Skip to main content
Top
Published in: Journal of Polymer Research 2/2021

01-02-2021 | REVIEW PAPER

Functional nanocomposites and their potential applications: A review

Authors: Tufail Hassan, Abdul Salam, Amina Khan, Saif Ullah Khan, Halima Khanzada, Muhammad Wasim, Muhammad Qamar Khan, Ick Soo Kim

Published in: Journal of Polymer Research | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Herein, the review aims to compile some reportable work of researchers carried concerning the use of nanomaterials in the polymeric composites for significant improvements in the properties and to report the application areas of such nanocomposites. Carbon nanotubes, cellulose nanoparticles, titanium dioxide, and other nanoparticles are used in the polymeric composites to enhance their mechanical, electrical, inter-laminar, optical, chemical, electrochemical, electromagnetic shielding, and ballistic properties. Such nanocomposites have a wide range of applications in structural, biomedical, electronics, automobiles, aircraft, oil pipelines, gas pipeline construction, electromagnetic shielding, and protected areas. According to the reported results of researchers, the incorporation of nanomaterials into polymers significantly enhance their properties, which make them able to widen their application areas.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tyagi M, Tyagi D (2014) Polymer nanocomposites and their applications in electronics industry. Int J Electron Electr Eng 7(6):603–608 Tyagi M, Tyagi D (2014) Polymer nanocomposites and their applications in electronics industry. Int J Electron Electr Eng 7(6):603–608
2.
go back to reference Bhattacharyya D, Singh S, Satnalika N (2009) Nanotechnology, Big things from a Tiny World : a Review. Sci Technol 2(3):29–38 Bhattacharyya D, Singh S, Satnalika N (2009) Nanotechnology, Big things from a Tiny World : a Review. Sci Technol 2(3):29–38
3.
go back to reference Purohit K, Khitoliya P, Purohit R (2012) Recent advances in nanotechnology based drug. 3(11):1–11 Purohit K, Khitoliya P, Purohit R (2012) Recent advances in nanotechnology based drug. 3(11):1–11
12.
go back to reference Rallini M, Kenny JM (2017) 3 Nanofillers in Polymers Elsevier Inc. Rallini M, Kenny JM (2017) 3 Nanofillers in Polymers Elsevier Inc.
20.
go back to reference Hildebrandt K, Mitschang P (2011) Effect of Incorporating Nanoparticles in Thermoplastic Fiber-Reinforced Composites on the Electrical Conductivity. Iccm 18:1–4 Hildebrandt K, Mitschang P (2011) Effect of Incorporating Nanoparticles in Thermoplastic Fiber-Reinforced Composites on the Electrical Conductivity. Iccm 18:1–4
21.
go back to reference Hanemann T, Szabó DV (2010) Polymer-nanoparticle composites: From synthesis to modern applications. 3(6) Hanemann T, Szabó DV (2010) Polymer-nanoparticle composites: From synthesis to modern applications. 3(6)
41.
go back to reference Sonawane GH, Patil SP, Sonawane SH (2018) Nanocomposites and Its Applications. Elsevier Ltd. Sonawane GH, Patil SP, Sonawane SH (2018) Nanocomposites and Its Applications. Elsevier Ltd.
47.
go back to reference Mouritz A, Gibson A (2006) Fire properties of polymer composite materials. Mouritz A, Gibson A (2006) Fire properties of polymer composite materials.
49.
go back to reference Yemul O, Ramanand S, Marathwada T (2013) Biodegradable Bioepoxy Resin from Mahua oil SRTMU ’ s. Research Journal of Science Biodegradable Bioepoxy Resin from Mahua oil Yemul O, Ramanand S, Marathwada T (2013) Biodegradable Bioepoxy Resin from Mahua oil SRTMU ’ s. Research Journal of Science Biodegradable Bioepoxy Resin from Mahua oil
58.
go back to reference Obradovic V et al (2014) Ballistic Properties of Hybrid Thermoplastic Composites with Silica Nanoparticles. J Eng Fiber Fabr 9(4):97–107 Obradovic V et al (2014) Ballistic Properties of Hybrid Thermoplastic Composites with Silica Nanoparticles. J Eng Fiber Fabr 9(4):97–107
62.
go back to reference Bahadur S, Schwartz CJ The influence of nanoparticle fillers in polymer matrices on the formation and stability of transfer film during wear. Bahadur S, Schwartz CJ The influence of nanoparticle fillers in polymer matrices on the formation and stability of transfer film during wear.
67.
go back to reference Sathyanarayana S, Hübner C (2013) Structural Nanocomposites. Sathyanarayana S, Hübner C (2013) Structural Nanocomposites. 
68.
go back to reference Sathyanarayana S, Hübner C (2013) Thermoplastic Nanocomposites with Carbon Nanotubes. Sathyanarayana S, Hübner C (2013) Thermoplastic Nanocomposites with Carbon Nanotubes.
92.
go back to reference Grunert M, Winter WT (2002) Nanocomposites of cellulose acetatebutyrate reinforced with cellulose nanocrystals. J Polym Environ 10(1–2):27–30CrossRef Grunert M, Winter WT (2002) Nanocomposites of cellulose acetatebutyrate reinforced with cellulose nanocrystals. J Polym Environ 10(1–2):27–30CrossRef
95.
go back to reference Misra AKMM, Seydibeyoglu MO (2010) Multifunctional Structural Green Nanocomposites: An Overview 1–12. Misra AKMM, Seydibeyoglu MO (2010) Multifunctional Structural Green Nanocomposites: An Overview 1–12.
96.
go back to reference Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic Nanocomposites Filled With Wheat Straw Cellulose Whiskers Part I: Processing and Mechanical Behavior. Polym Compos 17(4):604–611CrossRef Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic Nanocomposites Filled With Wheat Straw Cellulose Whiskers Part I: Processing and Mechanical Behavior. Polym Compos 17(4):604–611CrossRef
101.
go back to reference Detection I et al (2011) Nanocomposites Containing Silica- Coated GoldÀSilver Nanocages and Multifunctional Capability of. 9:7077–7089. Detection I et al (2011) Nanocomposites Containing Silica- Coated GoldÀSilver Nanocages and Multifunctional Capability of. 9:7077–7089.
102.
go back to reference Abdelrazek EM, Abdelghany AM, Badr SI, Morsi MA (2018) Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. J Mater Res Technol 7(4):419–431CrossRef Abdelrazek EM, Abdelghany AM, Badr SI, Morsi MA (2018) Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. J Mater Res Technol 7(4):419–431CrossRef
104.
go back to reference Ramesan MT, Jayakrishnan P (2017) Role of Nickel Oxide Nanoparticles on Magnetic, Thermal and Temperature Dependent Electrical Conductivity of Novel Poly(vinyl cinnamate) Based Nanocomposites: Applicability of Different Conductivity Models. J Inorg Organomet Polym Mater 27(1):143–153. https://doi.org/10.1007/s10904-016-0456-xCrossRef Ramesan MT, Jayakrishnan P (2017) Role of Nickel Oxide Nanoparticles on Magnetic, Thermal and Temperature Dependent Electrical Conductivity of Novel Poly(vinyl cinnamate) Based Nanocomposites: Applicability of Different Conductivity Models. J Inorg Organomet Polym Mater 27(1):143–153. https://​doi.​org/​10.​1007/​s10904-016-0456-xCrossRef
105.
go back to reference Duan H, Nie S (2007) Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J Am Chem Soc 129(11):3333–3338PubMedCrossRef Duan H, Nie S (2007) Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J Am Chem Soc 129(11):3333–3338PubMedCrossRef
106.
go back to reference Cady NC, Strickland AD, Batt CA (2007) Optimized linkage and quenching strategies for quantum dot molecular beacons. Mol Cell Probes 21(2):116–124PubMedCrossRef Cady NC, Strickland AD, Batt CA (2007) Optimized linkage and quenching strategies for quantum dot molecular beacons. Mol Cell Probes 21(2):116–124PubMedCrossRef
107.
go back to reference Biju V, Itoh T, Baba Y, Ishikawa M (2006) Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube. J Phys Chem B 110(51):26068–26074PubMedCrossRef Biju V, Itoh T, Baba Y, Ishikawa M (2006) Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube. J Phys Chem B 110(51):26068–26074PubMedCrossRef
108.
go back to reference Dong H, Gao W, Yan F, Ji H, Ju H (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82(13):5511–5517PubMedCrossRef Dong H, Gao W, Yan F, Ji H, Ju H (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82(13):5511–5517PubMedCrossRef
112.
go back to reference Yuan Q, Hein S, Misra RDK (2010) New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: synthesis, characterization and in vitro drug delivery response. Acta Biomater 6(7):2732–2739PubMedCrossRef Yuan Q, Hein S, Misra RDK (2010) New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: synthesis, characterization and in vitro drug delivery response. Acta Biomater 6(7):2732–2739PubMedCrossRef
113.
go back to reference Wu W, Aiello M, Zhou T, Berliner A, Banerjee P, Zhou S (2010) In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery. Biomaterials 31(11):3023–3031PubMedCrossRef Wu W, Aiello M, Zhou T, Berliner A, Banerjee P, Zhou S (2010) In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery. Biomaterials 31(11):3023–3031PubMedCrossRef
114.
go back to reference Gaharwar AK, Dammu SA, Canter JM, Wu C-J, Schmidt G (2011) Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly (ethylene glycol) and hydroxyapatite nanoparticles. Biomacromol 12(5):1641–1650CrossRef Gaharwar AK, Dammu SA, Canter JM, Wu C-J, Schmidt G (2011) Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly (ethylene glycol) and hydroxyapatite nanoparticles. Biomacromol 12(5):1641–1650CrossRef
115.
go back to reference Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25(18):1632–1637CrossRef Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25(18):1632–1637CrossRef
116.
go back to reference Melaiye A et al (2005) Silver (I)− imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: Formation of nanosilver particles and antimicrobial activity. J Am Chem Soc 127(7):2285–2291PubMedCrossRef Melaiye A et al (2005) Silver (I)− imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: Formation of nanosilver particles and antimicrobial activity. J Am Chem Soc 127(7):2285–2291PubMedCrossRef
117.
go back to reference Fujihara K, Kotaki M, Ramakrishna S (2005) Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 26(19):4139–4147PubMedCrossRef Fujihara K, Kotaki M, Ramakrishna S (2005) Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 26(19):4139–4147PubMedCrossRef
118.
go back to reference Fan HS, Wen XT, Tan YF, Wang R, Cao HD, Zhang XD (2005) Compare of electrospinning PLA and PLA/β-TCP scaffold in vitro. Mater Sci Forum 475:2379–2382CrossRef Fan HS, Wen XT, Tan YF, Wang R, Cao HD, Zhang XD (2005) Compare of electrospinning PLA and PLA/β-TCP scaffold in vitro. Mater Sci Forum 475:2379–2382CrossRef
119.
go back to reference Kim H, Lee H, Knowles JC (2006) Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly (lactic acid) for bone regeneration. J Biomed Mater Res Part A An Off J Soc Biomater Japanese Soc Biomater Aust Soc Biomater Korean Soc Biomater 79(3):643–649. Kim H, Lee H, Knowles JC (2006) Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly (lactic acid) for bone regeneration. J Biomed Mater Res Part A An Off J Soc Biomater Japanese Soc Biomater Aust Soc Biomater Korean Soc Biomater 79(3):643–649.
120.
go back to reference Kim H, Song J, Kim H (2005) Nanofiber generation of gelatin–hydroxyapatite biomimetics for guided tissue regeneration. Adv Funct Mater 15(12):1988–1994CrossRef Kim H, Song J, Kim H (2005) Nanofiber generation of gelatin–hydroxyapatite biomimetics for guided tissue regeneration. Adv Funct Mater 15(12):1988–1994CrossRef
121.
go back to reference Lee YH et al (2005) Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials 26(16):3165–3172PubMedCrossRef Lee YH et al (2005) Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials 26(16):3165–3172PubMedCrossRef
122.
go back to reference Zhang D, Jiang C, Zhou Q (2017) Layer-by-layer self-assembly of tricobalt tetroxide-polymer nanocomposite toward high-performance humidity-sensing. J Alloys Compd 711:652–658CrossRef Zhang D, Jiang C, Zhou Q (2017) Layer-by-layer self-assembly of tricobalt tetroxide-polymer nanocomposite toward high-performance humidity-sensing. J Alloys Compd 711:652–658CrossRef
123.
go back to reference Qi W, Xue Z, Yuan W, Wang H (2014) Layer-by-layer assembled graphene oxide composite films for enhanced mechanical properties and fibroblast cell affinity. J Mater Chem B 2(3):325–331PubMedCrossRef Qi W, Xue Z, Yuan W, Wang H (2014) Layer-by-layer assembled graphene oxide composite films for enhanced mechanical properties and fibroblast cell affinity. J Mater Chem B 2(3):325–331PubMedCrossRef
124.
go back to reference Cui S, Yang L, Wang J, Wang X (2016) Fabrication of a sensitive gas sensor based on PPy/TiO2 nanocomposites films by layer-by-layer self-assembly and its application in food storage. Sensors Actuators B Chem 233:337–346CrossRef Cui S, Yang L, Wang J, Wang X (2016) Fabrication of a sensitive gas sensor based on PPy/TiO2 nanocomposites films by layer-by-layer self-assembly and its application in food storage. Sensors Actuators B Chem 233:337–346CrossRef
125.
go back to reference Huang H et al (2016) Facile preparation of halloysite/polyaniline nanocomposites via in situ polymerization and layer-by-layer assembly with good supercapacitor performance. J Mater Sci 51(8):4047–4054CrossRef Huang H et al (2016) Facile preparation of halloysite/polyaniline nanocomposites via in situ polymerization and layer-by-layer assembly with good supercapacitor performance. J Mater Sci 51(8):4047–4054CrossRef
126.
go back to reference Qi W, Yuan W, Yan J, Wang H (2014) Growth and accelerated differentiation of mesenchymal stem cells on graphene oxide/poly-L-lysine composite films. J Mater Chem B 2(33):5461–5467PubMedCrossRef Qi W, Yuan W, Yan J, Wang H (2014) Growth and accelerated differentiation of mesenchymal stem cells on graphene oxide/poly-L-lysine composite films. J Mater Chem B 2(33):5461–5467PubMedCrossRef
128.
go back to reference Yang J-H, Lin S-H, Lee Y-D (2012) Preparation and characterization of poly (l-lactide)–graphene composites using the in situ ring-opening polymerization of PLLA with graphene as the initiator. J Mater Chem 22(21):10805–10815CrossRef Yang J-H, Lin S-H, Lee Y-D (2012) Preparation and characterization of poly (l-lactide)–graphene composites using the in situ ring-opening polymerization of PLLA with graphene as the initiator. J Mater Chem 22(21):10805–10815CrossRef
129.
go back to reference Fan H et al (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromol 11(9):2345–2351CrossRef Fan H et al (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromol 11(9):2345–2351CrossRef
130.
go back to reference Wang X, Bai H, Yao Z, Liu A, Shi G (2010) Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films. J Mater Chem 20(41):9032–9036CrossRef Wang X, Bai H, Yao Z, Liu A, Shi G (2010) Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films. J Mater Chem 20(41):9032–9036CrossRef
132.
go back to reference Park JJ, Yu EJ, Lee W, Ha C (2014) Mechanical properties and degradation studies of poly (D, L-lactide-co-glycolide) 50: 50/graphene oxide nanocomposite films. Polym Adv Technol 25(1):48–54CrossRef Park JJ, Yu EJ, Lee W, Ha C (2014) Mechanical properties and degradation studies of poly (D, L-lactide-co-glycolide) 50: 50/graphene oxide nanocomposite films. Polym Adv Technol 25(1):48–54CrossRef
135.
go back to reference Lalwani G et al (2013) Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering. Biomacromol 14(3):900–909CrossRef Lalwani G et al (2013) Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering. Biomacromol 14(3):900–909CrossRef
136.
go back to reference Zhang H-B et al (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer (Guildf) 51(5):1191–1196CrossRef Zhang H-B et al (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer (Guildf) 51(5):1191–1196CrossRef
137.
go back to reference Yang X, Shang S, Li L (2011) Layer-structured poly (vinyl alcohol)/graphene oxide nanocomposites with improved thermal and mechanical properties. J Appl Polym Sci 120(3):1355–1360CrossRef Yang X, Shang S, Li L (2011) Layer-structured poly (vinyl alcohol)/graphene oxide nanocomposites with improved thermal and mechanical properties. J Appl Polym Sci 120(3):1355–1360CrossRef
138.
go back to reference Lee JS, Shin K-Y, Cheong OJ, Kim JH, Jang J (2015) Highly sensitive and multifunctional tactile sensor using free-standing ZnO/PVDF thin film with graphene electrodes for pressure and temperature monitoring. Sci Rep 5:7887PubMedPubMedCentralCrossRef Lee JS, Shin K-Y, Cheong OJ, Kim JH, Jang J (2015) Highly sensitive and multifunctional tactile sensor using free-standing ZnO/PVDF thin film with graphene electrodes for pressure and temperature monitoring. Sci Rep 5:7887PubMedPubMedCentralCrossRef
139.
go back to reference Xu C, Wang X, Wang J, Hu H, Wan L (2010) Synthesis and photoelectrical properties of β-cyclodextrin functionalized graphene materials with high bio-recognition capability. Chem Phys Lett 498(1–3):162–167CrossRef Xu C, Wang X, Wang J, Hu H, Wan L (2010) Synthesis and photoelectrical properties of β-cyclodextrin functionalized graphene materials with high bio-recognition capability. Chem Phys Lett 498(1–3):162–167CrossRef
140.
go back to reference Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81(6):2378–2382PubMedCrossRef Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81(6):2378–2382PubMedCrossRef
141.
go back to reference Lian H, Sun Z, Sun X, Liu B (2012) Graphene doped molecularly imprinted electrochemical sensor for uric acid. Anal Lett 45(18):2717–2727CrossRef Lian H, Sun Z, Sun X, Liu B (2012) Graphene doped molecularly imprinted electrochemical sensor for uric acid. Anal Lett 45(18):2717–2727CrossRef
142.
go back to reference Heo C et al (2011) The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes. Biomaterials 32(1):19–27PubMedCrossRef Heo C et al (2011) The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes. Biomaterials 32(1):19–27PubMedCrossRef
143.
go back to reference Pandey S, Goswami GK, Nanda KK (2012) Green synthesis of biopolymer–silver nanoparticle nanocomposite: An optical sensor for ammonia detection. Int J Biol Macromol 51(4):583–589PubMedCrossRef Pandey S, Goswami GK, Nanda KK (2012) Green synthesis of biopolymer–silver nanoparticle nanocomposite: An optical sensor for ammonia detection. Int J Biol Macromol 51(4):583–589PubMedCrossRef
144.
go back to reference Sharma S, Nirkhe C, Pethkar S, Athawale AA (2002) Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sensors Actuators B Chem 85(1–2):131–136CrossRef Sharma S, Nirkhe C, Pethkar S, Athawale AA (2002) Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sensors Actuators B Chem 85(1–2):131–136CrossRef
146.
go back to reference Mazeiko V, Kausaite-Minkstimiene A, Ramanaviciene A, Balevicius Z, Ramanavicius A (2013) Gold nanoparticle and conducting polymer-polyaniline-based nanocomposites for glucose biosensor design. Sensors Actuators B Chem 189:187–193CrossRef Mazeiko V, Kausaite-Minkstimiene A, Ramanaviciene A, Balevicius Z, Ramanavicius A (2013) Gold nanoparticle and conducting polymer-polyaniline-based nanocomposites for glucose biosensor design. Sensors Actuators B Chem 189:187–193CrossRef
147.
go back to reference Daneshkhah A, Shrestha S, Siegel A, Varahramyan K, Agarwal M (2017) Cross-selectivity enhancement of poly (vinylidene fluoride-hexafluoropropylene)-based sensor arrays for detecting acetone and ethanol. Sensors 17(3):595CrossRef Daneshkhah A, Shrestha S, Siegel A, Varahramyan K, Agarwal M (2017) Cross-selectivity enhancement of poly (vinylidene fluoride-hexafluoropropylene)-based sensor arrays for detecting acetone and ethanol. Sensors 17(3):595CrossRef
148.
go back to reference Rahman MA, Lee B-C, Phan D-T, Chung G-S (2013) Fabrication and characterization of highly efficient flexible energy harvesters using PVDF–graphene nanocomposites. Smart Mater Struct 22(8):85017CrossRef Rahman MA, Lee B-C, Phan D-T, Chung G-S (2013) Fabrication and characterization of highly efficient flexible energy harvesters using PVDF–graphene nanocomposites. Smart Mater Struct 22(8):85017CrossRef
149.
go back to reference Rahman MA, Chung G-S (2013) Synthesis of PVDF-graphene nanocomposites and their properties. J Alloys Compd 581:724–730CrossRef Rahman MA, Chung G-S (2013) Synthesis of PVDF-graphene nanocomposites and their properties. J Alloys Compd 581:724–730CrossRef
150.
go back to reference Huang L, Lu C, Wang F, Wang L (2014) Preparation of PVDF/graphene ferroelectric composite films by in situ reduction with hydrobromic acids and their properties. RSC Adv 4(85):45220–45229CrossRef Huang L, Lu C, Wang F, Wang L (2014) Preparation of PVDF/graphene ferroelectric composite films by in situ reduction with hydrobromic acids and their properties. RSC Adv 4(85):45220–45229CrossRef
151.
go back to reference Bhavanasi V, Kumar V, Parida K, Wang J, Lee PS (2016) Enhanced piezoelectric energy harvesting performance of flexible PVDF-TrFE bilayer films with graphene oxide. ACS Appl Mater Interfaces 8(1):521–529PubMedCrossRef Bhavanasi V, Kumar V, Parida K, Wang J, Lee PS (2016) Enhanced piezoelectric energy harvesting performance of flexible PVDF-TrFE bilayer films with graphene oxide. ACS Appl Mater Interfaces 8(1):521–529PubMedCrossRef
152.
go back to reference Maity N, Mandal A, Nandi AK (2016) Hierarchical nanostructured polyaniline functionalized graphene/poly (vinylidene fluoride) composites for improved dielectric performances. Polymer (Guildf) 103:83–97CrossRef Maity N, Mandal A, Nandi AK (2016) Hierarchical nanostructured polyaniline functionalized graphene/poly (vinylidene fluoride) composites for improved dielectric performances. Polymer (Guildf) 103:83–97CrossRef
153.
go back to reference Pusty M, Sharma A, Sinha L, Chaudhary A, Shirage P (2017) Comparative study with a unique arrangement to tap piezoelectric output to realize a self poled PVDF based nanocomposite for energy harvesting applications. ChemistrySelect 2(9):2774–2782CrossRef Pusty M, Sharma A, Sinha L, Chaudhary A, Shirage P (2017) Comparative study with a unique arrangement to tap piezoelectric output to realize a self poled PVDF based nanocomposite for energy harvesting applications. ChemistrySelect 2(9):2774–2782CrossRef
154.
go back to reference Dodds JS, Meyers FN, Loh KJ (2011) Piezoelectric characterization of PVDF-TrFE thin films enhanced with ZnO nanoparticles. IEEE Sens J 12(6):1889–1890CrossRef Dodds JS, Meyers FN, Loh KJ (2011) Piezoelectric characterization of PVDF-TrFE thin films enhanced with ZnO nanoparticles. IEEE Sens J 12(6):1889–1890CrossRef
155.
go back to reference Bhunia R et al (2016) Flexible nano-ZnO/polyvinylidene difluoride piezoelectric composite films as energy harvester. Appl Phys A 122(7):637CrossRef Bhunia R et al (2016) Flexible nano-ZnO/polyvinylidene difluoride piezoelectric composite films as energy harvester. Appl Phys A 122(7):637CrossRef
156.
go back to reference Peihai J, Ling W, Lizhu L, Xiaorui Z (2016) Preparation and characterisation of Al-doped ZnO and PVDF composites. High Volt 1(4):166–170CrossRef Peihai J, Ling W, Lizhu L, Xiaorui Z (2016) Preparation and characterisation of Al-doped ZnO and PVDF composites. High Volt 1(4):166–170CrossRef
157.
go back to reference Chen H-J et al (2016) Investigation of PVDF-TrFE composite with nanofillers for sensitivity improvement. Sensors Actuators A Phys 245:135–139CrossRef Chen H-J et al (2016) Investigation of PVDF-TrFE composite with nanofillers for sensitivity improvement. Sensors Actuators A Phys 245:135–139CrossRef
158.
go back to reference Issa AA, Al-Maadeed MA, Luyt AS, Ponnamma D, Hassan MK (2017) Physico-mechanical, dielectric, and piezoelectric properties of PVDF electrospun mats containing silver nanoparticles. C-Journal Carbon Res 3(4):30 Issa AA, Al-Maadeed MA, Luyt AS, Ponnamma D, Hassan MK (2017) Physico-mechanical, dielectric, and piezoelectric properties of PVDF electrospun mats containing silver nanoparticles. C-Journal Carbon Res 3(4):30
159.
go back to reference Jaleh B, Jabbari A (2014) Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films. Appl Surf Sci 320:339–347CrossRef Jaleh B, Jabbari A (2014) Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films. Appl Surf Sci 320:339–347CrossRef
160.
go back to reference Yang L, Qiu J, Ji H, Zhu K, Wang J (2014) Enhanced dielectric and ferroelectric properties induced by TiO2@ MWCNTs nanoparticles in flexible poly (vinylidene fluoride) composites. Compos Part A Appl Sci Manuf 65:125–134CrossRef Yang L, Qiu J, Ji H, Zhu K, Wang J (2014) Enhanced dielectric and ferroelectric properties induced by TiO2@ MWCNTs nanoparticles in flexible poly (vinylidene fluoride) composites. Compos Part A Appl Sci Manuf 65:125–134CrossRef
161.
go back to reference Yang L, Ji H, Zhu K, Wang J, Qiu J (2016) Dramatically improved piezoelectric properties of poly (vinylidene fluoride) composites by incorporating aligned TiO2@ MWCNTs. Compos Sci Technol 123:259–267CrossRef Yang L, Ji H, Zhu K, Wang J, Qiu J (2016) Dramatically improved piezoelectric properties of poly (vinylidene fluoride) composites by incorporating aligned TiO2@ MWCNTs. Compos Sci Technol 123:259–267CrossRef
162.
go back to reference Karan SK, Mandal D, Khatua BB (2015) Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. Nanoscale 7(24):10655–10666PubMedCrossRef Karan SK, Mandal D, Khatua BB (2015) Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. Nanoscale 7(24):10655–10666PubMedCrossRef
163.
go back to reference Al-Saygh A, Ponnamma D, AlMaadeed MA, Vijayan PP, Karim A, Hassan MK (2017) Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide-titania hybrid nanolayers. Polymers (Basel) 9(2):33 Al-Saygh A, Ponnamma D, AlMaadeed MA, Vijayan PP, Karim A, Hassan MK (2017) Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide-titania hybrid nanolayers. Polymers (Basel) 9(2):33
164.
go back to reference Mahadeva SK, Walus K, Stoeber B (2014) Piezoelectric paper fabricated via nanostructured barium titanate functionalization of wood cellulose fibers. ACS Appl Mater Interfaces 6(10):7547–7553PubMedCrossRef Mahadeva SK, Walus K, Stoeber B (2014) Piezoelectric paper fabricated via nanostructured barium titanate functionalization of wood cellulose fibers. ACS Appl Mater Interfaces 6(10):7547–7553PubMedCrossRef
165.
go back to reference Kim JH, Ko HU (2017) Zinc oxide-cellulose nanocomposite and preparation method thereof. Google Patents Kim JH, Ko HU (2017) Zinc oxide-cellulose nanocomposite and preparation method thereof. Google Patents 
166.
go back to reference David C, Capsal J-F, Laffont L, Dantras E, Lacabanne C (2012) Piezoelectric properties of polyamide 11/NaNbO3 nanowire composites. J Phys D Appl Phys 45(41):415305CrossRef David C, Capsal J-F, Laffont L, Dantras E, Lacabanne C (2012) Piezoelectric properties of polyamide 11/NaNbO3 nanowire composites. J Phys D Appl Phys 45(41):415305CrossRef
167.
go back to reference Carponcin D et al (2015) New hybrid polymer nanocomposites for passive vibration damping by incorporation of carbon nanotubes and lead zirconate titanate particles. J Non Cryst Solids 409:20–26CrossRef Carponcin D et al (2015) New hybrid polymer nanocomposites for passive vibration damping by incorporation of carbon nanotubes and lead zirconate titanate particles. J Non Cryst Solids 409:20–26CrossRef
168.
go back to reference Hua Z, Shi X, Chen Y (2019) Preparation, structure, and property of highly filled polyamide 11/BaTiO3 piezoelectric composites prepared through solid-state mechanochemical method. Polym Compos 40(S1):E177–E185CrossRef Hua Z, Shi X, Chen Y (2019) Preparation, structure, and property of highly filled polyamide 11/BaTiO3 piezoelectric composites prepared through solid-state mechanochemical method. Polym Compos 40(S1):E177–E185CrossRef
169.
go back to reference Sakamoto WK, Shibatta-Katesawa S, Kanda DHF, Fernandes SH, Longo E, Chierice GO (1999) Piezoelectric effect in composite polyurethane–ferroelectric ceramics. Phys status solidi 172(1):265–271CrossRef Sakamoto WK, Shibatta-Katesawa S, Kanda DHF, Fernandes SH, Longo E, Chierice GO (1999) Piezoelectric effect in composite polyurethane–ferroelectric ceramics. Phys status solidi 172(1):265–271CrossRef
170.
go back to reference Gass J, Poddar P, Almand J, Srinath S, Srikanth H (2006) Superparamagnetic polymer nanocomposites with uniform Fe3O4 nanoparticle dispersions. Adv Funct Mater 16(1):71–75CrossRef Gass J, Poddar P, Almand J, Srinath S, Srikanth H (2006) Superparamagnetic polymer nanocomposites with uniform Fe3O4 nanoparticle dispersions. Adv Funct Mater 16(1):71–75CrossRef
171.
go back to reference Yavuz Ö, Ram MK, Aldissi M, Poddar P, Srikanth H (2005) Polypyrrole composites for shielding applications. Synth Met 151(3):211–217CrossRef Yavuz Ö, Ram MK, Aldissi M, Poddar P, Srikanth H (2005) Polypyrrole composites for shielding applications. Synth Met 151(3):211–217CrossRef
173.
go back to reference Lozano K, Espinoza L, Hernandez K, Adhikari AR, Radhakrishnan G, Adams PM (2009) Investigation of the electromagnetic interference shielding of titanium carbide coated nanoreinforced liquid crystalline polymer. J Appl Phys 105(10):103511CrossRef Lozano K, Espinoza L, Hernandez K, Adhikari AR, Radhakrishnan G, Adams PM (2009) Investigation of the electromagnetic interference shielding of titanium carbide coated nanoreinforced liquid crystalline polymer. J Appl Phys 105(10):103511CrossRef
174.
go back to reference Joshi A, Datar S (2015) Carbon nanostructure composite for electromagnetic interference shielding. Pramana 84(6):1099–1116CrossRef Joshi A, Datar S (2015) Carbon nanostructure composite for electromagnetic interference shielding. Pramana 84(6):1099–1116CrossRef
175.
go back to reference Ren F et al (2018) Large-scale preparation of segregated PLA/carbon nanotube composite with high efficient electromagnetic interference shielding and favourable mechanical properties. Compos Part B Eng 155:405–413CrossRef Ren F et al (2018) Large-scale preparation of segregated PLA/carbon nanotube composite with high efficient electromagnetic interference shielding and favourable mechanical properties. Compos Part B Eng 155:405–413CrossRef
176.
go back to reference Gupta A, Choudhary V (2011) Electromagnetic interference shielding behavior of poly (trimethylene terephthalate)/multi-walled carbon nanotube composites. Compos Sci Technol 71(13):1563–1568CrossRef Gupta A, Choudhary V (2011) Electromagnetic interference shielding behavior of poly (trimethylene terephthalate)/multi-walled carbon nanotube composites. Compos Sci Technol 71(13):1563–1568CrossRef
177.
go back to reference Li N et al (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6(6):1141–1145PubMedCrossRef Li N et al (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6(6):1141–1145PubMedCrossRef
178.
go back to reference Liang J et al (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon N Y 47(3):922–925CrossRef Liang J et al (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon N Y 47(3):922–925CrossRef
179.
go back to reference Wasim M et al (2020) Development of bacterial cellulose nanocomposites: An overview of the synthesis of bacterial cellulose nanocomposites with metallic and metallic-oxide nanoparticles by different methods and techniques for biomedical applications. J Ind Text 1–30. https://doi.org/10.1177/1528083720977201 Wasim M et al (2020) Development of bacterial cellulose nanocomposites: An overview of the synthesis of bacterial cellulose nanocomposites with metallic and metallic-oxide nanoparticles by different methods and techniques for biomedical applications. J Ind Text 1–30. https://​doi.​org/​10.​1177/​1528083720977201​
181.
go back to reference Manocha LM, Valand J, Patel N, Warrier A, Manocha S (2006) Nanocomposites for structural applications. Indian J Pure Appl Phys 44(2):135–142 Manocha LM, Valand J, Patel N, Warrier A, Manocha S (2006) Nanocomposites for structural applications. Indian J Pure Appl Phys 44(2):135–142
198.
go back to reference Nguyen-Tran HD, Hoang VT, Do VT, Chun DM, Yum YJ (2018) Effect of multiwalled carbon nanotubes on the mechanical properties of carbon fiber-reinforced polyamide-6/polypropylene composites for lightweight automotive parts. Materials (Basel) 11(3). https://doi.org/10.3390/ma11030429 Nguyen-Tran HD, Hoang VT, Do VT, Chun DM, Yum YJ (2018) Effect of multiwalled carbon nanotubes on the mechanical properties of carbon fiber-reinforced polyamide-6/polypropylene composites for lightweight automotive parts. Materials (Basel) 11(3). https://​doi.​org/​10.​3390/​ma11030429
199.
go back to reference Il C, Park OO, Gon J, Joon H (2001) The fabrication of syndiotactic polystyrene / organophilic clay nanocomposites and their properties. 42:7465–7475 Il C, Park OO, Gon J, Joon H (2001) The fabrication of syndiotactic polystyrene / organophilic clay nanocomposites and their properties. 42:7465–7475
204.
go back to reference Xu W et al (2017) The graphene oxide and chitosan biopolymer loads TiO2 for antibacterial and preservative research. Food Chem 221:267–277PubMedCrossRef Xu W et al (2017) The graphene oxide and chitosan biopolymer loads TiO2 for antibacterial and preservative research. Food Chem 221:267–277PubMedCrossRef
205.
go back to reference Andrade PF, de Faria AF, da Silva DS, Bonacin JA, do Carmo Gonçalves M (2014) Structural and morphological investigations of β-cyclodextrin-coated silver nanoparticles. Colloids Surfaces B Biointerfaces 118:289–297 Andrade PF, de Faria AF, da Silva DS, Bonacin JA, do Carmo Gonçalves M (2014) Structural and morphological investigations of β-cyclodextrin-coated silver nanoparticles. Colloids Surfaces B Biointerfaces 118:289–297
208.
go back to reference Lam S-M, Sin J-C, Abdullah AZ, Mohamed AR (2014) “Photocatalytic TiO2/carbon nanotube nanocomposites for environmental applications: an overview and recent developments”, Fullerenes. Nanotub Carbon Nanostructures 22(5):471–509CrossRef Lam S-M, Sin J-C, Abdullah AZ, Mohamed AR (2014) “Photocatalytic TiO2/carbon nanotube nanocomposites for environmental applications: an overview and recent developments”, Fullerenes. Nanotub Carbon Nanostructures 22(5):471–509CrossRef
209.
go back to reference Yang S, Zhu S, Hong R (2020) Graphene Oxide/Polyaniline Nanocomposites Used in Anticorrosive Coatings for Environmental Protection. Coatings 10(12):1215CrossRef Yang S, Zhu S, Hong R (2020) Graphene Oxide/Polyaniline Nanocomposites Used in Anticorrosive Coatings for Environmental Protection. Coatings 10(12):1215CrossRef
214.
go back to reference Liversidge DACGG, Cundy KC, Bishop JF (1980) United States Patent (19) 54. 96(19):62–66. US005485919A Liversidge DACGG, Cundy KC, Bishop JF (1980) United States Patent (19) 54. 96(19):62–66. US005485919A
225.
go back to reference Amin M (2013) Methods for preparation of nano-composites for outdoor insulation applications. Rev Adv Mater Sci 34(2):173–184 Amin M (2013) Methods for preparation of nano-composites for outdoor insulation applications. Rev Adv Mater Sci 34(2):173–184
226.
go back to reference Sarathi R, Sahu R, Danikas MG (2009) Understanding the mechanical properties of epoxy nanocomposite insulating materials. J Electr Eng 60(6):358–361 Sarathi R, Sahu R, Danikas MG (2009) Understanding the mechanical properties of epoxy nanocomposite insulating materials. J Electr Eng 60(6):358–361
Metadata
Title
Functional nanocomposites and their potential applications: A review
Authors
Tufail Hassan
Abdul Salam
Amina Khan
Saif Ullah Khan
Halima Khanzada
Muhammad Wasim
Muhammad Qamar Khan
Ick Soo Kim
Publication date
01-02-2021
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 2/2021
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-021-02408-1

Other articles of this Issue 2/2021

Journal of Polymer Research 2/2021 Go to the issue

Premium Partners