Skip to main content
Top

2015 | OriginalPaper | Chapter

2. Fundamentals of Gas Permeation Through Membranes

Authors : Ahmad Fauzi Ismail, Kailash Chandra Khulbe, Takeshi Matsuura

Published in: Gas Separation Membranes

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Gas permeation is a technique for fractionating gas mixtures by using nonporous polymer membranes having a selective permeability to gas according to a dissolution–diffusion mechanism. The membrane gas separation process is driven by a pressure difference across the membrane. The membrane may be either in the form of a flat sheet or a hollow fiber. In general, hollow fibers are preferred as they achieve a higher effective membrane area within a given module volume.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Javid A (2005) Membranes for solubility-based gas separation applications. Chem Eng J 112:219–226CrossRef Javid A (2005) Membranes for solubility-based gas separation applications. Chem Eng J 112:219–226CrossRef
2.
go back to reference Budd PM, McKeown NB (2010) High permeable polymers for gas separation membranes. Polym Chem 1:63–68CrossRef Budd PM, McKeown NB (2010) High permeable polymers for gas separation membranes. Polym Chem 1:63–68CrossRef
3.
go back to reference Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Recommendations for the characterization of porous solids (Technical Report). Pure Appl Chem 66:1739–1758CrossRef Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Recommendations for the characterization of porous solids (Technical Report). Pure Appl Chem 66:1739–1758CrossRef
4.
go back to reference Geoffroy R (2004) What is the glass transition temperature, Tg? Polymer Services Group. POLYSERV@cox.net, posted: 12 May 2004 (Edited 27 Sep 2004) Geoffroy R (2004) What is the glass transition temperature, Tg? Polymer Services Group. POLYSERV@cox.net, posted: 12 May 2004 (Edited 27 Sep 2004)
5.
go back to reference Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell preparation. Int J Hydrogen Energy 35:9349–9384CrossRef Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell preparation. Int J Hydrogen Energy 35:9349–9384CrossRef
6.
go back to reference Kluiters SCA (2004) Status review on membrane systems for hydrogen separation. Intermediate report EU project MIGREYD NNE5-2001-670, ECN-C-04-102 Kluiters SCA (2004) Status review on membrane systems for hydrogen separation. Intermediate report EU project MIGREYD NNE5-2001-670, ECN-C-04-102
7.
go back to reference Pandey P, Chauhan R (2001) Membrane for gas separation. Prog Polym Sci 26:853–893CrossRef Pandey P, Chauhan R (2001) Membrane for gas separation. Prog Polym Sci 26:853–893CrossRef
8.
go back to reference Graham T (1866) On the absorption and dialytic separation of gases by Collid Septa. Philos Mag J Esc 32:401–420 Graham T (1866) On the absorption and dialytic separation of gases by Collid Septa. Philos Mag J Esc 32:401–420
9.
go back to reference Stern SA (1994) Polymers for gas separations: the next decade. J Membr Sci 94:1–65CrossRef Stern SA (1994) Polymers for gas separations: the next decade. J Membr Sci 94:1–65CrossRef
10.
go back to reference Dai Y, Johnson JR, Karvan O, Sholl DS, Koros WJ (2012) Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separation. J Membr Sci 401–402:76–82CrossRef Dai Y, Johnson JR, Karvan O, Sholl DS, Koros WJ (2012) Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separation. J Membr Sci 401–402:76–82CrossRef
11.
go back to reference Wang D, Teo WK, Li K (2000) Permeation of H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide hollow-fiber membranes. J Appl Polym Sci 86:698–702CrossRef Wang D, Teo WK, Li K (2000) Permeation of H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide hollow-fiber membranes. J Appl Polym Sci 86:698–702CrossRef
12.
go back to reference Shilton SJ, Bell G, Ferguson J (1996) The deduction of fine structural details of gas separation hollow fiber membranes using resistance modelling of gas separation. Polymer 37:485–492CrossRef Shilton SJ, Bell G, Ferguson J (1996) The deduction of fine structural details of gas separation hollow fiber membranes using resistance modelling of gas separation. Polymer 37:485–492CrossRef
13.
go back to reference Henis JMS, Tripodi MK (1981) Composite hollow fiber membranes for gas separation: the resistance model approach. J Membr Sci 8:233–246CrossRef Henis JMS, Tripodi MK (1981) Composite hollow fiber membranes for gas separation: the resistance model approach. J Membr Sci 8:233–246CrossRef
14.
go back to reference Fouda A, Chen Y, Bai J, Matsuura T (1991) Wheatstone bridge model for the laminated polydimethylsiloxane/polyethersulfone membrane for gas separation. J Membr Sci 64:263–271CrossRef Fouda A, Chen Y, Bai J, Matsuura T (1991) Wheatstone bridge model for the laminated polydimethylsiloxane/polyethersulfone membrane for gas separation. J Membr Sci 64:263–271CrossRef
15.
go back to reference Sengbusch GV (1994) Future of membranes, technological and economical aspects. Vortrag: Synthetic Membranes in Science and Industry, Tüebingen Sengbusch GV (1994) Future of membranes, technological and economical aspects. Vortrag: Synthetic Membranes in Science and Industry, Tüebingen
16.
go back to reference Gas separation with membranes—Preamble—Mecadi GmbH, technologyreport.mecadi.com/Chapter 2. Gas separation with membranes Gas separation with membranes—Preamble—Mecadi GmbH, technologyreport.mecadi.com/Chapter 2. Gas separation with membranes
17.
go back to reference Rowe BW, Robeson LM, Freeman BD, Paul DR (2010) Influence of temperature on the upper bound: theoretical considerations and comparison with experimental results. J Membr Sci 360:58–69CrossRef Rowe BW, Robeson LM, Freeman BD, Paul DR (2010) Influence of temperature on the upper bound: theoretical considerations and comparison with experimental results. J Membr Sci 360:58–69CrossRef
18.
go back to reference Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62:165–185CrossRef Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62:165–185CrossRef
19.
go back to reference Freeman BD (1999) Basis of permeability/selectivity trade off relations in polymeric gas separation membranes. Macromolecules 32:375–380CrossRef Freeman BD (1999) Basis of permeability/selectivity trade off relations in polymeric gas separation membranes. Macromolecules 32:375–380CrossRef
20.
go back to reference Barrer RM (1942) Permeability in relation to viscosity and structure of rubber. Trans Faraday Soc 38:322–330CrossRef Barrer RM (1942) Permeability in relation to viscosity and structure of rubber. Trans Faraday Soc 38:322–330CrossRef
21.
go back to reference Van Amerongen GJ (1946) The permeability of different rubbers to gases and its relation to diffusivity and solubility. J Appl Phys 17:972–985CrossRef Van Amerongen GJ (1946) The permeability of different rubbers to gases and its relation to diffusivity and solubility. J Appl Phys 17:972–985CrossRef
22.
go back to reference Baker RW (2001) Membranes for vapor/gas separations. MTR Inc., Menlo Park, CA Baker RW (2001) Membranes for vapor/gas separations. MTR Inc., Menlo Park, CA
23.
go back to reference Pace RJ, Datyner A (1979) Statistical mechanical model for diffusion of simple penetrants in polymers: I. Theory. J Polym Sci Polym Phys Ed 17:437–451CrossRef Pace RJ, Datyner A (1979) Statistical mechanical model for diffusion of simple penetrants in polymers: I. Theory. J Polym Sci Polym Phys Ed 17:437–451CrossRef
24.
go back to reference Kumins CA, Kwei TK (1968) Free volume and other theories. In: Crank J, Park GS (eds). Diffusion in polymers. Academic Press, New York, pp 107–25 Kumins CA, Kwei TK (1968) Free volume and other theories. In: Crank J, Park GS (eds). Diffusion in polymers. Academic Press, New York, pp 107–25
25.
go back to reference Brandt WW (1959) Model calculation of the temperature dependence of small molecule diffusion in high polymers. J Phys Chem 63:1080–1084CrossRef Brandt WW (1959) Model calculation of the temperature dependence of small molecule diffusion in high polymers. J Phys Chem 63:1080–1084CrossRef
26.
go back to reference Kesting RE, Fritzsche AK (1993) Polymeric gas separation membranes. John Wiley & Sons Inc., New York Kesting RE, Fritzsche AK (1993) Polymeric gas separation membranes. John Wiley & Sons Inc., New York
27.
go back to reference Pinnau I, He Z, Da Costa AR, Amo KD, Daniels R (2002) A gas separation using C3+-hydrocarbon- resistant membranes. U.S. Patents 6,361,582 and 6,361,583, 26, Mar 2002 Pinnau I, He Z, Da Costa AR, Amo KD, Daniels R (2002) A gas separation using C3+-hydrocarbon- resistant membranes. U.S. Patents 6,361,582 and 6,361,583, 26, Mar 2002
28.
go back to reference Huang Y, Wang X, Paul DR (2006) Physical aging of thin glassy polymer films: free volume interpretation. J Membr Sci 277:219–229CrossRef Huang Y, Wang X, Paul DR (2006) Physical aging of thin glassy polymer films: free volume interpretation. J Membr Sci 277:219–229CrossRef
29.
go back to reference Huang Y, Paul DR (2007) Effect of film thickness on the gas-permeation characteristics of glassy polymer membranes. Ind Eng Chem Res 46:2342–2347CrossRef Huang Y, Paul DR (2007) Effect of film thickness on the gas-permeation characteristics of glassy polymer membranes. Ind Eng Chem Res 46:2342–2347CrossRef
30.
go back to reference Budd PM, McKeown NB, Fritch D (2005) Free volume and intrinsic microporosity in polymers. J Mater Chem 15:1977–1986CrossRef Budd PM, McKeown NB, Fritch D (2005) Free volume and intrinsic microporosity in polymers. J Mater Chem 15:1977–1986CrossRef
31.
go back to reference Everett DH (1972) Manual of symbols and terminology for physicochemical quantities and units, Appendix II. Definitions, terminology and symbols in colloid and surface chemistry. Pure Appl Chem 31:577–638CrossRef Everett DH (1972) Manual of symbols and terminology for physicochemical quantities and units, Appendix II. Definitions, terminology and symbols in colloid and surface chemistry. Pure Appl Chem 31:577–638CrossRef
32.
go back to reference Ilinitch OM, Fenelonov VB, Lapkin AA, Okkel LG, Terskikh VV, Zamaraev KI (1999) Intrinsic microporosity and gas transport in polyphenylene oxide polymers. Microporous Mesoporous Mater 31:97–110CrossRef Ilinitch OM, Fenelonov VB, Lapkin AA, Okkel LG, Terskikh VV, Zamaraev KI (1999) Intrinsic microporosity and gas transport in polyphenylene oxide polymers. Microporous Mesoporous Mater 31:97–110CrossRef
33.
go back to reference Wood-Adams PM (2006) Permeation in glassy polymers vs rubbery polymers. GCH 6101-Polymer-Diffusion Wood-Adams PM (2006) Permeation in glassy polymers vs rubbery polymers. GCH 6101-Polymer-Diffusion
34.
go back to reference Lin HC, Tsai IF, Yang ACM, Hsu MS, Ling YC (2003) Chain diffusion and microstructure at a glassy-rubbery polymer interface by SIMS. Macromolecules 36:2464–2474CrossRef Lin HC, Tsai IF, Yang ACM, Hsu MS, Ling YC (2003) Chain diffusion and microstructure at a glassy-rubbery polymer interface by SIMS. Macromolecules 36:2464–2474CrossRef
35.
go back to reference George SC, Thomas S (2001) Transport phenomena through polymeric system. Prog Polym Sci 26:985–1017CrossRef George SC, Thomas S (2001) Transport phenomena through polymeric system. Prog Polym Sci 26:985–1017CrossRef
36.
go back to reference Cong H, Radosz M, Towler BF, Shen Y (2007) Polymer-inorganic nanocomposite membrane for gas separation. Sep Purif Technol 55:281–291CrossRef Cong H, Radosz M, Towler BF, Shen Y (2007) Polymer-inorganic nanocomposite membrane for gas separation. Sep Purif Technol 55:281–291CrossRef
37.
go back to reference Cong H, Hu X, Radosz M, Shen Y (2007) Brominated poly(2,6-diphenyl-1,4-phenylene oxide) and its SiO2 nanocomposite membranes for gas separation. Ind Eng Chem Res 46:2567–2575CrossRef Cong H, Hu X, Radosz M, Shen Y (2007) Brominated poly(2,6-diphenyl-1,4-phenylene oxide) and its SiO2 nanocomposite membranes for gas separation. Ind Eng Chem Res 46:2567–2575CrossRef
38.
go back to reference Mulder M (1996) Basic principles of membrane technology. Kluwer Academic Publisher, Dordrecht, The NetherlandsCrossRef Mulder M (1996) Basic principles of membrane technology. Kluwer Academic Publisher, Dordrecht, The NetherlandsCrossRef
39.
go back to reference Figoli A, Sager WFC, Mulder MHV (2001) Facilitated oxygen transport in liquid membranes: review and new concepts. J Membr Sci 181:97–110CrossRef Figoli A, Sager WFC, Mulder MHV (2001) Facilitated oxygen transport in liquid membranes: review and new concepts. J Membr Sci 181:97–110CrossRef
40.
go back to reference Haegg MB, Kim TJ, Li B (2005) Membrane for separating CO2 and process for the production thereof. WO05089907, 29 Sept 2005 Haegg MB, Kim TJ, Li B (2005) Membrane for separating CO2 and process for the production thereof. WO05089907, 29 Sept 2005
41.
go back to reference Chen H, Kovvali, SA, Sirkar KK (2003) Improved membrane separation of carbon dioxide. WO 2003008070 A1, 30 Jan 2003 Chen H, Kovvali, SA, Sirkar KK (2003) Improved membrane separation of carbon dioxide. WO 2003008070 A1, 30 Jan 2003
42.
go back to reference Ho WS, Dalrymple DC (1994) Facilitated transport of olefins in Ag+-containing polymer membranes. J Membr Sci 91:13–25CrossRef Ho WS, Dalrymple DC (1994) Facilitated transport of olefins in Ag+-containing polymer membranes. J Membr Sci 91:13–25CrossRef
43.
go back to reference Teramoto M, Kitada S, Ohnishi N, Matsuyama H, Matsumiya N (2004) Separation and concentration of CO2 by capillary-type facilitated transport membrane module with permeation of carrier solution. J Membr Sci 234:83–94CrossRef Teramoto M, Kitada S, Ohnishi N, Matsuyama H, Matsumiya N (2004) Separation and concentration of CO2 by capillary-type facilitated transport membrane module with permeation of carrier solution. J Membr Sci 234:83–94CrossRef
Metadata
Title
Fundamentals of Gas Permeation Through Membranes
Authors
Ahmad Fauzi Ismail
Kailash Chandra Khulbe
Takeshi Matsuura
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-01095-3_2