Skip to main content
Top
Published in: Neural Computing and Applications 13/2020

19-08-2019 | Original Article

Functional iterative approaches for solving support vector classification problems based on generalized Huber loss

Authors: Parashjyoti Borah, Deepak Gupta

Published in: Neural Computing and Applications | Issue 13/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Classical support vector machine (SVM) and its twin variant twin support vector machine (TWSVM) utilize the Hinge loss that shows linear behaviour, whereas the least squares version of SVM (LSSVM) and twin least squares support vector machine (LSTSVM) uses L2-norm of error which shows quadratic growth. The robust Huber loss function is considered as the generalization of Hinge loss and L2-norm loss that behaves like the quadratic L2-norm loss for closer error points and the linear Hinge loss after a specified distance. Three functional iterative approaches based on generalized Huber loss function are proposed in this paper to solve support vector classification problems of which one is based on SVM, i.e. generalized Huber support vector machine and the other two are in the spirit of TWSVM, namely generalized Huber twin support vector machine and regularization on generalized Huber twin support vector machine. The proposed approaches iteratively find the solutions and eliminate the requirements to solve any quadratic programming problem (QPP) as for SVM and TWSVM. The main advantages of the proposed approach are: firstly, utilize the robust Huber loss function for better generalization and for lesser sensitivity towards noise and outliers as compared to quadratic loss; secondly, it uses functional iterative scheme to find the solution that eliminates the need to solving QPP and also makes the proposed approaches faster. The efficacy of the proposed approach is established by performing numerical experiments on several real-world datasets and comparing the result with related methods, viz. SVM, TWSVM, LSSVM and LSTSVM. The classification results are convincing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Balasundaram S, Gupta D, Prasad SC (2017) A new approach for training Lagrangian twin support vector machine via unconstrained convex minimization. Appl Intell 46(1):124–134CrossRef Balasundaram S, Gupta D, Prasad SC (2017) A new approach for training Lagrangian twin support vector machine via unconstrained convex minimization. Appl Intell 46(1):124–134CrossRef
3.
go back to reference Borah P, Gupta D, Prasad M (2018) Improved 2-norm based fuzzy least squares twin support vector machine. In: 2018 IEEE symposium series on computational intelligence (SSCI), pp 412–419 Borah P, Gupta D, Prasad M (2018) Improved 2-norm based fuzzy least squares twin support vector machine. In: 2018 IEEE symposium series on computational intelligence (SSCI), pp 412–419
4.
go back to reference Borah P, Gupta D (2019) A two-norm squared fuzzy-based least squares twin parametric-margin support vector machine. In: Machine intelligence and signal analysis, Springer, Singapore, pp 119–134 Borah P, Gupta D (2019) A two-norm squared fuzzy-based least squares twin parametric-margin support vector machine. In: Machine intelligence and signal analysis, Springer, Singapore, pp 119–134
5.
go back to reference Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297MATH Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297MATH
6.
go back to reference Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30MathSciNetMATH Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30MathSciNetMATH
7.
go back to reference Ding S, Han Y, Yu J, Gu Y (2013) A fast fuzzy support vector machine based on information granulation. Neural Comput Appl 23(1):139–144CrossRef Ding S, Han Y, Yu J, Gu Y (2013) A fast fuzzy support vector machine based on information granulation. Neural Comput Appl 23(1):139–144CrossRef
8.
go back to reference Ding S, Wu F, Shi Z (2014) Wavelet twin support vector machine. Neural Comput Appl 25(6):1241–1247CrossRef Ding S, Wu F, Shi Z (2014) Wavelet twin support vector machine. Neural Comput Appl 25(6):1241–1247CrossRef
9.
go back to reference Ding S, An Y, Zhang X, Wu F, Xue Y (2017) Wavelet twin support vector machines based on glowworm swarm optimization. Neurocomputing 225:157–163CrossRef Ding S, An Y, Zhang X, Wu F, Xue Y (2017) Wavelet twin support vector machines based on glowworm swarm optimization. Neurocomputing 225:157–163CrossRef
10.
go back to reference Ekong U, Lam HK, Xiao B, Ouyang G, Liu H, Chan KY, Ling SH (2016) Classification of epilepsy seizure phase using interval type-2 fuzzy support vector machines. Neurocomputing 199:66–76CrossRef Ekong U, Lam HK, Xiao B, Ouyang G, Liu H, Chan KY, Ling SH (2016) Classification of epilepsy seizure phase using interval type-2 fuzzy support vector machines. Neurocomputing 199:66–76CrossRef
11.
go back to reference Fung G, Mangasarian OL (2001) Proximal support vector machine classifiers, Proceedings of the international conference on knowledge discovery and data mining, San Francisco, CA, pp 77–86MATH Fung G, Mangasarian OL (2001) Proximal support vector machine classifiers, Proceedings of the international conference on knowledge discovery and data mining, San Francisco, CA, pp 77–86MATH
12.
go back to reference Garg A, Shankhwar K, Jiang D, Vijayaraghavan V, Panda BN, Panda SS (2018) An evolutionary framework in modelling of multi-output characteristics of the bone drilling process. Neural Comput Appl 29(11):1233–1241CrossRef Garg A, Shankhwar K, Jiang D, Vijayaraghavan V, Panda BN, Panda SS (2018) An evolutionary framework in modelling of multi-output characteristics of the bone drilling process. Neural Comput Appl 29(11):1233–1241CrossRef
13.
go back to reference Guo J, Yi P, Wang R, Ye Q, Zhao C (2014) Feature selection for least squares projection twin support vector machine. Neurocomputing 144:174–183CrossRef Guo J, Yi P, Wang R, Ye Q, Zhao C (2014) Feature selection for least squares projection twin support vector machine. Neurocomputing 144:174–183CrossRef
14.
go back to reference Gupta D, Borah P, Prasad M (2017) A fuzzy based Lagrangian twin parametric-margin support vector machine (FLTPMSVM). In: 2017 IEEE symposium series on computational intelligence (SSCI), pp 1–7 Gupta D, Borah P, Prasad M (2017) A fuzzy based Lagrangian twin parametric-margin support vector machine (FLTPMSVM). In: 2017 IEEE symposium series on computational intelligence (SSCI), pp 1–7
15.
go back to reference Gupta D, Richhariya B (2018) Entropy based fuzzy least squares twin support vector machine for class imbalance learning. Appl Intell 48:1–20CrossRef Gupta D, Richhariya B (2018) Entropy based fuzzy least squares twin support vector machine for class imbalance learning. Appl Intell 48:1–20CrossRef
17.
go back to reference Huang H, Wei X, Zhou Y (2018) Twin support vector machines: a survey. Neurocomputing 300:34–43CrossRef Huang H, Wei X, Zhou Y (2018) Twin support vector machines: a survey. Neurocomputing 300:34–43CrossRef
18.
go back to reference Khemchandani R, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal machine Intell 29(5):905–910CrossRef Khemchandani R, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal machine Intell 29(5):905–910CrossRef
19.
go back to reference Kumar MA, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36(4):7535–7543CrossRef Kumar MA, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36(4):7535–7543CrossRef
21.
go back to reference Mangasarian OL, Wild EW (2001) Proximal support vector machine classifiers. In: Proceedings KDD-2001: knowledge discovery and data mining Mangasarian OL, Wild EW (2001) Proximal support vector machine classifiers. In: Proceedings KDD-2001: knowledge discovery and data mining
22.
go back to reference Murphy PM, Aha DW (1992) UCI repository of machine learning databases. Department of Information and Computer Science, University of California, Irvine, CA Murphy PM, Aha DW (1992) UCI repository of machine learning databases. Department of Information and Computer Science, University of California, Irvine, CA
23.
go back to reference Peng X (2011) TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition. Pattern Recognit 44(10–11):2678–2692CrossRef Peng X (2011) TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition. Pattern Recognit 44(10–11):2678–2692CrossRef
24.
go back to reference Qi Z, Tian Y, Shi Y (2012) Laplacian twin support vector machine for semi-supervised classification. Neural Netw 35:46–53CrossRef Qi Z, Tian Y, Shi Y (2012) Laplacian twin support vector machine for semi-supervised classification. Neural Netw 35:46–53CrossRef
25.
go back to reference Ripley BD (2007) Pattern recognition and neural networks. Cambridge University Press, CambridgeMATH Ripley BD (2007) Pattern recognition and neural networks. Cambridge University Press, CambridgeMATH
26.
go back to reference Rozza A, Manzo M, Petrosino A (2014) A novel graph-based fisher kernel method for semi-supervised learning. In: IEEE 22nd International conference on pattern recognition (ICPR), pp 3786–3791 Rozza A, Manzo M, Petrosino A (2014) A novel graph-based fisher kernel method for semi-supervised learning. In: IEEE 22nd International conference on pattern recognition (ICPR), pp 3786–3791
27.
go back to reference Samui P, Kim D (2013) Least square support vector machine and multivariate adaptive regression spline for modeling lateral load capacity of piles. Neural Comput Appl 23(3–4):1123–1127CrossRef Samui P, Kim D (2013) Least square support vector machine and multivariate adaptive regression spline for modeling lateral load capacity of piles. Neural Comput Appl 23(3–4):1123–1127CrossRef
28.
go back to reference Shafiabady N, Lee LH, Rajkumar R, Kallimani VP, Akram NA, Isa D (2016) Using unsupervised clustering approach to train the support vector machine for text classification. Neurocomputing 211:4–10CrossRef Shafiabady N, Lee LH, Rajkumar R, Kallimani VP, Akram NA, Isa D (2016) Using unsupervised clustering approach to train the support vector machine for text classification. Neurocomputing 211:4–10CrossRef
29.
go back to reference Shao YH, Zhang CH, Wang XB, Deng NY (2011) Improvements on twin support vector machines. IEEE Trans Neural Netw 22(6):962–968CrossRef Shao YH, Zhang CH, Wang XB, Deng NY (2011) Improvements on twin support vector machines. IEEE Trans Neural Netw 22(6):962–968CrossRef
30.
go back to reference Singh D, Khan MA, Bansal A, Bansal N (2015) An application of SVM in character recognition with chain code. In: IEEE Communication, control and intelligent systems (CCIS), pp 167–171 Singh D, Khan MA, Bansal A, Bansal N (2015) An application of SVM in character recognition with chain code. In: IEEE Communication, control and intelligent systems (CCIS), pp 167–171
31.
go back to reference Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300CrossRef Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300CrossRef
33.
go back to reference Vijayaraghavan V, Garg A, Gao L, Vijayaraghavan R, Lu G (2016) A finite element based data analytics approach for modeling turning process of Inconel 718 alloys. J Clean Prod 137:1619–1627CrossRef Vijayaraghavan V, Garg A, Gao L, Vijayaraghavan R, Lu G (2016) A finite element based data analytics approach for modeling turning process of Inconel 718 alloys. J Clean Prod 137:1619–1627CrossRef
34.
go back to reference Xu Q, Zhou H, Wang Y, Huang J (2009) Fuzzy support vector machine for classification of EEG signals using wavelet-based features. Med Eng Phys 31(7):858–865CrossRef Xu Q, Zhou H, Wang Y, Huang J (2009) Fuzzy support vector machine for classification of EEG signals using wavelet-based features. Med Eng Phys 31(7):858–865CrossRef
35.
go back to reference Zhai S, Jiang T (2015) A new sense-through-foliage target recognition method based on hybrid differential evolution and self-adaptive particle swarm optimization-based support vector machine. Neurocomputing 149:573–584CrossRef Zhai S, Jiang T (2015) A new sense-through-foliage target recognition method based on hybrid differential evolution and self-adaptive particle swarm optimization-based support vector machine. Neurocomputing 149:573–584CrossRef
36.
go back to reference Zhang X, Chen W, Wang B, Chen X (2015) Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization. Neurocomputing 167:260–279CrossRef Zhang X, Chen W, Wang B, Chen X (2015) Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization. Neurocomputing 167:260–279CrossRef
Metadata
Title
Functional iterative approaches for solving support vector classification problems based on generalized Huber loss
Authors
Parashjyoti Borah
Deepak Gupta
Publication date
19-08-2019
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 13/2020
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-019-04436-x

Other articles of this Issue 13/2020

Neural Computing and Applications 13/2020 Go to the issue

Premium Partner