns for discriminating fire detection with multiple sensors. Fire Technology, 31(2), 120–136.CrossRef Milke, J. A., & McAvoy, T. J. (1995). Analysis of signature patterns for discriminating fire detection with multiple sensors. Fire Technology, 31(2), 120–136.CrossRef
50.
go back to reference Gottuk, D. T., Peatross, M. J., Roby, R. J., & Beyler, C. L. (2002). Advanced fire detection using multi-signature alarm algorithms. Fire Safety Journal, 37(4), 381–394.CrossRef Gottuk, D. T., Peatross, M. J., Roby, R. J., & Beyler, C. L. (2002). Advanced fire detection using multi-signature alarm algorithms. Fire Safety Journal, 37(4), 381–394.CrossRef
51.
go back to reference Rose-Pehrsson, S. L., Hart, S., Street, T., Tatem, P., Williams, F., Hammond, M., Gottuk, D., Wright, M., & Wong, J. (2001). Real-time probabilistic neural network performance and optimization for fire detection and nuisance alarm rejection. NIST Special Publication SP, National Institute of Standards & Technology, 2001 (pp. 176–190). Rose-Pehrsson, S. L., Hart, S., Street, T., Tatem, P., Williams, F., Hammond, M., Gottuk, D., Wright, M., & Wong, J. (2001). Real-time probabilistic neural network performance and optimization for fire detection and nuisance alarm rejection. NIST Special Publication SP, National Institute of Standards & Technology, 2001 (pp. 176–190).
53.
go back to reference Bolourchi, P., & Uysal, S. (2013). Forest fire detection in wireless sensor network using fuzzy logic. In Fifth international conference on computational intelligence, communication systems and networks (CICSyN), Madrid, June 5–7, 2013 (pp. 83–87). Bolourchi, P., & Uysal, S. (2013). Forest fire detection in wireless sensor network using fuzzy logic. In Fifth international conference on computational intelligence, communication systems and networks (CICSyN), Madrid, June 5–7, 2013 (pp. 83–87).
54.
go back to reference Taheri, H., Neamatollahi, P., Younis, O. M., Naghibzadeh, S., & Yaghmaee, M. H. (2012). An energy-aware distributed clustering protocol in wireless sensor networks using fuzzy logic. Ad Hoc Networks, 10(7), 1469–1481.CrossRef Taheri, H., Neamatollahi, P., Younis, O. M., Naghibzadeh, S., & Yaghmaee, M. H. (2012). An energy-aware distributed clustering protocol in wireless sensor networks using fuzzy logic. Ad Hoc Networks, 10(7), 1469–1481.CrossRef
55.
go back to reference Rajesh, D. H., & Paramasivan, B. (2012). Fuzzy logic based performance optimization with data aggregation in wireless sensor networks. Procedia Engineering, 38, 3331–3336.CrossRef Rajesh, D. H., & Paramasivan, B. (2012). Fuzzy logic based performance optimization with data aggregation in wireless sensor networks. Procedia Engineering, 38, 3331–3336.CrossRef
56.
go back to reference Liang, Q., & Wang, L. (2005). Event detection in wireless sensor networks using fuzzy logic system. In Proceedings of the IEEE international conference on computational intelligence for homeland security and personal safety (CIHSPS), 2005 (pp. 52–55). Liang, Q., & Wang, L. (2005). Event detection in wireless sensor networks using fuzzy logic system. In Proceedings of the IEEE international conference on computational intelligence for homeland security and personal safety (CIHSPS), 2005 (pp. 52–55).
57.
go back to reference Marin-Perianu, M., & Havinga, P. (2007). D-FLER—A distributed fuzzy logic engine for rule-based wireless sensor networks. In Ubiquitous computing systems (pp. 86–101). Marin-Perianu, M., & Havinga, P. (2007). D-FLER—A distributed fuzzy logic engine for rule-based wireless sensor networks. In Ubiquitous computing systems (pp. 86–101).
59.
go back to reference Silveira, G. P., & de Barros, L. C. (2013). Numerical methods integrated with fuzzy logic and stochastic method for solving PDEs: An application to dengue. Fuzzy Sets and Systems, 225, 39–57.MathSciNetCrossRefMATH Silveira, G. P., & de Barros, L. C. (2013). Numerical methods integrated with fuzzy logic and stochastic method for solving PDEs: An application to dengue. Fuzzy Sets and Systems, 225, 39–57.MathSciNetCrossRefMATH
60.
go back to reference Sadiq, R., Husain, T., Veitch, B., & Bose, N. (2004). Risk-based decision-making for drilling waste discharges using a fuzzy synthetic evaluation technique. Ocean Engineering, 31(16), 1929–1953.CrossRef Sadiq, R., Husain, T., Veitch, B., & Bose, N. (2004). Risk-based decision-making for drilling waste discharges using a fuzzy synthetic evaluation technique. Ocean Engineering, 31(16), 1929–1953.CrossRef
61.
go back to reference Duch, W., Adamczak, R., & Grabczewski, K. (2001). A new methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks, 12(2), 277–306.CrossRef Duch, W., Adamczak, R., & Grabczewski, K. (2001). A new methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks, 12(2), 277–306.CrossRef
62.
go back to reference Passino, K. M., Yurkovich, S., & Reinfrank, M. (1998). Fuzzy control (Vol. 42). Reading: Addison-Wesley. Passino, K. M., Yurkovich, S., & Reinfrank, M. (1998). Fuzzy control (Vol. 42). Reading: Addison-Wesley.
64.
go back to reference Zhao, J., & Bose, B. K. (2002). Evaluation of membership functions for fuzzy logic controlled induction motor drive. In IEEE 28th annual conference of the industrial electronics society (IECON), November 5–8, 2002 (Vol. 1, pp. 229–234). Zhao, J., & Bose, B. K. (2002). Evaluation of membership functions for fuzzy logic controlled induction motor drive. In IEEE 28th annual conference of the industrial electronics society (IECON), November 5–8, 2002 (Vol. 1, pp. 229–234).
65.
go back to reference Botzheim, J., Hámori, B., & Kóczy, L. T. (2001). Extracting trapezoidal membership functions of a fuzzy rule system by bacterial algorithm. Computational Intelligence. Theory and Applications, 2206, 218–227.CrossRefMATH Botzheim, J., Hámori, B., & Kóczy, L. T. (2001). Extracting trapezoidal membership functions of a fuzzy rule system by bacterial algorithm. Computational Intelligence. Theory and Applications, 2206, 218–227.CrossRefMATH
66.
go back to reference Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1–13.CrossRefMATH Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1–13.CrossRefMATH
67.
go back to reference Ross, T. J. (2004). Fuzzy logic with engineering applications (2nd ed.). New York: Wiley.MATH Ross, T. J. (2004). Fuzzy logic with engineering applications (2nd ed.). New York: Wiley.MATH
68.
go back to reference Baležentis, T., & Baležentis, A. (2014). A survey on development and applications of the multi-criteria decision making method MULTIMOORA. Journal of Multi-Criteria Decision Analysis, 21(3–4), 209–222.CrossRef Baležentis, T., & Baležentis, A. (2014). A survey on development and applications of the multi-criteria decision making method MULTIMOORA. Journal of Multi-Criteria Decision Analysis, 21(3–4), 209–222.CrossRef
69.
go back to reference Ramya, C. M., Shanmugaraj, M., & Prabakaran, R. (2011). Study on ZigBee technology. In IEEE 3rd international conference on electronics computer technology (ICECT), Kanyakumari, 2011 (Vol. 6, pp. 297–301). Ramya, C. M., Shanmugaraj, M., & Prabakaran, R. (2011). Study on ZigBee technology. In IEEE 3rd international conference on electronics computer technology (ICECT), Kanyakumari, 2011 (Vol. 6, pp. 297–301).
70.
go back to reference Zhao, Q., Wu, K., Wu, J., & Wu, X. (2008). Design of physiological parameter acquisition and communication module based on CC2430. In Springer 7th Asian-Pacific Conference on Medical and Biological Engineering, 2008 (pp. 348–351). Zhao, Q., Wu, K., Wu, J., & Wu, X. (2008). Design of physiological parameter acquisition and communication module based on CC2430. In Springer 7th Asian-Pacific Conference on Medical and Biological Engineering, 2008 (pp. 348–351).
71.
go back to reference De Silva, C. W. (2011). Zadeh–Macfarlane–Jamshidi theorems on decoupling of a fuzzy rule base. Scientia Iranica, 18(3), 611–616.CrossRefMATH De Silva, C. W. (2011). Zadeh–Macfarlane–Jamshidi theorems on decoupling of a fuzzy rule base. Scientia Iranica, 18(3), 611–616.CrossRefMATH
72.
go back to reference Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on System sciences, January 4–7, 2000 (Vol. 2, pp. 1–10). Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on System sciences, January 4–7, 2000 (Vol. 2, pp. 1–10).
74.
go back to reference Mahapatro, A., & Khilar, P. M. (2013). Fault diagnosis in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 15(4), 2000–2026.CrossRef Mahapatro, A., & Khilar, P. M. (2013). Fault diagnosis in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 15(4), 2000–2026.CrossRef
75.
go back to reference Gharajeh, M. S., & Hassanzadeh, R. (2017). Improving the fault tolerance of wireless sensor networks by a weighted criteria matrix. The Mediterranean Journal of Electronics and Communications, 13(1), 1–6. Gharajeh, M. S., & Hassanzadeh, R. (2017). Improving the fault tolerance of wireless sensor networks by a weighted criteria matrix. The Mediterranean Journal of Electronics and Communications, 13(1), 1–6.
77.
go back to reference Gharajeh, M. S., & Khanmohammadi, S. (2015). Dispatching rescue and support teams to events using ad hoc networks and fuzzy decision making in rescue applications. Journal of Control and Systems Engineering, 3(1), 35–50.CrossRef Gharajeh, M. S., & Khanmohammadi, S. (2015). Dispatching rescue and support teams to events using ad hoc networks and fuzzy decision making in rescue applications. Journal of Control and Systems Engineering, 3(1), 35–50.CrossRef
78.
go back to reference Gharajeh, M. S., & Khanmohammadi, S. (2016). DFRTP: Dynamic 3D fuzzy routing based on traffic probability in wireless sensor networks. IET Wireless Sensor Systems, 6(6), 211–219.CrossRef Gharajeh, M. S., & Khanmohammadi, S. (2016). DFRTP: Dynamic 3D fuzzy routing based on traffic probability in wireless sensor networks. IET Wireless Sensor Systems, 6(6), 211–219.CrossRef
79.
go back to reference Khanmohammadi, S., & Gharajeh, M. S. (2017). A routing protocol for data transferring in wireless sensor networks using predictive fuzzy inference system and neural node. Ad Hoc & Sensor Wireless Networks, 38(1–4), 103–124. Khanmohammadi, S., & Gharajeh, M. S. (2017). A routing protocol for data transferring in wireless sensor networks using predictive fuzzy inference system and neural node. Ad Hoc & Sensor Wireless Networks, 38(1–4), 103–124.
80.
go back to reference Gharajeh, M. S., & Alizadeh, M. (2016). OPCA: Optimized prioritized congestion avoidance and control for wireless body sensor networks. International Journal of Sensors, Wireless Communications and Control, 6(2), 118–128.CrossRef Gharajeh, M. S., & Alizadeh, M. (2016). OPCA: Optimized prioritized congestion avoidance and control for wireless body sensor networks. International Journal of Sensors, Wireless Communications and Control, 6(2), 118–128.CrossRef
Metadata
Title
FSB-System: A Detection System for Fire, Suffocation, and Burn Based on Fuzzy Decision Making, MCDM, and RGB Model in Wireless Sensor Networks
Author
Mohammad Samadi Gharajeh
Publication date
09-02-2019
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2019
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06141-3

Other articles of this Issue 4/2019

Wireless Personal Communications 4/2019 Go to the issue