Skip to main content
Top

2015 | OriginalPaper | Chapter

3. Gas Separation Membrane Materials and Structures

Authors : Ahmad Fauzi Ismail, Kailash Chandra Khulbe, Takeshi Matsuura

Published in: Gas Separation Membranes

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A membrane is a layer of material which serves as a selective barrier between two phases and is impermeable to specific particles, molecules, or substances when exposed to the action of a driving force. Some components are allowed passage by the membrane into a permeate stream, whereas others are retained by it and accumulate in the retentate stream. Membranes can be of various thicknesses, with homogeneous or heterogeneous structures. Membrane can also be classified according to their pore diameter. There are three different types of pore sizes based on the IUPAC (International Union of Pure and Applied Chemistry) classification: microporous (d p  < 2 nm), mesoporous (2 nm < d p  < 50 nm), and macroporous (d p  > 50 nm) [1, 2]. Membranes can be neutral or charged, and the transport through a membrane can be active or passive. The latter can be facilitated by pressure, concentration, chemical or electrical gradients. Membranes can be generally classified into synthetic membranes and biological membranes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619 Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619
2.
go back to reference Rouquerol JJ, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Recommendations for the characterization of porous solids (Technical Report). Pure Appl Chem 66:1739–1758 Rouquerol JJ, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Recommendations for the characterization of porous solids (Technical Report). Pure Appl Chem 66:1739–1758
3.
go back to reference Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62:165–185 Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62:165–185
4.
go back to reference Aoki T (1999) Macromolecular design of permselective membranes. Prog Polym Sci 24:951–993 Aoki T (1999) Macromolecular design of permselective membranes. Prog Polym Sci 24:951–993
5.
go back to reference Schmeling N, Konietzny R, Sieffert D, Rölling P, Staudt C (2010) Functionalized copolyimide membranes for gaseous and liquid mixtures. Beiltein J Org Chem 6:789–800 Schmeling N, Konietzny R, Sieffert D, Rölling P, Staudt C (2010) Functionalized copolyimide membranes for gaseous and liquid mixtures. Beiltein J Org Chem 6:789–800
6.
go back to reference Budd PM, McKeown NB (2010) High permeable polymers for gas separation membranes. Polym Chem 1:63–68 Budd PM, McKeown NB (2010) High permeable polymers for gas separation membranes. Polym Chem 1:63–68
7.
go back to reference Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279:1–49 Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279:1–49
8.
go back to reference Gantzel PK, Merten U (1970) Gas separations with high flux cellulose acetate membranes. Ind Eng Chem Process Des Dev 9:331–332 Gantzel PK, Merten U (1970) Gas separations with high flux cellulose acetate membranes. Ind Eng Chem Process Des Dev 9:331–332
9.
go back to reference Nunes SP, Pinemann K-V (2001) Membrane materials and membrane preparation. In: Nunes SP, Pinemann K-V (eds) Membrane technology in chemical industry. Wiley-VCH, Weinheim, FRG, pp 1–67 Nunes SP, Pinemann K-V (2001) Membrane materials and membrane preparation. In: Nunes SP, Pinemann K-V (eds) Membrane technology in chemical industry. Wiley-VCH, Weinheim, FRG, pp 1–67
10.
go back to reference Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48:4638–4663 Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48:4638–4663
11.
go back to reference Reddy BSR, Senthilkumar U (2003) Prospects of siloxane membrane technology for gas separation—a review. J Sci Ind Res 62:666–677 Reddy BSR, Senthilkumar U (2003) Prospects of siloxane membrane technology for gas separation—a review. J Sci Ind Res 62:666–677
12.
go back to reference Achalpurkar MP, Kharul UK, Lohokare HR, Karadkar PB (2007) Gas permeation in amine functionalized silicon rubber membranes. Sep Purif Technol 57:304–313 Achalpurkar MP, Kharul UK, Lohokare HR, Karadkar PB (2007) Gas permeation in amine functionalized silicon rubber membranes. Sep Purif Technol 57:304–313
13.
go back to reference Stern SA, Shah VM, Hardy BJ (1987) Structure-permeability relationships in silicone polymers. J Polym Sci 25:1263–1298 Stern SA, Shah VM, Hardy BJ (1987) Structure-permeability relationships in silicone polymers. J Polym Sci 25:1263–1298
14.
go back to reference Furuzono T, Seki K, Kishida A, Ohshige T-A, Waki K, Maruyama I, Akashi M (1996) Novel functional polymers: poly(dimethylsiloxane)-polyamide multiblock copolymer. III. Synthesis and surface properties of disiloxane-aromatic polyamide multiblock copolymer. J Appl Polym Sci 59:1059–1065 Furuzono T, Seki K, Kishida A, Ohshige T-A, Waki K, Maruyama I, Akashi M (1996) Novel functional polymers: poly(dimethylsiloxane)-polyamide multiblock copolymer. III. Synthesis and surface properties of disiloxane-aromatic polyamide multiblock copolymer. J Appl Polym Sci 59:1059–1065
15.
go back to reference Loeb S, Sourirajan S (1960) Sea water demineralization by means of a semipermeable membrane. Sea Water Research Report 60-60. UCLA, Department of Engineering Loeb S, Sourirajan S (1960) Sea water demineralization by means of a semipermeable membrane. Sea Water Research Report 60-60. UCLA, Department of Engineering
16.
go back to reference Dortmundt D, Doshi K (1999) Recent developments in CO2 removal membrane technology. UOP LLC, Des Plaines, IL Dortmundt D, Doshi K (1999) Recent developments in CO2 removal membrane technology. UOP LLC, Des Plaines, IL
17.
go back to reference White L (2010) Evolution of natural gas treatment with membrane systems. In: Yampolskii Y, Freeman B (eds) Membrane gas separation. John Wiley & Sons, Ltd, Chichester, UK White L (2010) Evolution of natural gas treatment with membrane systems. In: Yampolskii Y, Freeman B (eds) Membrane gas separation. John Wiley & Sons, Ltd, Chichester, UK
18.
go back to reference Puleo AC, Paul DR, Kelley SS (1989) The effect of degree of acetylation on gas sorption and transport behaviour in cellulose acetate. J Membr Sci 47:301–332 Puleo AC, Paul DR, Kelley SS (1989) The effect of degree of acetylation on gas sorption and transport behaviour in cellulose acetate. J Membr Sci 47:301–332
19.
go back to reference Scholes CA, Stevens GW, Kentish SE (2012) Membrane gas separation applications in natural gas processing. Fuel 96:15–28 Scholes CA, Stevens GW, Kentish SE (2012) Membrane gas separation applications in natural gas processing. Fuel 96:15–28
20.
go back to reference Minhas BS, Matsuura T, Sourirajan S (1987) Formation of asymmetric cellulose acetate membranes for the separation of carbon dioxide–methane gas mixtures. Ind Eng Chem Res 26:2344–2348 Minhas BS, Matsuura T, Sourirajan S (1987) Formation of asymmetric cellulose acetate membranes for the separation of carbon dioxide–methane gas mixtures. Ind Eng Chem Res 26:2344–2348
21.
go back to reference Houde AY, Krishnakumar B, Charati SG, Stern SA (1996) Permeability of dense (homogeneous) cellulose acetate membranes to methane, carbon dioxide, and their mixtures at elevated pressures. J Appl Polym Sci 62:2181–2192 Houde AY, Krishnakumar B, Charati SG, Stern SA (1996) Permeability of dense (homogeneous) cellulose acetate membranes to methane, carbon dioxide, and their mixtures at elevated pressures. J Appl Polym Sci 62:2181–2192
22.
go back to reference Donohue MD, Minhas BS, Lee SY (1989) Permeation behaviour of carbon dioxide–methane mixtures in cellulose acetate membranes. J Membr Sci 42:197–214 Donohue MD, Minhas BS, Lee SY (1989) Permeation behaviour of carbon dioxide–methane mixtures in cellulose acetate membranes. J Membr Sci 42:197–214
23.
go back to reference Houde AY, Stern SA (1997) Solubility and diffusivity of light gases in ethyl cellulose at elevated pressures: effects of ethoxy content. J Membr Sci 127:171–183 Houde AY, Stern SA (1997) Solubility and diffusivity of light gases in ethyl cellulose at elevated pressures: effects of ethoxy content. J Membr Sci 127:171–183
24.
go back to reference Park J, Steward MG (1968) Film-forming cellulose compounds. British Patent 1120373A, 17 June 1968 Park J, Steward MG (1968) Film-forming cellulose compounds. British Patent 1120373A, 17 June 1968
25.
go back to reference Cooley TE, Coady AB (1978) Removal of H2S and/or CO2 from a light hydrocarbon stream by use of gas permeable membrane. US Patent 4130403A, 19 Dec 1978 Cooley TE, Coady AB (1978) Removal of H2S and/or CO2 from a light hydrocarbon stream by use of gas permeable membrane. US Patent 4130403A, 19 Dec 1978
26.
go back to reference Sharma AK (1985) Fluorinated cellulose acetate polymers. US Patent 4549012A, 22 Oct 1985 Sharma AK (1985) Fluorinated cellulose acetate polymers. US Patent 4549012A, 22 Oct 1985
27.
go back to reference Rahman SA, Ismail AF, Abdul-Rahman WAW (2001) Formation of cellulose acetate membrane for gas separation from binary dope system: effect of shear rate. Paper presented at Regional Symposium on Membrane Science and Technology, Puteri Pan Pacific Hotel, Johor Bharu, Malaysia, 21–25 Apr 2004 Rahman SA, Ismail AF, Abdul-Rahman WAW (2001) Formation of cellulose acetate membrane for gas separation from binary dope system: effect of shear rate. Paper presented at Regional Symposium on Membrane Science and Technology, Puteri Pan Pacific Hotel, Johor Bharu, Malaysia, 21–25 Apr 2004
28.
go back to reference Vorotyntsev IV, Drozdov PN, Karyakin NV (2006) Ammonia permeability of a cellulose acetate membrane. Inorg Mater 42:231–235 Vorotyntsev IV, Drozdov PN, Karyakin NV (2006) Ammonia permeability of a cellulose acetate membrane. Inorg Mater 42:231–235
29.
go back to reference Tanioka A, Ishikawa K, Kakuta A, Kuramoto M, Ohno M (1984) Mixed gas separation by fine porous freeze-dried cellulose acetate membrane. J Appl Polym Sci 29:583–594 Tanioka A, Ishikawa K, Kakuta A, Kuramoto M, Ohno M (1984) Mixed gas separation by fine porous freeze-dried cellulose acetate membrane. J Appl Polym Sci 29:583–594
30.
go back to reference Kim W, Lee JS, Bucknall DG, Koros WJ, Nair S (2013) Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations. J Membr Sci 441:129–136 Kim W, Lee JS, Bucknall DG, Koros WJ, Nair S (2013) Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations. J Membr Sci 441:129–136
31.
go back to reference Scholes CA, Kentish SE, Stevens GW (2008) Separation through polymeric membrane systems for flue gas applications. Recent patents on chemical engineering 1:52–66 Scholes CA, Kentish SE, Stevens GW (2008) Separation through polymeric membrane systems for flue gas applications. Recent patents on chemical engineering 1:52–66
32.
go back to reference Ward WJ, Browall WR, Salemme RM (1976) Ultrathin silicon/polycarbonate membranes for gas separation processes. J Membr Sci 1:99–108 Ward WJ, Browall WR, Salemme RM (1976) Ultrathin silicon/polycarbonate membranes for gas separation processes. J Membr Sci 1:99–108
33.
go back to reference Acharya NK, Yadav PK, Vijay YK (2004) Study of temperature dependent gas permeability of polycarbonate membrane. Ind J Pure Appl Phys 43:179–181 Acharya NK, Yadav PK, Vijay YK (2004) Study of temperature dependent gas permeability of polycarbonate membrane. Ind J Pure Appl Phys 43:179–181
34.
go back to reference Vijay YK, Acharya NK, Wate S, Avasthi DK (2004) Characterization of track etched membrane by gas separation. Int J Hydrogen Energy 29:515–519 Vijay YK, Acharya NK, Wate S, Avasthi DK (2004) Characterization of track etched membrane by gas separation. Int J Hydrogen Energy 29:515–519
35.
go back to reference Fu YJ, Chen JT, Chen CC, Liao KS, Hu CC, Lee KR, Lai JY (2013) Characterization of morphology and gas separation performance of dry-cast polycarbonate membranes. Polym Eng Sci 53:1623–1630 Fu YJ, Chen JT, Chen CC, Liao KS, Hu CC, Lee KR, Lai JY (2013) Characterization of morphology and gas separation performance of dry-cast polycarbonate membranes. Polym Eng Sci 53:1623–1630
36.
go back to reference Hacarlioglu P, Toppare L, Yilmaz L (2003) Polycarbonate-polypyrrole mixed matrix gas separation membranes. J Membr Sci 225:51–62 Hacarlioglu P, Toppare L, Yilmaz L (2003) Polycarbonate-polypyrrole mixed matrix gas separation membranes. J Membr Sci 225:51–62
37.
go back to reference Sen D, Kalipecilar H, Yilmaz L (2006) Development of zeolite filled polycarbonate mixed matrix gas separation membranes. Desalination 200:222–224 Sen D, Kalipecilar H, Yilmaz L (2006) Development of zeolite filled polycarbonate mixed matrix gas separation membranes. Desalination 200:222–224
38.
go back to reference López-González M, Saiz E, Guzmán J, Riande E (2001) Experimental and simulation studies on the transport of gaseous diatomic molecules in polycarbonate membranes. J Chem Phys 115:6728–6736 López-González M, Saiz E, Guzmán J, Riande E (2001) Experimental and simulation studies on the transport of gaseous diatomic molecules in polycarbonate membranes. J Chem Phys 115:6728–6736
39.
go back to reference Yampol’skii YP, Bespalova NB, Finkel’shtein ES, Bondar VI, Papov AV (1994) Synthesis, gas permeability, and gas sorption properties of fluorine-containing norbornene polymers. Macromolecules 27:2872–2878 Yampol’skii YP, Bespalova NB, Finkel’shtein ES, Bondar VI, Papov AV (1994) Synthesis, gas permeability, and gas sorption properties of fluorine-containing norbornene polymers. Macromolecules 27:2872–2878
40.
go back to reference Tetsuka H, Hagiwara M, Kaita S (2011) Addition-type poly(norbornene)s with siloxane substituents: synthesis, properties and nanoporous membrane. Polym J 43:97–100 Tetsuka H, Hagiwara M, Kaita S (2011) Addition-type poly(norbornene)s with siloxane substituents: synthesis, properties and nanoporous membrane. Polym J 43:97–100
41.
go back to reference Tetsuka H, Isobe K, Hagiwara M (2009) Synthesis and properties of addition-type poly(norbone)s with siloxane substituents. Polym J 41:643–649 Tetsuka H, Isobe K, Hagiwara M (2009) Synthesis and properties of addition-type poly(norbone)s with siloxane substituents. Polym J 41:643–649
42.
go back to reference Dorkenoo KD, Pfrommm PH, Rezac ME (1998) Gas transport properties of a series of high T g polynorbornenes with aliphatic pendant groups. Polym Sci B Polym Phys 36:797–803 Dorkenoo KD, Pfrommm PH, Rezac ME (1998) Gas transport properties of a series of high T g polynorbornenes with aliphatic pendant groups. Polym Sci B Polym Phys 36:797–803
43.
go back to reference Deniz S (2006) Effect of nonsolvent type on the surface morphology and preparation of microporous membranes from blends of poly(phenylene oxide) and poly(p-phenylene oxide sulfone) or polysulfone. Desalination 200:52–54 Deniz S (2006) Effect of nonsolvent type on the surface morphology and preparation of microporous membranes from blends of poly(phenylene oxide) and poly(p-phenylene oxide sulfone) or polysulfone. Desalination 200:52–54
44.
go back to reference Paul DR, Yampoliskii Y (eds) (1994) Polymer gas separation membranes. CRC Press, Boca Raton, FL Paul DR, Yampoliskii Y (eds) (1994) Polymer gas separation membranes. CRC Press, Boca Raton, FL
45.
go back to reference Khulbe KC, Matsuura T, Lamarche G, Kim HJ (1997) The morphology characterization and performance of dense PPO membranes for gas separation. J Membr Sci 135:211–223 Khulbe KC, Matsuura T, Lamarche G, Kim HJ (1997) The morphology characterization and performance of dense PPO membranes for gas separation. J Membr Sci 135:211–223
46.
go back to reference Hamad F, Matsuura T (2005) Performance of gas separation membranes made from brominated high molecular weight poly(2,4-dimethyl-1,6-phenylene oxide). J Membr Sci 253:183–189 Hamad F, Matsuura T (2005) Performance of gas separation membranes made from brominated high molecular weight poly(2,4-dimethyl-1,6-phenylene oxide). J Membr Sci 253:183–189
47.
go back to reference Khulbe KC, Chowdhury G, Kruczek B, Vujosevic R, Matsuura T, Lamarche G (1997) Characterization of the PPO dense membrane prepared at different temperatures by ESR, atomic force microscope and gas permeation. J Membr Sci 126:115–122 Khulbe KC, Chowdhury G, Kruczek B, Vujosevic R, Matsuura T, Lamarche G (1997) Characterization of the PPO dense membrane prepared at different temperatures by ESR, atomic force microscope and gas permeation. J Membr Sci 126:115–122
48.
go back to reference Hamad F, Khulbe KC, Matsuura T (2002) Characterization of gas separation membranes prepared from brominated poly(phenylene oxide) by infrared spectroscopy. Desalination 148:369–375 Hamad F, Khulbe KC, Matsuura T (2002) Characterization of gas separation membranes prepared from brominated poly(phenylene oxide) by infrared spectroscopy. Desalination 148:369–375
49.
go back to reference Yu B, Cong H, Zhao X (2012) Hybrid brominated sulfonated poly(2,6-diphenyl-1,4-phenylene oxide) and SiO2 nanocomposite membranes for CO2/N2 separation. Prog Nat Sci Mater Int 22:661–667 Yu B, Cong H, Zhao X (2012) Hybrid brominated sulfonated poly(2,6-diphenyl-1,4-phenylene oxide) and SiO2 nanocomposite membranes for CO2/N2 separation. Prog Nat Sci Mater Int 22:661–667
50.
go back to reference Langsam M (1996) Polyimides for gas separation. In: Ghosh MK, Mittal KL (eds) Polyimides: fundamental and application. Mercel Dekker, New York Langsam M (1996) Polyimides for gas separation. In: Ghosh MK, Mittal KL (eds) Polyimides: fundamental and application. Mercel Dekker, New York
51.
go back to reference Yoon JC, Park HB (2011) Gas separation properties of triptycene-based polyimide membranes. In: Escobar IC, Bruggen BV (eds) Modern applications in membrane science and technology. ACS symposium series, vol 1078. Oxford, Washington, DC; American Chemical Society, New York, pp 107–128 Yoon JC, Park HB (2011) Gas separation properties of triptycene-based polyimide membranes. In: Escobar IC, Bruggen BV (eds) Modern applications in membrane science and technology. ACS symposium series, vol 1078. Oxford, Washington, DC; American Chemical Society, New York, pp 107–128
52.
go back to reference Kim KJ, Park SH, So WW, Ahn DJ, Moon SJ (2003) CO2 separation performances of composite membranes of 6FDA-based polyimides with a polar group. J Membr Sci 211:41–49 Kim KJ, Park SH, So WW, Ahn DJ, Moon SJ (2003) CO2 separation performances of composite membranes of 6FDA-based polyimides with a polar group. J Membr Sci 211:41–49
53.
go back to reference Li DF, Chung TS, Wang R, Liu Y (2002) Fabrication of fluoropolyimide/polyethersulfone (PES) dual-layer asymmetric hollow fiber membranes for gas separation. J Membr Sci 198:211–223 Li DF, Chung TS, Wang R, Liu Y (2002) Fabrication of fluoropolyimide/polyethersulfone (PES) dual-layer asymmetric hollow fiber membranes for gas separation. J Membr Sci 198:211–223
54.
go back to reference Tin PS, Chung TS, Liu Y, Wang R, Liu SL, Pramoda KP (2003) Effects of cross-linking modification of Matrimid membranes. J Membr Sci 225:77–90 Tin PS, Chung TS, Liu Y, Wang R, Liu SL, Pramoda KP (2003) Effects of cross-linking modification of Matrimid membranes. J Membr Sci 225:77–90
55.
go back to reference Kapantaidakis GC, Koops GH, Wessling M, Kaldis SP, Sakellaropoulos GP (2003) CO2 plasticization of polyethersulfone/polyimide gas-separation membranes. AIChE J 49:1702–1711 Kapantaidakis GC, Koops GH, Wessling M, Kaldis SP, Sakellaropoulos GP (2003) CO2 plasticization of polyethersulfone/polyimide gas-separation membranes. AIChE J 49:1702–1711
56.
go back to reference Bos A, Punt I, Wessling M, Strathmann H (1998) Suppression of CO2-plasticization by semi interpenetrating polymer network formation. J Polym Sci B Polym Phys 36:1547–1556 Bos A, Punt I, Wessling M, Strathmann H (1998) Suppression of CO2-plasticization by semi interpenetrating polymer network formation. J Polym Sci B Polym Phys 36:1547–1556
57.
go back to reference Faiz R, Li K (2012) Polymeric membranes for light olefin/paraffin separation. Desalination 287:82–97 Faiz R, Li K (2012) Polymeric membranes for light olefin/paraffin separation. Desalination 287:82–97
58.
go back to reference Dong G, Li H, Chen V (2010) Factors affect defect-free Matrimid® hollow fiber gas separation performance in natural gas purification. J Membr Sci 353:17–27 Dong G, Li H, Chen V (2010) Factors affect defect-free Matrimid® hollow fiber gas separation performance in natural gas purification. J Membr Sci 353:17–27
59.
go back to reference Peng N, Chung TS (2008) The effects of spinneret dimension and hollow fiber dimension on gas separation performance of ultra-thin defect-free Torlon® hollow fiber membrane. J Membr Sci 310:455–465 Peng N, Chung TS (2008) The effects of spinneret dimension and hollow fiber dimension on gas separation performance of ultra-thin defect-free Torlon® hollow fiber membrane. J Membr Sci 310:455–465
60.
go back to reference Chung TS, Shao L, Tin PS (2006) Surface modification of polyimide membranes by diamines for H2 and CO2 separation. Macromol Rapid Commun 27:998–1003 Chung TS, Shao L, Tin PS (2006) Surface modification of polyimide membranes by diamines for H2 and CO2 separation. Macromol Rapid Commun 27:998–1003
61.
go back to reference Liu Y, Wang R, Chung TS (2001) Chemical cross-linking modification of polyimide films for gas separation. J Membr Sci 189:231–239 Liu Y, Wang R, Chung TS (2001) Chemical cross-linking modification of polyimide films for gas separation. J Membr Sci 189:231–239
62.
go back to reference Wang L, Cao Y, Zhou M, Qiu X, Yuan Q (2009) Synthesis, characterization, and gas permeation properties of 6FDA-2,6-DAT/mPDA copolyimides. Front Chem Chin 4:215–221 Wang L, Cao Y, Zhou M, Qiu X, Yuan Q (2009) Synthesis, characterization, and gas permeation properties of 6FDA-2,6-DAT/mPDA copolyimides. Front Chem Chin 4:215–221
63.
go back to reference Barsema JN, Kapantaidakis GC, van der Vegt NFA, Koops GH, Wessling M (2003) Preparation and characterization of highly selective dense and hollow fiber asymmetric membranes based on BTDA-TDI/MDI co-polyimide. J Membr Sci 216:195–205 Barsema JN, Kapantaidakis GC, van der Vegt NFA, Koops GH, Wessling M (2003) Preparation and characterization of highly selective dense and hollow fiber asymmetric membranes based on BTDA-TDI/MDI co-polyimide. J Membr Sci 216:195–205
64.
go back to reference Kneifel K, Peinemann KV (1992) Preparation of hollow fiber membranes from polyetherimide for gas separation. J Membr Sci 65:295–307 Kneifel K, Peinemann KV (1992) Preparation of hollow fiber membranes from polyetherimide for gas separation. J Membr Sci 65:295–307
65.
go back to reference Wang D, Teo WK, Li K (2002) Permeation of H2, N2, CH4, C2H6 and C3H8 through asymmetric poly(etherimide) hollow-fiber membrane. J Appl Polym Sci 86:698–702 Wang D, Teo WK, Li K (2002) Permeation of H2, N2, CH4, C2H6 and C3H8 through asymmetric poly(etherimide) hollow-fiber membrane. J Appl Polym Sci 86:698–702
66.
go back to reference Wang D, Li K, Teo WK (1998) Preparation and characterization of polyetherimide asymmetric hollow fiber membranes for gas separation. J Membr Sci 138:193–201 Wang D, Li K, Teo WK (1998) Preparation and characterization of polyetherimide asymmetric hollow fiber membranes for gas separation. J Membr Sci 138:193–201
67.
go back to reference Wang D, Li K, Teo WK (2002) Preparation of asymmetric polyetherimide hollow fibre membrane with high gas selectivity. J Membr Sci 208:419–426 Wang D, Li K, Teo WK (2002) Preparation of asymmetric polyetherimide hollow fibre membrane with high gas selectivity. J Membr Sci 208:419–426
68.
go back to reference Pientka Z, Brožová L, Bleha M, Puri P (2003) Preparation and characterization of ultrathin polymeric films. J Membr Sci 214:157–161 Pientka Z, Brožová L, Bleha M, Puri P (2003) Preparation and characterization of ultrathin polymeric films. J Membr Sci 214:157–161
69.
go back to reference Bruma M, Hamciuc E, Yampolskii Y, Alentiev A, Ronova IA, Rojkov EM (2004) Polyetherimides for gas separation membranes. Mol Cryst Liq Cryst 418:11–19 Bruma M, Hamciuc E, Yampolskii Y, Alentiev A, Ronova IA, Rojkov EM (2004) Polyetherimides for gas separation membranes. Mol Cryst Liq Cryst 418:11–19
70.
go back to reference Squire EN (1988) Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxole. EP0645406 B1, 11 Apr 2001 Squire EN (1988) Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxole. EP0645406 B1, 11 Apr 2001
71.
go back to reference Markel TC, Pinnau I, Prabhakar R, Freeman B (2006) Gas and transport properties of perfluoropolymers. In: Yampolskii Y, Pinnau I, Freeman B (eds) Materials science of membrane for gas and vapor separation. John Wiley & Sons, Chichester, UK Markel TC, Pinnau I, Prabhakar R, Freeman B (2006) Gas and transport properties of perfluoropolymers. In: Yampolskii Y, Pinnau I, Freeman B (eds) Materials science of membrane for gas and vapor separation. John Wiley & Sons, Chichester, UK
72.
go back to reference Pinnau I, Toy LG (1996) Gas and vapour transport properties of amorphous perfluorinated copolymer membranes based on 2,2-bistrifluoromethyl-4,5-difluoro-1,3-dioxole/tetrafluoroethylene. J Membr Sci 109:125–133 Pinnau I, Toy LG (1996) Gas and vapour transport properties of amorphous perfluorinated copolymer membranes based on 2,2-bistrifluoromethyl-4,5-difluoro-1,3-dioxole/tetrafluoroethylene. J Membr Sci 109:125–133
73.
go back to reference Alentiev AY, Yampolskii YP, Shantarovich VP, Nemser SM, Plate NA (1997) High transport parameters and free volume of perfluoroxole copolymers. J Membr Sci 126:123–132 Alentiev AY, Yampolskii YP, Shantarovich VP, Nemser SM, Plate NA (1997) High transport parameters and free volume of perfluoroxole copolymers. J Membr Sci 126:123–132
74.
go back to reference Nemser SM, Roman IC (1991) Polymer of perfluoro-2,2-dimethyl-1,3-dioxole membranes. US Patent 5051114A, 24 Sept 1991 Nemser SM, Roman IC (1991) Polymer of perfluoro-2,2-dimethyl-1,3-dioxole membranes. US Patent 5051114A, 24 Sept 1991
75.
go back to reference Masaru N, Isamu K, Kazuya O, Gen K, Masashi M, Shunichi S, Motoi K (1990) Novel fluorine-containing cyclic polymer. US Patent 4,897,457, 30 Jan 1990 Masaru N, Isamu K, Kazuya O, Gen K, Masashi M, Shunichi S, Motoi K (1990) Novel fluorine-containing cyclic polymer. US Patent 4,897,457, 30 Jan 1990
76.
go back to reference Avery DL, Shanbhag PV (2002) Designed selectivity gas permeable membranes. US Patent 6406517B1, 18 June 2002 Avery DL, Shanbhag PV (2002) Designed selectivity gas permeable membranes. US Patent 6406517B1, 18 June 2002
77.
go back to reference Tokarev A, Friess K, Machkova J, Sipek M, Yamapolskii Y (2006) Sorption and diffusion of organic vapors in amorphous Teflon AF2400. J Polym Sci B Polym Phys 44:832–844 Tokarev A, Friess K, Machkova J, Sipek M, Yamapolskii Y (2006) Sorption and diffusion of organic vapors in amorphous Teflon AF2400. J Polym Sci B Polym Phys 44:832–844
78.
go back to reference Jansen JC, Macchione M, Drioli E (2005) High flux asymmetric gas separation membranes of modified poly(ether ether ketone) prepared by the dry phase inversion technique. J Membr Sci 255:167–180 Jansen JC, Macchione M, Drioli E (2005) High flux asymmetric gas separation membranes of modified poly(ether ether ketone) prepared by the dry phase inversion technique. J Membr Sci 255:167–180
79.
go back to reference Galland G, Lam TM (1993) Permeability and diffusion of gases in segmented polyurethanes: structure–properties relations. J Appl Polym Sci 50:1041–1058 Galland G, Lam TM (1993) Permeability and diffusion of gases in segmented polyurethanes: structure–properties relations. J Appl Polym Sci 50:1041–1058
80.
go back to reference Chen SH, Yu KC, Houng SL, Lai JY (2000) Gas transport properties of HTPB based polyurethane/cosalen membrane. J Membr Sci 173:99–106 Chen SH, Yu KC, Houng SL, Lai JY (2000) Gas transport properties of HTPB based polyurethane/cosalen membrane. J Membr Sci 173:99–106
81.
go back to reference Sadeghi M, Semsarzadeh MA, Barikani M, Chenar MP (2011) Gas separation properties of polyether-based polyurethane–silica nanocomposite membranes. J Membr Sci 376:188–195 Sadeghi M, Semsarzadeh MA, Barikani M, Chenar MP (2011) Gas separation properties of polyether-based polyurethane–silica nanocomposite membranes. J Membr Sci 376:188–195
82.
go back to reference Talakesh MM, Morteza S, Chenar MP, Afsaneh K (2012) Gas separation properties of poly(ethylene glycol)/poly(tetramethylene glycol) based polyurethane membranes. J Membr Sci 415–416:469–477 Talakesh MM, Morteza S, Chenar MP, Afsaneh K (2012) Gas separation properties of poly(ethylene glycol)/poly(tetramethylene glycol) based polyurethane membranes. J Membr Sci 415–416:469–477
83.
go back to reference Liang W, Martin CR (1991) Gas transport in electronically conductive polymers. Chem Mater 3:390–391 Liang W, Martin CR (1991) Gas transport in electronically conductive polymers. Chem Mater 3:390–391
84.
go back to reference Martin CR, Liang W, Menon V, Parthasarathy R, Parthasarathy A (1993) Electronically conductive polymers as chemically-selective layers in membrane-based separations. Synth Met 55–57:3766–3773 Martin CR, Liang W, Menon V, Parthasarathy R, Parthasarathy A (1993) Electronically conductive polymers as chemically-selective layers in membrane-based separations. Synth Met 55–57:3766–3773
85.
go back to reference Anderson MR, Mattes BR, Reiss H, Kaner RB (1991) Conjugated polymer films for gas separations. Science 252:1412–1415 Anderson MR, Mattes BR, Reiss H, Kaner RB (1991) Conjugated polymer films for gas separations. Science 252:1412–1415
86.
go back to reference Sairam M, Nataraj SK, Aminabhavi TM, Roy M, Madhusoodana CD (2006) Polyaniline membranes for separation and purification of gases, liquids, and electrolyte solutions. Sep Purif Rev 35:249–283 Sairam M, Nataraj SK, Aminabhavi TM, Roy M, Madhusoodana CD (2006) Polyaniline membranes for separation and purification of gases, liquids, and electrolyte solutions. Sep Purif Rev 35:249–283
87.
go back to reference Blinova NV, Frantisek S (2012) Functionalized polyaniline-based composite membranes with vastly improved performance for separation of carbon dioxide from methane. J Membr Sci 423–424:514–521 Blinova NV, Frantisek S (2012) Functionalized polyaniline-based composite membranes with vastly improved performance for separation of carbon dioxide from methane. J Membr Sci 423–424:514–521
88.
go back to reference Kuwabata S, Martin CR (1994) Investigation of the gas-transport properties of polyaniline. J Membr Sci 91:1–12 Kuwabata S, Martin CR (1994) Investigation of the gas-transport properties of polyaniline. J Membr Sci 91:1–12
89.
go back to reference Lee YM, Ha SY, Lee KY, Suh DH, Hong SY (1999) Gas separation through conductive polymer membranes. 2. Polyaniline membranes with high oxygen selectivity. Ind Eng Chem Res 38:1917–1924 Lee YM, Ha SY, Lee KY, Suh DH, Hong SY (1999) Gas separation through conductive polymer membranes. 2. Polyaniline membranes with high oxygen selectivity. Ind Eng Chem Res 38:1917–1924
90.
go back to reference Illing G, Hellgardt K, Wakeman RJ, Jungbauer A (2001) Preparation and characterisation of polyaniline based membranes for gas separation. J Membr Sci 184:69–78 Illing G, Hellgardt K, Wakeman RJ, Jungbauer A (2001) Preparation and characterisation of polyaniline based membranes for gas separation. J Membr Sci 184:69–78
91.
go back to reference Hasbullah H, Kumbharkar S, Ismail AF, Li K (2011) Preparation of polyaniline asymmetric hollow fiber membranes and investigations towards gas separation performance. J Membr Sci 366:116–124 Hasbullah H, Kumbharkar S, Ismail AF, Li K (2011) Preparation of polyaniline asymmetric hollow fiber membranes and investigations towards gas separation performance. J Membr Sci 366:116–124
92.
go back to reference Julian H, Wenten G (2012) Polysulfone membranes for CO2/CH4 separation: state of the art. IOSR J Eng 2:484–495 Julian H, Wenten G (2012) Polysulfone membranes for CO2/CH4 separation: state of the art. IOSR J Eng 2:484–495
93.
go back to reference Dai Y, Guiver MD, Robertson GP, Kang YS, Lee KJ, Jho JY (2004) Preparation and characterization of polysulfones containing both hexafluoroisopropylidine and trimethylsilyl groups as gas separation membrane materials. Macromolecules 37:1403–1410 Dai Y, Guiver MD, Robertson GP, Kang YS, Lee KJ, Jho JY (2004) Preparation and characterization of polysulfones containing both hexafluoroisopropylidine and trimethylsilyl groups as gas separation membrane materials. Macromolecules 37:1403–1410
94.
go back to reference Dai Y, Guiver MD, Robertson GP, Kang YS, Lee KJ (2003) Enhancement in the gas permeabilities of novel polysulfones with pendant 4-trimethylsilyl-α-hydroxylbenzyl substituents. Macromolecules 36:6807–6816 Dai Y, Guiver MD, Robertson GP, Kang YS, Lee KJ (2003) Enhancement in the gas permeabilities of novel polysulfones with pendant 4-trimethylsilyl-α-hydroxylbenzyl substituents. Macromolecules 36:6807–6816
95.
go back to reference Mc Hattie JS, Koros WJ, Paul DR (1991) Gas transport properties of polysulphones: 1. Role of symmetry of methyl group placement on bisphenol rings. Polymer 32:840–850 Mc Hattie JS, Koros WJ, Paul DR (1991) Gas transport properties of polysulphones: 1. Role of symmetry of methyl group placement on bisphenol rings. Polymer 32:840–850
96.
go back to reference Marchese J, Ochoa N, Pagliero C (1995) Preparation and gas separation performance of silicone-coated polysulfone membranes. J Chem Technol Biotechnol 63:329–336 Marchese J, Ochoa N, Pagliero C (1995) Preparation and gas separation performance of silicone-coated polysulfone membranes. J Chem Technol Biotechnol 63:329–336
97.
go back to reference Wang D, Teo WK, Li K (2002) Preparation and characterization of high-flux polysulfone hollow fiber gas separation membranes. J Membr Sci 204:247–256 Wang D, Teo WK, Li K (2002) Preparation and characterization of high-flux polysulfone hollow fiber gas separation membranes. J Membr Sci 204:247–256
98.
go back to reference Ahn J, Chung WJ, Pinnau I, Guiver MD (2008) Polysulfone/silica nanoparticle mixed-matrix membranes for gas. J Membr Sci 314:123–133 Ahn J, Chung WJ, Pinnau I, Guiver MD (2008) Polysulfone/silica nanoparticle mixed-matrix membranes for gas. J Membr Sci 314:123–133
99.
go back to reference Weng TH, Tseng HH, Wey MY (2009) Preparation and characterization of multi-walled carbon nanotube/PBNPI nanocomposite membrane for H2/CH4 separation. Int J Hydrogen Energy 34:8707–8715 Weng TH, Tseng HH, Wey MY (2009) Preparation and characterization of multi-walled carbon nanotube/PBNPI nanocomposite membrane for H2/CH4 separation. Int J Hydrogen Energy 34:8707–8715
100.
go back to reference Mao Z, Jie X, Cao Y, Wang L, Li M, Yuan Q (2011) Preparation of dual-layer cellulose/polysulfone hollow fiber membrane and its performance for isopropanol dehydration and CO2 separation. Sep Puri Technol 77:179–184 Mao Z, Jie X, Cao Y, Wang L, Li M, Yuan Q (2011) Preparation of dual-layer cellulose/polysulfone hollow fiber membrane and its performance for isopropanol dehydration and CO2 separation. Sep Puri Technol 77:179–184
101.
go back to reference Arahman N, Arifin B, Mulyati S, Ohmukai Y, Matsuyama H (2012) Structure change of polyethersulfone hollow fiber membrane modified with pluronic F127, polyvinylpyrrolidone, and Tetronic 1307. Mater Sci Appl 3:72–77 Arahman N, Arifin B, Mulyati S, Ohmukai Y, Matsuyama H (2012) Structure change of polyethersulfone hollow fiber membrane modified with pluronic F127, polyvinylpyrrolidone, and Tetronic 1307. Mater Sci Appl 3:72–77
102.
go back to reference Wang D, Li K, Teo WK (2000) Highly permeable polyethersulfone hollow fiber gas separation membranes prepared using water as non-solvent additive. J Membr Sci 176:147–158 Wang D, Li K, Teo WK (2000) Highly permeable polyethersulfone hollow fiber gas separation membranes prepared using water as non-solvent additive. J Membr Sci 176:147–158
103.
go back to reference Borneman Z, Vant’s Hof JA, Smolders CA, Van vee HM (1986) Hollow fiber gas separation membranes: structure and properties. In: Proceedings of the fourth BOC Priestley conference. Royal Society of Chemistry, London, 16–18 Sept 1986 Borneman Z, Vant’s Hof JA, Smolders CA, Van vee HM (1986) Hollow fiber gas separation membranes: structure and properties. In: Proceedings of the fourth BOC Priestley conference. Royal Society of Chemistry, London, 16–18 Sept 1986
104.
go back to reference Vant’s Hof JA (1988) Wet spinning of asymmetric hollow fiber membranes for gas separation. Ph.D. Thesis, Twente University, The Netherlands Vant’s Hof JA (1988) Wet spinning of asymmetric hollow fiber membranes for gas separation. Ph.D. Thesis, Twente University, The Netherlands
105.
go back to reference Van’t Hof JA, Reuvers AJ, Boon RM, Rolevink HHM, Smolders CA (1992) Preparation of asymmetric gas separation membranes with high selectivity by a dual-bath coagulation method. J Membr Sci 70:17–30 Van’t Hof JA, Reuvers AJ, Boon RM, Rolevink HHM, Smolders CA (1992) Preparation of asymmetric gas separation membranes with high selectivity by a dual-bath coagulation method. J Membr Sci 70:17–30
106.
go back to reference Li SG, Koops GH, Mulder MHV, Van den Boomgaard T, Smolders CA (1994) Wet spinning of integrally skinned hollow fiber membranes by a modified dual-bath coagulation method using a triple orifice spinneret. J Membr Sci 94:329–340 Li SG, Koops GH, Mulder MHV, Van den Boomgaard T, Smolders CA (1994) Wet spinning of integrally skinned hollow fiber membranes by a modified dual-bath coagulation method using a triple orifice spinneret. J Membr Sci 94:329–340
107.
go back to reference Kesting RE, Fritzsche AK, Murphy MK, Handermann AC, Cruse CA, Malon RF (1989) Process for forming asymmetric gas separation membranes having graded density skins. US Patent 4 871,494, 3 Oct 1989 Kesting RE, Fritzsche AK, Murphy MK, Handermann AC, Cruse CA, Malon RF (1989) Process for forming asymmetric gas separation membranes having graded density skins. US Patent 4 871,494, 3 Oct 1989
108.
go back to reference Fritzsche AK, Cruse CA, Murphy MK, Kesting RE (1990) Polyethersulfone and polyphenylsulfone fiber trilayer membranes spun from Lewis acid:base complexes—structure determination by SEM, DSC and oxygen plasma ablation. J Membr Sci 54:29–50 Fritzsche AK, Cruse CA, Murphy MK, Kesting RE (1990) Polyethersulfone and polyphenylsulfone fiber trilayer membranes spun from Lewis acid:base complexes—structure determination by SEM, DSC and oxygen plasma ablation. J Membr Sci 54:29–50
109.
go back to reference Wang D (1995) Polyethersulfone hollow fiber gas separation membranes prepared from solvent systems containing nonsolvent additives. Ph.D. Thesis, National University of Singapore Wang D (1995) Polyethersulfone hollow fiber gas separation membranes prepared from solvent systems containing nonsolvent additives. Ph.D. Thesis, National University of Singapore
110.
go back to reference Wang D, Li K, Teo WK (1996) Polyethersulfone hollow fiber gas separation membranes prepared from NMP/alcohol solvent systems. J Membr Sci 115:85–108 Wang D, Li K, Teo WK (1996) Polyethersulfone hollow fiber gas separation membranes prepared from NMP/alcohol solvent systems. J Membr Sci 115:85–108
111.
go back to reference Kim DH, Ko YH, Kim TW, Park JS, Lee HK (2012) Separation of N2/SF6 binary mixtures using polyethersulfone (PESf) hollow fiber membrane. Korean J Chem Eng 29:1081–1085 Kim DH, Ko YH, Kim TW, Park JS, Lee HK (2012) Separation of N2/SF6 binary mixtures using polyethersulfone (PESf) hollow fiber membrane. Korean J Chem Eng 29:1081–1085
112.
go back to reference Jiang L, Chung TS, Li DF, Cao C, Kulprathipanja S (2004) Fabrication of Matimid/polyethersulfone dual-layer hollow fiber membranes for gas separation. J Membr Sci 240:91–103 Jiang L, Chung TS, Li DF, Cao C, Kulprathipanja S (2004) Fabrication of Matimid/polyethersulfone dual-layer hollow fiber membranes for gas separation. J Membr Sci 240:91–103
113.
go back to reference Ismail AF, Norida R, Rahman WAW, Matsuura T, Hashemifard SA (2011) Preparation and characterization of hyperthin-skinned and high performances asymmetric polyethersulfone membrane for gas separation. Desalination 273:93–104 Ismail AF, Norida R, Rahman WAW, Matsuura T, Hashemifard SA (2011) Preparation and characterization of hyperthin-skinned and high performances asymmetric polyethersulfone membrane for gas separation. Desalination 273:93–104
114.
go back to reference Pesiri DR, Jorgensen B, Dye RC (2003) Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, carbon dioxide. J Membr Sci 218:11–18 Pesiri DR, Jorgensen B, Dye RC (2003) Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, carbon dioxide. J Membr Sci 218:11–18
115.
go back to reference Berchtold KA, Young JS, Dudeck KW (2006) High temperature separation membranes of hydrogen purification and carbon capture. LALP-06-043, Mar 2006 Berchtold KA, Young JS, Dudeck KW (2006) High temperature separation membranes of hydrogen purification and carbon capture. LALP-06-043, Mar 2006
116.
go back to reference Choi S, Coronas J, Lai Z, Yust D, Onorato F, Tsapatsis M (2008) Fabrication and gas separation properties of polybenzimidazole (PBI)/nanoporous silicates hybrid membranes. J Membr Sci 316:145–152 Choi S, Coronas J, Lai Z, Yust D, Onorato F, Tsapatsis M (2008) Fabrication and gas separation properties of polybenzimidazole (PBI)/nanoporous silicates hybrid membranes. J Membr Sci 316:145–152
117.
go back to reference Hosseini SS, Peng N, Chung TS (2010) Gas separation membranes developed through integration of polymer blending and dual-layer hollow fiber spinning process for hydrogen and natural gas hollow fiber spinning process for hydrogen and natural gas enrichments. J Membr Sci 349:156–166 Hosseini SS, Peng N, Chung TS (2010) Gas separation membranes developed through integration of polymer blending and dual-layer hollow fiber spinning process for hydrogen and natural gas hollow fiber spinning process for hydrogen and natural gas enrichments. J Membr Sci 349:156–166
118.
go back to reference Kumbharkar SC, Liu Y, Li K (2011) High performance polybenzimidazole based asymmetric hollow fiber membranes for H2/CO2 separation. J Membr Sci 375:231–240 Kumbharkar SC, Liu Y, Li K (2011) High performance polybenzimidazole based asymmetric hollow fiber membranes for H2/CO2 separation. J Membr Sci 375:231–240
119.
go back to reference Young JSY, Long GS, Espinoza BF (2006) Cross-linked polybenzimidazole membrane for gas separation. US Patent 20060021502A1, 2 Feb 2006 Young JSY, Long GS, Espinoza BF (2006) Cross-linked polybenzimidazole membrane for gas separation. US Patent 20060021502A1, 2 Feb 2006
120.
go back to reference Kong J, Li K (2001) Preparation of PVDF hollow-fiber membranes via immersion precipitation. J Appl Polym Sci 81:1643–1653 Kong J, Li K (2001) Preparation of PVDF hollow-fiber membranes via immersion precipitation. J Appl Polym Sci 81:1643–1653
121.
go back to reference Shen Y, Lua AC (2012) Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation. Chem Eng J 192:201–210 Shen Y, Lua AC (2012) Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation. Chem Eng J 192:201–210
122.
go back to reference Consolati G, Pegoraro M, Quasso F, Severini F (2001) Chlorinated PTMSP membranes: permeability, free volume and physical properties. Polymer 42:1265–1269 Consolati G, Pegoraro M, Quasso F, Severini F (2001) Chlorinated PTMSP membranes: permeability, free volume and physical properties. Polymer 42:1265–1269
123.
go back to reference Masuda T, Isobe E, Higashimura T, Takada K (1983) Poly[1-(trimethylsilyl)-1-propyne]: a new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas permeability. J Am Chem Soc 105:7473–7474 Masuda T, Isobe E, Higashimura T, Takada K (1983) Poly[1-(trimethylsilyl)-1-propyne]: a new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas permeability. J Am Chem Soc 105:7473–7474
124.
go back to reference Nagai K, Masuda T, Nakagawa T, Freeman BD, Pinnau I (2001) Poly[1-(trimethylsilyl)-1propyne and related polymers: synthesis properties and functions. Prog Polym Sci 26:721–798 Nagai K, Masuda T, Nakagawa T, Freeman BD, Pinnau I (2001) Poly[1-(trimethylsilyl)-1propyne and related polymers: synthesis properties and functions. Prog Polym Sci 26:721–798
125.
go back to reference Ichiraku Y, Stern SA, Nakagawa T (1987) An investigation of the high gas permeability of poly(1-trimethylsilyl-1-propyne). J Membr Sci 34:5–18 Ichiraku Y, Stern SA, Nakagawa T (1987) An investigation of the high gas permeability of poly(1-trimethylsilyl-1-propyne). J Membr Sci 34:5–18
126.
go back to reference Merkel TC, He Z, Pinnau I, Freeman BD, Meakin P, Hill AJ (2003) Effect of nanoparticles on gas sorption and transport in poly(1-trimethylsilyl-1-propyne). Macromolecules 36:6844–6855 Merkel TC, He Z, Pinnau I, Freeman BD, Meakin P, Hill AJ (2003) Effect of nanoparticles on gas sorption and transport in poly(1-trimethylsilyl-1-propyne). Macromolecules 36:6844–6855
127.
go back to reference Woo M, Choi J, Tsapatsis M (2008) Poly(1-trimethylsilyl-1-propyne)/MFI composite membranes for butane separation. Microporous Mesoporous Mater 110:330–338 Woo M, Choi J, Tsapatsis M (2008) Poly(1-trimethylsilyl-1-propyne)/MFI composite membranes for butane separation. Microporous Mesoporous Mater 110:330–338
128.
go back to reference Qiu J, Zheng JM, Peinemann KV (2006) Gas transport properties in a novel poly(trimethylsilylpropyne) composite membrane with nanosized organic filler trimethylsilylglucose. Macromolecules 39:4093–4100 Qiu J, Zheng JM, Peinemann KV (2006) Gas transport properties in a novel poly(trimethylsilylpropyne) composite membrane with nanosized organic filler trimethylsilylglucose. Macromolecules 39:4093–4100
129.
go back to reference Peter J, Peinemann KV (2009) Multilayer composite membrane for gas separation based on crosslinked PTMSP gutter layer and partially crosslinked Matrmid® 5218 selective layer. J Membr Sci 340:62–72 Peter J, Peinemann KV (2009) Multilayer composite membrane for gas separation based on crosslinked PTMSP gutter layer and partially crosslinked Matrmid® 5218 selective layer. J Membr Sci 340:62–72
130.
go back to reference Vopiča O, De Angelis MG, Sarti GC (2014) Mixed gas sorption in glassy polymeric membranes: I. CO2/CH4 mixtures sorption in poly(1-trimetylsilyl-1-propyne) (PTMSP). J Membr Sci 449:97–108 Vopiča O, De Angelis MG, Sarti GC (2014) Mixed gas sorption in glassy polymeric membranes: I. CO2/CH4 mixtures sorption in poly(1-trimetylsilyl-1-propyne) (PTMSP). J Membr Sci 449:97–108
131.
go back to reference Xiao S, Feng X, Huang RYM (2007) Trimesoyl chloride crosslinked membranes for CO2/N2 separation and pervaporation dehydration of isopropanol. J Membr Sci 306:36–46 Xiao S, Feng X, Huang RYM (2007) Trimesoyl chloride crosslinked membranes for CO2/N2 separation and pervaporation dehydration of isopropanol. J Membr Sci 306:36–46
132.
go back to reference Papanceaa A, Valente AJM, Patachia S, Lobo VMM (2009) Poly (vinyl alcohol) (PVA)-based polymer membranes. Nova, NY Papanceaa A, Valente AJM, Patachia S, Lobo VMM (2009) Poly (vinyl alcohol) (PVA)-based polymer membranes. Nova, NY
133.
go back to reference Zou J, Ho WSW (2006) CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol). J Membr Sci 286:310–332 Zou J, Ho WSW (2006) CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol). J Membr Sci 286:310–332
134.
go back to reference Matsuyama H, Terada A, Nakagawara T, Kitamura Y, Teramoto Y (1999) Facilitated transport of CO2 through polyethylenimine/poly(vinyl alcohol) blend membrane. J Membr Sci 163:221–227 Matsuyama H, Terada A, Nakagawara T, Kitamura Y, Teramoto Y (1999) Facilitated transport of CO2 through polyethylenimine/poly(vinyl alcohol) blend membrane. J Membr Sci 163:221–227
135.
go back to reference Park YI, Lee KH (2001) Preparation of water-swollen hydrogel membranes for gas separation. J Appl Polym Sci 80:1785–1791 Park YI, Lee KH (2001) Preparation of water-swollen hydrogel membranes for gas separation. J Appl Polym Sci 80:1785–1791
136.
go back to reference Jenkins AD, Kratochvíl P, Stepto RFT, Suter UW (1996) Glossary of basic terms in polymer science. Pure Appl Chem 68(12):2287–2311 Jenkins AD, Kratochvíl P, Stepto RFT, Suter UW (1996) Glossary of basic terms in polymer science. Pure Appl Chem 68(12):2287–2311
137.
go back to reference Paul DR, Newman S (eds) (1978) Polymer blends. Academic, London Paul DR, Newman S (eds) (1978) Polymer blends. Academic, London
138.
go back to reference Schmidt JJ, Gardella JA Jr, Salvati L Jr (1989) Surface studies of polymer blends. 2. An ESCA and IR study of poly(methyl methacrylate)/poly(vinyl chloride) homopolymer blends. Macromolecules 22:4489–4495 Schmidt JJ, Gardella JA Jr, Salvati L Jr (1989) Surface studies of polymer blends. 2. An ESCA and IR study of poly(methyl methacrylate)/poly(vinyl chloride) homopolymer blends. Macromolecules 22:4489–4495
139.
go back to reference Coleman MM, Painter PC (1976) Fourier transforms infrared studies of polymeric materials. J Macromol Sci C 16:197–313 Coleman MM, Painter PC (1976) Fourier transforms infrared studies of polymeric materials. J Macromol Sci C 16:197–313
140.
go back to reference Yoshino M, Ito K, Okamoto KI (2000) Effects of hard-segment polymers on CO2/N2 gas-separation properties of poly(ethyleneoxide)-segmented copolymers. J Polym Sci B Polym Phys 38:1707–1715 Yoshino M, Ito K, Okamoto KI (2000) Effects of hard-segment polymers on CO2/N2 gas-separation properties of poly(ethyleneoxide)-segmented copolymers. J Polym Sci B Polym Phys 38:1707–1715
141.
go back to reference Zimmerman CM, Koros WJ (1999) Polypyrrolones for membrane gas separation. I. Structural comparison of gas transport and sorption properties. J Polym Sci B Polym Phys 37:1235–1249 Zimmerman CM, Koros WJ (1999) Polypyrrolones for membrane gas separation. I. Structural comparison of gas transport and sorption properties. J Polym Sci B Polym Phys 37:1235–1249
142.
go back to reference Zimmerman CM, Koros WJ (1999) Polypyrrolones for membrane gas separation. II. Activation energies and heat of sorption. J Polym Sci B Polym Phys 37:1251–1265 Zimmerman CM, Koros WJ (1999) Polypyrrolones for membrane gas separation. II. Activation energies and heat of sorption. J Polym Sci B Polym Phys 37:1251–1265
143.
go back to reference Patil VE, van der Broeke LJP, Vercauteren FF, Keurentjes JTF (2006) Permeation of supercritical carbon dioxide through polymeric hollow fiber membranes. J Membr Sci 271:77–85 Patil VE, van der Broeke LJP, Vercauteren FF, Keurentjes JTF (2006) Permeation of supercritical carbon dioxide through polymeric hollow fiber membranes. J Membr Sci 271:77–85
144.
go back to reference Wang M, Yang D, Wang Z, Wang J, Wang S (2010) Effects of pressure and temperature on fixed-site carrier membrane for CO2 separation from natural gas. Front Chem Eng Chin 4:127–132 Wang M, Yang D, Wang Z, Wang J, Wang S (2010) Effects of pressure and temperature on fixed-site carrier membrane for CO2 separation from natural gas. Front Chem Eng Chin 4:127–132
145.
go back to reference Semsarzadeh MA, Ghalei B (2012) Characterization and gas permeability of polyurethane and polyvinyl acetate blend membranes with polyethylene oxide-polypropylene oxide block copolymer. J Membr Sci 401–402:97–108 Semsarzadeh MA, Ghalei B (2012) Characterization and gas permeability of polyurethane and polyvinyl acetate blend membranes with polyethylene oxide-polypropylene oxide block copolymer. J Membr Sci 401–402:97–108
146.
go back to reference Car A, Stropnik C, Yave W, Peinemann KV (2008) PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. J Membr Sci 307:88–95 Car A, Stropnik C, Yave W, Peinemann KV (2008) PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. J Membr Sci 307:88–95
147.
go back to reference Yave W, Car A, Peinemann KV, Shaikh MQ, Rätzke K, Faupel F (2009) Gas permeability and free volume in poly(amide-b-ethylene oxide)/polyethylene glycol blend membranes. J Membr Sci 339:177–183 Yave W, Car A, Peinemann KV, Shaikh MQ, Rätzke K, Faupel F (2009) Gas permeability and free volume in poly(amide-b-ethylene oxide)/polyethylene glycol blend membranes. J Membr Sci 339:177–183
148.
go back to reference Yave W, Car A, Funari SS, Nunes SP, Peinemann KV (2010) CO2-philic polymer membrane with extremely high separation performance. Macromolecules 43:326–333 Yave W, Car A, Funari SS, Nunes SP, Peinemann KV (2010) CO2-philic polymer membrane with extremely high separation performance. Macromolecules 43:326–333
149.
go back to reference Madaeni SS, Nooripour RM, Vatanpour V (2012) Preparation and characterization of polyimide and polyethersulfone blend membranes for gas separation. Asia-Pacific J Chem Eng 7:747–754 Madaeni SS, Nooripour RM, Vatanpour V (2012) Preparation and characterization of polyimide and polyethersulfone blend membranes for gas separation. Asia-Pacific J Chem Eng 7:747–754
150.
go back to reference Kapantaidakis GC, Koops GH, Wessling M (2002) Preparation and characterization of gas separation hollow fiber membranes based on polyethersulfone-polyimide miscible blends. Desalination 145:353–357 Kapantaidakis GC, Koops GH, Wessling M (2002) Preparation and characterization of gas separation hollow fiber membranes based on polyethersulfone-polyimide miscible blends. Desalination 145:353–357
151.
go back to reference Kapantaidakis GC, Koops GH (2002) High flux polyethersulfone-polyimide blend hollow fiber membrane for gas separation. J Membr Sci 204:153–171 Kapantaidakis GC, Koops GH (2002) High flux polyethersulfone-polyimide blend hollow fiber membrane for gas separation. J Membr Sci 204:153–171
152.
go back to reference Kapantaidakis GC, Koops GH, Wessling M (2002) Effect of spinning conditions on the structure and the gas permeation properties of high flux polyethersulfone-polyimide blend hollow fibers. Desalination 144:121–125 Kapantaidakis GC, Koops GH, Wessling M (2002) Effect of spinning conditions on the structure and the gas permeation properties of high flux polyethersulfone-polyimide blend hollow fibers. Desalination 144:121–125
153.
go back to reference Koros WJ, Woods DG (2001) Elevated temperature application of polymer hollow-fiber membranes. J Membr Sci 181:157–166 Koros WJ, Woods DG (2001) Elevated temperature application of polymer hollow-fiber membranes. J Membr Sci 181:157–166
154.
go back to reference Seo Y, Kim S, Hong SU (2006) Highly selective polymeric membranes for gas separation. Polymer 47:4501–4504 Seo Y, Kim S, Hong SU (2006) Highly selective polymeric membranes for gas separation. Polymer 47:4501–4504
155.
go back to reference Okamoto K, Tanaka K, Muraoka M, Kita H, Maruyama Y (1992) Gas permeability and permselectivity of fluorinated polybenzoxazoles. J Polym Sci B 30:1215–1221 Okamoto K, Tanaka K, Muraoka M, Kita H, Maruyama Y (1992) Gas permeability and permselectivity of fluorinated polybenzoxazoles. J Polym Sci B 30:1215–1221
156.
go back to reference McKeown NB (1998) Phthalocyanine materials: synthesis, structure and function. CUP, Cambridge, UK McKeown NB (1998) Phthalocyanine materials: synthesis, structure and function. CUP, Cambridge, UK
157.
go back to reference Ilinitch OM, Fenelonov VB, Lapkin AA, Okkel LG, Terskikh VV, Zamaraev KI (1999) Intrinsic microporosity and gas transport in polyphenylene oxide polymers. Microporous Mesoporous Mater 31:97–110 Ilinitch OM, Fenelonov VB, Lapkin AA, Okkel LG, Terskikh VV, Zamaraev KI (1999) Intrinsic microporosity and gas transport in polyphenylene oxide polymers. Microporous Mesoporous Mater 31:97–110
158.
go back to reference McKeown NB, Budd PM (2009) Polymers of intrinsic microporosity. In: Encyclopedia of polymer science and technology. John Wiley & Sons, NY McKeown NB, Budd PM (2009) Polymers of intrinsic microporosity. In: Encyclopedia of polymer science and technology. John Wiley & Sons, NY
159.
go back to reference McKeown NB, Budd PM, Msayib KJ, Ghanem BS, Kingston HJ, Tattershall CE, Makhseed S, Reynolds KJ, Fritsch D (2005) Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials. Chem Eur J 11:2610–2620 McKeown NB, Budd PM, Msayib KJ, Ghanem BS, Kingston HJ, Tattershall CE, Makhseed S, Reynolds KJ, Fritsch D (2005) Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials. Chem Eur J 11:2610–2620
160.
go back to reference McKeown NB (2012) Review article: Polymers of intrinsic microporosity. ISRN Mater Sci. Article ID 513986, 16p McKeown NB (2012) Review article: Polymers of intrinsic microporosity. ISRN Mater Sci. Article ID 513986, 16p
161.
go back to reference Makhseed S, McKeown NB, Msayib K, Bumajdad A (2005) Inducing solid-state isolation of the phthalocyanine macro-cycle by its incorporation within rigid, randomly shaped oligomers. J Mater Chem 5:1865–1870 Makhseed S, McKeown NB, Msayib K, Bumajdad A (2005) Inducing solid-state isolation of the phthalocyanine macro-cycle by its incorporation within rigid, randomly shaped oligomers. J Mater Chem 5:1865–1870
162.
go back to reference Msayib K, Makhseed S, McKeown NB (2001) Synthetic strategies towards macrodiscotic materials. Can a new dimension be added to liquid crystal polymers? J Mater Chem 11:2784–2789 Msayib K, Makhseed S, McKeown NB (2001) Synthetic strategies towards macrodiscotic materials. Can a new dimension be added to liquid crystal polymers? J Mater Chem 11:2784–2789
163.
go back to reference Du NY, Song J, Robertson GP, Pinnau I, Guiver M (2008) Linear high molecular weight ladder polymer via fast polycondensation of 5,5′,6,6′-tetrahydroxy- 3,3,3′,3′-tetramethylspirobisindane with 1,4-dicyanotetrafluoroben-zene. Macromol Rapid Commun 29:783–788 Du NY, Song J, Robertson GP, Pinnau I, Guiver M (2008) Linear high molecular weight ladder polymer via fast polycondensation of 5,5′,6,6′-tetrahydroxy- 3,3,3′,3′-tetramethylspirobisindane with 1,4-dicyanotetrafluoroben-zene. Macromol Rapid Commun 29:783–788
164.
go back to reference Du NY, Cin MMD, Pinnau I, Nicalek A, Robertson GP, Guiver MD (2011) Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation. Macromol Rapid Commun 32:631–636 Du NY, Cin MMD, Pinnau I, Nicalek A, Robertson GP, Guiver MD (2011) Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation. Macromol Rapid Commun 32:631–636
165.
go back to reference Du N, Park HB, Robertson GP, Dal-Cin MM, Visser T, Scoles L, Guiver MD (2011) Polymer nanosieve membranes for CO2-capture applications. Nat Mater 10:372–375 Du N, Park HB, Robertson GP, Dal-Cin MM, Visser T, Scoles L, Guiver MD (2011) Polymer nanosieve membranes for CO2-capture applications. Nat Mater 10:372–375
166.
go back to reference Koros WJ, Mahajan R (2000) Pushing the limits on possibilities for large scale gas separation: which strategies? J Membr Sci 175:181–196 Koros WJ, Mahajan R (2000) Pushing the limits on possibilities for large scale gas separation: which strategies? J Membr Sci 175:181–196
167.
go back to reference Roualdes S, Lee AVD, Berjoan R, Sanchez J, Durand J (1999) Gas separation properties of organosilicon plasma polymerized membranes. AIChE J 45:1566–1575 Roualdes S, Lee AVD, Berjoan R, Sanchez J, Durand J (1999) Gas separation properties of organosilicon plasma polymerized membranes. AIChE J 45:1566–1575
168.
go back to reference Won J, Kim MH, Kang YS, Park HC, Kim UY, Choi SC, Koh SK (2000) Surface modification of polyimide and polysulfone membranes by ion beam for gas separation. J Appl Polym Sci 75:1554–1560 Won J, Kim MH, Kang YS, Park HC, Kim UY, Choi SC, Koh SK (2000) Surface modification of polyimide and polysulfone membranes by ion beam for gas separation. J Appl Polym Sci 75:1554–1560
169.
go back to reference Maya EM, Munoz DM, de la Campa JG, de Abajo J, Lozano AE (2006) Thermal effect on polyethyleneoxide-containing copolyimide membranes for CO2/N2 separation. Desalination 199:188–190 Maya EM, Munoz DM, de la Campa JG, de Abajo J, Lozano AE (2006) Thermal effect on polyethyleneoxide-containing copolyimide membranes for CO2/N2 separation. Desalination 199:188–190
170.
go back to reference Li Y, Cao C, Chung TS, Pramoda KP (2004) Fabrication of dual-layer polyethersulfone (PES) hollow fiber membranes with an ultrathin dense-selective layer for gas separation. J Membr Sci 245:53–60 Li Y, Cao C, Chung TS, Pramoda KP (2004) Fabrication of dual-layer polyethersulfone (PES) hollow fiber membranes with an ultrathin dense-selective layer for gas separation. J Membr Sci 245:53–60
171.
go back to reference Castro-Domínguez B, Leelachaikul P, Takagaki A, Sugawara T, Kikuchi R, Oyama ST (2013) Perfluorocarbon-based supported liquid membranes for O2/N2 separation. Sep Purif Technol 116:19–24 Castro-Domínguez B, Leelachaikul P, Takagaki A, Sugawara T, Kikuchi R, Oyama ST (2013) Perfluorocarbon-based supported liquid membranes for O2/N2 separation. Sep Purif Technol 116:19–24
172.
go back to reference McLeay EE, Jansen JC, Kapteijn F (2006) Zeolite based films, membranes and membrane reactors: progress and prospects. Microporous Mesoporous Mater 90:198–220 McLeay EE, Jansen JC, Kapteijn F (2006) Zeolite based films, membranes and membrane reactors: progress and prospects. Microporous Mesoporous Mater 90:198–220
173.
go back to reference Barrer RM (1939) Activated diffusion in membranes. Trans Faraday Soc 35:644–656 Barrer RM (1939) Activated diffusion in membranes. Trans Faraday Soc 35:644–656
174.
go back to reference Van Den Broeke LJP, Bakker WJW, Kapteijn F, Moulijn JA (1999) Binary permeation through a silicalite-1 membrane. AIChE J 45:976–985 Van Den Broeke LJP, Bakker WJW, Kapteijn F, Moulijn JA (1999) Binary permeation through a silicalite-1 membrane. AIChE J 45:976–985
175.
go back to reference Petersa TA, Fontalvoa J, Vorstmana MAG, Benesa NE, van Damb RA, Vroonb ZAEP, van Soest-Vercammenc ELJ, Keurentjesa JTF (2005) Hollow fibre microporous silica membranes for gas separation and pervaporation: synthesis, performance and stability. J Membr Sci 248:73–80 Petersa TA, Fontalvoa J, Vorstmana MAG, Benesa NE, van Damb RA, Vroonb ZAEP, van Soest-Vercammenc ELJ, Keurentjesa JTF (2005) Hollow fibre microporous silica membranes for gas separation and pervaporation: synthesis, performance and stability. J Membr Sci 248:73–80
176.
go back to reference Uhlhorn RJR, Keizer K, Burggraaf AJ (1992) Gas transport and separation with ceramic membranes. Part II. Synthesis and separation properties of microporous membranes. J Membr Sci 66:271–287 Uhlhorn RJR, Keizer K, Burggraaf AJ (1992) Gas transport and separation with ceramic membranes. Part II. Synthesis and separation properties of microporous membranes. J Membr Sci 66:271–287
177.
go back to reference de Lange RSA, Hekkink JHA, Keizer K, Burggraaf AJ (1995) Formation and characterization of supported microporous ceramic membranes prepared by sol–gel modification techniques. J Membr Sci 99:57–75 de Lange RSA, Hekkink JHA, Keizer K, Burggraaf AJ (1995) Formation and characterization of supported microporous ceramic membranes prepared by sol–gel modification techniques. J Membr Sci 99:57–75
178.
go back to reference de Vos RM, Verweij H (1998) Improved performance of silica membranes for gas separation. J Membr Sci 143:37–51 de Vos RM, Verweij H (1998) Improved performance of silica membranes for gas separation. J Membr Sci 143:37–51
179.
go back to reference Pohl PI, Heffelfinger GS (1999) Massively parallel molecular dynamics simulation of gas permeation across porous silica membrane. J Membr Sci 155:1–7 Pohl PI, Heffelfinger GS (1999) Massively parallel molecular dynamics simulation of gas permeation across porous silica membrane. J Membr Sci 155:1–7
180.
go back to reference Zhang K, Sunarso J, Shao Z, Zhou W, Sun C, Wang S, Liu S (2011) Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production. RSC Adv 1:1661–1676 Zhang K, Sunarso J, Shao Z, Zhou W, Sun C, Wang S, Liu S (2011) Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production. RSC Adv 1:1661–1676
181.
go back to reference Kharton VV, Yaremchenko AA, Kovalevsky AV, Viskup AP, Naumovich EN, Kerko PF (1999) Perovskite-type oxides for high-temperature oxygen separation membranes. J Membr Sci 163:307–317 Kharton VV, Yaremchenko AA, Kovalevsky AV, Viskup AP, Naumovich EN, Kerko PF (1999) Perovskite-type oxides for high-temperature oxygen separation membranes. J Membr Sci 163:307–317
182.
go back to reference Ayral A, Julbe A, Roualdes S, Rouessac V, Durand J, Sala B (2006) Silica membranes-basic principles. Period Polytech Ser Chem Eng 50:67–79 Ayral A, Julbe A, Roualdes S, Rouessac V, Durand J, Sala B (2006) Silica membranes-basic principles. Period Polytech Ser Chem Eng 50:67–79
183.
go back to reference Ramsay JDF (1999) Characterization of the pore structure of membranes. MRS Bull 24:36–40 Ramsay JDF (1999) Characterization of the pore structure of membranes. MRS Bull 24:36–40
184.
go back to reference Topuz B, ˁiftˁioglu M (2006) Permeation of pure gases through silica membranes with controlled pore size. Desalination 200:80–82 Topuz B, ˁiftˁioglu M (2006) Permeation of pure gases through silica membranes with controlled pore size. Desalination 200:80–82
185.
go back to reference Shelekhin AB, Dixon AG, Ma YH (1992) Adsorption, permeation, and diffusion of gases in microporous glass membranes. J Membr Sci 75:233–244 Shelekhin AB, Dixon AG, Ma YH (1992) Adsorption, permeation, and diffusion of gases in microporous glass membranes. J Membr Sci 75:233–244
186.
go back to reference Naskar MK, Kundu D, Chatterjee M (2009) Silicate-1 zeolite membranes on unmodified and modified surfaces of ceramic supports: a comparative study. Bull Mater Sci 32:537–541 Naskar MK, Kundu D, Chatterjee M (2009) Silicate-1 zeolite membranes on unmodified and modified surfaces of ceramic supports: a comparative study. Bull Mater Sci 32:537–541
187.
go back to reference Marković A, Stoltenberg D, Enke D, Schlünder E-U, Seidel-Morgenstern A (2009) Gas permeation through porous glass membranes. Part 1. Mesoporous glasses-Effect of pore diameter and surface properties. J Membr Sci 336:17–31 Marković A, Stoltenberg D, Enke D, Schlünder E-U, Seidel-Morgenstern A (2009) Gas permeation through porous glass membranes. Part 1. Mesoporous glasses-Effect of pore diameter and surface properties. J Membr Sci 336:17–31
189.
go back to reference Nomura M, Yamaguchi T, Nakao S (1997) Silicalite membranes modified by counterdiffusion CVD technique. Ind Eng Chem Res 36:4217–4223 Nomura M, Yamaguchi T, Nakao S (1997) Silicalite membranes modified by counterdiffusion CVD technique. Ind Eng Chem Res 36:4217–4223
190.
go back to reference Zeolite—Wikipedia, the free encyclopedia. International Zeolite Association, database of zeolite structures Zeolite—Wikipedia, the free encyclopedia. International Zeolite Association, database of zeolite structures
191.
go back to reference Zeolite—Wikipedia, the free encyclopedia. Webmineral Zeolites, Dana Classification Zeolite—Wikipedia, the free encyclopedia. Webmineral Zeolites, Dana Classification
192.
go back to reference Caro J, Noack M, Kolsch P, Schafer R (2000) Zeolite membranes—state of their development and perspective. Microporous Mesoporous Mater 38:3–24 Caro J, Noack M, Kolsch P, Schafer R (2000) Zeolite membranes—state of their development and perspective. Microporous Mesoporous Mater 38:3–24
193.
go back to reference Worathanakul P, Kongkachuichay P (2008) New SUZ-4 zeolite membrane from sol-gel technique. World Acad Sci Technol 2:11–21 Worathanakul P, Kongkachuichay P (2008) New SUZ-4 zeolite membrane from sol-gel technique. World Acad Sci Technol 2:11–21
194.
go back to reference Wong WC, Au LTY, Ariso CT, Yeung KL (2001) Effects of synthesis parameters on the zeolite membrane growth. J Membr Sci 191:143–146 Wong WC, Au LTY, Ariso CT, Yeung KL (2001) Effects of synthesis parameters on the zeolite membrane growth. J Membr Sci 191:143–146
195.
go back to reference Horri K, Tanaka K, Kita K, Okamoto K (1994) In: Proceedings of the 26th autumn meeting of Soc. Chem. Eng., Japan, p 99 Horri K, Tanaka K, Kita K, Okamoto K (1994) In: Proceedings of the 26th autumn meeting of Soc. Chem. Eng., Japan, p 99
196.
go back to reference Bernal MP, Xometritakis G, Tsapatsis M (2001) Tubular MFI zeolite membranes made by secondary (seeded) growth. Catal Today 67:101–107 Bernal MP, Xometritakis G, Tsapatsis M (2001) Tubular MFI zeolite membranes made by secondary (seeded) growth. Catal Today 67:101–107
197.
go back to reference Caro J, Noack M (2008) Zeolite membranes—recent developments and progress. Microporous Mesoporous Mater 115:215–233 Caro J, Noack M (2008) Zeolite membranes—recent developments and progress. Microporous Mesoporous Mater 115:215–233
198.
go back to reference Tompsett GA, Conner WC, Yngvesson KS (2006) Microwave synthesis of nanoporous materials. Chem Phys Chem 7:296–319 Tompsett GA, Conner WC, Yngvesson KS (2006) Microwave synthesis of nanoporous materials. Chem Phys Chem 7:296–319
199.
go back to reference Li Y, Yang W (2008) Microwave synthesis of zeolite membranes: a review. J Membr Sci 316:3–17 Li Y, Yang W (2008) Microwave synthesis of zeolite membranes: a review. J Membr Sci 316:3–17
200.
go back to reference Cundy CS (1998) Microwave techniques in the synthesis and modification of zeolite catalyst. A review. Collect Czech Chem Commun 63:1699–1723 Cundy CS (1998) Microwave techniques in the synthesis and modification of zeolite catalyst. A review. Collect Czech Chem Commun 63:1699–1723
201.
go back to reference Li Y, Chen H, Liu J, Yang W (2006) Microwave synthesis of LTA zeolite membranes without seeding. J Membr Sci 277:230–239 Li Y, Chen H, Liu J, Yang W (2006) Microwave synthesis of LTA zeolite membranes without seeding. J Membr Sci 277:230–239
202.
go back to reference Choi J, Jeong HK, Snyder MA, Stoeger JA, Masel RI, Tespatsis M (2009) Grain boundary defect elimination in a zeolite membrane by rapid thermal processing. Science 325:590–593 Choi J, Jeong HK, Snyder MA, Stoeger JA, Masel RI, Tespatsis M (2009) Grain boundary defect elimination in a zeolite membrane by rapid thermal processing. Science 325:590–593
203.
go back to reference Varoon K, Zhang X, Elyassi B, Brewer DD, Gette M, Kumar S, Lee A, Maheshwari S, Mittal A, Sung CY, Cococcioni M, Francis LF, McCormick AV, Mkhoyan A, Tsapatsis M (2011) Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 334:72–75 Varoon K, Zhang X, Elyassi B, Brewer DD, Gette M, Kumar S, Lee A, Maheshwari S, Mittal A, Sung CY, Cococcioni M, Francis LF, McCormick AV, Mkhoyan A, Tsapatsis M (2011) Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 334:72–75
204.
go back to reference Liu L, Cheng M, Ma D, Hu G, Pan X, Bao X (2006) Synthesis, characterization, and catalytic properties of MWW zeolite with variable Si/Al ratios. Microporous Mesoporous Mater 94:304–312 Liu L, Cheng M, Ma D, Hu G, Pan X, Bao X (2006) Synthesis, characterization, and catalytic properties of MWW zeolite with variable Si/Al ratios. Microporous Mesoporous Mater 94:304–312
205.
go back to reference Huang A, Wang N, Caro J (2012) Stepwise synthesis of sandwich-structured composite zeolite membranes with enhanced separation selectivity. Chem Commun 48:3542–3544 Huang A, Wang N, Caro J (2012) Stepwise synthesis of sandwich-structured composite zeolite membranes with enhanced separation selectivity. Chem Commun 48:3542–3544
206.
go back to reference Cheng ZL, Liu Z, Wan HL (2005) Microwave-heating synthesis and gas separation performance of NaA zeolite membrane. Chin J Chem 23:28–31 Cheng ZL, Liu Z, Wan HL (2005) Microwave-heating synthesis and gas separation performance of NaA zeolite membrane. Chin J Chem 23:28–31
207.
go back to reference Yuwen L, Zhu M, Su H, You X, Deng C, Lv X (2011) Effects of synthesis parameters on hydrothermal synthesis of NaA zeolite. Adv Mater Res 148:1444–1448 Yuwen L, Zhu M, Su H, You X, Deng C, Lv X (2011) Effects of synthesis parameters on hydrothermal synthesis of NaA zeolite. Adv Mater Res 148:1444–1448
208.
go back to reference Xu X, Yang W, Liu J, Lin L, Stroh N, Brunner H (2000) Synthesis and gas permeation properties of an NaA zeolite membrane. Chem Commun :603–604 Xu X, Yang W, Liu J, Lin L, Stroh N, Brunner H (2000) Synthesis and gas permeation properties of an NaA zeolite membrane. Chem Commun :603–604
209.
go back to reference Aoki K, Kusakabe K, Morooka S (1998) Gas permeation properties of A-type zeolite membrane formed on porous substrate by hydrothermal synthesis. J Membr Sci 141:197–205 Aoki K, Kusakabe K, Morooka S (1998) Gas permeation properties of A-type zeolite membrane formed on porous substrate by hydrothermal synthesis. J Membr Sci 141:197–205
210.
go back to reference Chen X, Yang W, Liu J, Xu X, Huang A, Lin L (2002) Synthesis of NaA zeolite membrane with high performance. J Mater Sci Lett 21:1023–1025 Chen X, Yang W, Liu J, Xu X, Huang A, Lin L (2002) Synthesis of NaA zeolite membrane with high performance. J Mater Sci Lett 21:1023–1025
211.
go back to reference Dey KP, Kundu D, Chatterjee M, Naskar MK (2013) Preparation of NaA zeolite membranes using poly(ethyleneimine) as buffer layer, and study of their permeation behavior. J Am Chem Soc 96:68–72 Dey KP, Kundu D, Chatterjee M, Naskar MK (2013) Preparation of NaA zeolite membranes using poly(ethyleneimine) as buffer layer, and study of their permeation behavior. J Am Chem Soc 96:68–72
212.
go back to reference Gies H (1986) Studies on clatherasis. VI: Crystal structure of decadodecasil 3R the missing link between zeolites and clathrasils. Z Kristallogr 175:93–104 Gies H (1986) Studies on clatherasis. VI: Crystal structure of decadodecasil 3R the missing link between zeolites and clathrasils. Z Kristallogr 175:93–104
213.
go back to reference Nakayama K, Suzuki K, Yoshida M, Tomita T (2006) Method of preparing DDR type zeolite membrane, DDR type zeolite membrane, and composite DDR type zeolite membrane, and method for preparation thereof. US Patent 7014680B2, 21 Mar 2006 Nakayama K, Suzuki K, Yoshida M, Tomita T (2006) Method of preparing DDR type zeolite membrane, DDR type zeolite membrane, and composite DDR type zeolite membrane, and method for preparation thereof. US Patent 7014680B2, 21 Mar 2006
214.
go back to reference van den Bergh J, Zhu W, Kapteijn F, Moulijn JA, Yajima K, Nakayama K, Tomita T, Yoshida S (2007) Natural gas purification wth a DDR zeolite membrane: permeation modeling with Maxwell–Stefan equations. Stud Surf Sci Catal 170:1021–1027 van den Bergh J, Zhu W, Kapteijn F, Moulijn JA, Yajima K, Nakayama K, Tomita T, Yoshida S (2007) Natural gas purification wth a DDR zeolite membrane: permeation modeling with Maxwell–Stefan equations. Stud Surf Sci Catal 170:1021–1027
215.
go back to reference van den Bergh J, Zhu W, Gascon J, Moulinj JA, Kapteijn F (2008) Separation and permeation characteristics of a DDR zeolite membrane. J Membr Sci 316:35–45 van den Bergh J, Zhu W, Gascon J, Moulinj JA, Kapteijn F (2008) Separation and permeation characteristics of a DDR zeolite membrane. J Membr Sci 316:35–45
216.
go back to reference Tomita T, Nakayama K, Sakai H (2004) Gas separation characteristics of DDR type zeolite membrane. Microporous Mesoporous Mater 68:71–75 Tomita T, Nakayama K, Sakai H (2004) Gas separation characteristics of DDR type zeolite membrane. Microporous Mesoporous Mater 68:71–75
217.
go back to reference Kanezashi M, O’Brien-Abraham J, Lin YS (2008) Gas permeation through DDR-type zeolite membranes at high temperatures. AICHE J 54:1478–1486 Kanezashi M, O’Brien-Abraham J, Lin YS (2008) Gas permeation through DDR-type zeolite membranes at high temperatures. AICHE J 54:1478–1486
218.
go back to reference Xiao J, Wei J (1992) Diffusion mechanism of hydrocarbons in zeolites. 1. Theory. Chem Eng Sci 47:1123–1141 Xiao J, Wei J (1992) Diffusion mechanism of hydrocarbons in zeolites. 1. Theory. Chem Eng Sci 47:1123–1141
219.
go back to reference Himeno S, Tomita T, Suzuki K, Nakayama K, Yajima K, Yoshida S (2007) Synthesis and permeation of a DDR-type zeolite membrane for separation of CO2/CH4 gaseous mixtures. Ind Eng Chem Res 46:6989–6997 Himeno S, Tomita T, Suzuki K, Nakayama K, Yajima K, Yoshida S (2007) Synthesis and permeation of a DDR-type zeolite membrane for separation of CO2/CH4 gaseous mixtures. Ind Eng Chem Res 46:6989–6997
220.
go back to reference Himeno S, Takeya K, Fujita S (2010) Development of biogas separation process using DDR-type zeolite membrane. Kagaku Kogaku Ronbun 36:545–551 Himeno S, Takeya K, Fujita S (2010) Development of biogas separation process using DDR-type zeolite membrane. Kagaku Kogaku Ronbun 36:545–551
221.
go back to reference Hong M, Li S, Falconer JL, Noble RD (2008) Hydrogen purification using a SAPO-34 membrane. J Membr Sci 307:277–283 Hong M, Li S, Falconer JL, Noble RD (2008) Hydrogen purification using a SAPO-34 membrane. J Membr Sci 307:277–283
222.
go back to reference Li S, Falconer JL, Noble RD (2006) Improved SAPO-34 membranes for CO2/CH4 separations. Adv Mater 18:2601–2603 Li S, Falconer JL, Noble RD (2006) Improved SAPO-34 membranes for CO2/CH4 separations. Adv Mater 18:2601–2603
223.
go back to reference Li S, Martinek JG, Falconer JL, Noble RD, Gardner TQ (2005) High-pressure CO2/CH4 separation using SAPO-34 membranes. Ind Eng Chem Res 44:3220–3228 Li S, Martinek JG, Falconer JL, Noble RD, Gardner TQ (2005) High-pressure CO2/CH4 separation using SAPO-34 membranes. Ind Eng Chem Res 44:3220–3228
224.
go back to reference Poshusta JC, Tuan VA, Pape EA, Noble RD, Falconer JL (2000) Separation of light gas mixtures using SAPO-34 membranes. AIChE J 46:779–789 Poshusta JC, Tuan VA, Pape EA, Noble RD, Falconer JL (2000) Separation of light gas mixtures using SAPO-34 membranes. AIChE J 46:779–789
225.
go back to reference Zhou R, Ping EW, Funke HH, Falconer JL, Noble RD (2013) Improving SAPO-34 membrane synthesis. J Membr Sci 444:384–393 Zhou R, Ping EW, Funke HH, Falconer JL, Noble RD (2013) Improving SAPO-34 membrane synthesis. J Membr Sci 444:384–393
226.
go back to reference Li S, Carreon MA, Zhang Y, Funke HH (2010) Scale-up of SAPO-34 membranes for CO2/CH4 separation. J Membr Sci 352:7–13 Li S, Carreon MA, Zhang Y, Funke HH (2010) Scale-up of SAPO-34 membranes for CO2/CH4 separation. J Membr Sci 352:7–13
227.
go back to reference Ping WE, Zhou R, Funke HH, Falconer JL, Noble RD (2012) Seeded-gel synthesis of SAPO-34 single channel and monolith membranes, for CO2/CH4 separations. J Membr Sci 415–416:770–775 Ping WE, Zhou R, Funke HH, Falconer JL, Noble RD (2012) Seeded-gel synthesis of SAPO-34 single channel and monolith membranes, for CO2/CH4 separations. J Membr Sci 415–416:770–775
228.
go back to reference Poshusta JC, Noble RD, Falconer JL (2001) Characterization of SAPO-34 membranes by water adsorption. J Membr Sci 186:25–40 Poshusta JC, Noble RD, Falconer JL (2001) Characterization of SAPO-34 membranes by water adsorption. J Membr Sci 186:25–40
229.
go back to reference Carreon ML, Li S, Carreon MA (2012) AIPO-18 membranes for CO2/CH4 separation. Chem Commun 48:2310–2312 Carreon ML, Li S, Carreon MA (2012) AIPO-18 membranes for CO2/CH4 separation. Chem Commun 48:2310–2312
231.
go back to reference Poshusta JC, Noble RD, Falconer JL (1999) Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes. J Membr Sci 160:115–123 Poshusta JC, Noble RD, Falconer JL (1999) Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes. J Membr Sci 160:115–123
232.
go back to reference Takata Y, Tsuru T, Yoshioka T, Asaeda M (2002) Gas permeation properties of MFI zeolite membranes prepared by the secondary growth of colloidal silicate and application to the methylation of toluene. Microporous Mesoporous Mater 54:257–268 Takata Y, Tsuru T, Yoshioka T, Asaeda M (2002) Gas permeation properties of MFI zeolite membranes prepared by the secondary growth of colloidal silicate and application to the methylation of toluene. Microporous Mesoporous Mater 54:257–268
233.
go back to reference Kwon WT, Kim SR, Kim EB, Bae SY, Kim Y (2011) H2/CO2 gas separation characteristics of zeolite membrane at high temperature. Adv Mater Res 26–28:267–270 Kwon WT, Kim SR, Kim EB, Bae SY, Kim Y (2011) H2/CO2 gas separation characteristics of zeolite membrane at high temperature. Adv Mater Res 26–28:267–270
234.
go back to reference Welk ME, Nenoff TM (2004) H2 separation through zeolite thin film membranes. Prep Pap Am Chem Soc Div Fuel Chem 40:889–890 Welk ME, Nenoff TM (2004) H2 separation through zeolite thin film membranes. Prep Pap Am Chem Soc Div Fuel Chem 40:889–890
235.
go back to reference Richter H, Voigt I, Fischer G, Puhlfürβ P (2003) Preparation of zeolite membranes on the inner surface of ceramic tubes and capillaries. Sep Purif Technol 32:133–138 Richter H, Voigt I, Fischer G, Puhlfürβ P (2003) Preparation of zeolite membranes on the inner surface of ceramic tubes and capillaries. Sep Purif Technol 32:133–138
236.
go back to reference Aoki K, Tuan VA, Falconer JL, Noble RD (2000) Gas permeation properties of ion-exchanged ZSM-5 zeolite membranes. Microporous Mesoporous Mater 39:485–492 Aoki K, Tuan VA, Falconer JL, Noble RD (2000) Gas permeation properties of ion-exchanged ZSM-5 zeolite membranes. Microporous Mesoporous Mater 39:485–492
237.
go back to reference Tuan VA, Noble RD, Falconer JL (2000) Boron-substituted ZSM-5 membranes: preparation and separation performance. AIChE J 46:1201–1208 Tuan VA, Noble RD, Falconer JL (2000) Boron-substituted ZSM-5 membranes: preparation and separation performance. AIChE J 46:1201–1208
238.
go back to reference Wang H, Lin YS (2012) Synthesis and modification of ZSM-5/silicate bilayer membrane with improved hydrogen separation performance. J Membr Sci 396:128–137 Wang H, Lin YS (2012) Synthesis and modification of ZSM-5/silicate bilayer membrane with improved hydrogen separation performance. J Membr Sci 396:128–137
239.
go back to reference Cheng Y, Li JS, Wang LJ, Sun XY, Liu XD (2006) Synthesis and characterization of Ce-ZSM-5 zeolite membranes. Sep Purif Technol 51:210–218 Cheng Y, Li JS, Wang LJ, Sun XY, Liu XD (2006) Synthesis and characterization of Ce-ZSM-5 zeolite membranes. Sep Purif Technol 51:210–218
240.
go back to reference Hasegawa Y, Tanaka T, Watanabe K, Jeong BH, Kusakabe K, Morooka S (2002) Separation of CO2/CH4 and CO2/N2 systems using ion-exchaged FAU-type zeolite membranes with different Si/Al ratios. Korean J Chem Eng 19:309–313 Hasegawa Y, Tanaka T, Watanabe K, Jeong BH, Kusakabe K, Morooka S (2002) Separation of CO2/CH4 and CO2/N2 systems using ion-exchaged FAU-type zeolite membranes with different Si/Al ratios. Korean J Chem Eng 19:309–313
241.
go back to reference Gu X, Dong J, Nenoff TM (2005) Synthesis of defect-free FAU-type zeolite membranes and separation for dry and moist CO2/N2 mixtures. Ind Eng Chem Res 44:937–944 Gu X, Dong J, Nenoff TM (2005) Synthesis of defect-free FAU-type zeolite membranes and separation for dry and moist CO2/N2 mixtures. Ind Eng Chem Res 44:937–944
242.
go back to reference Kumar P, Sung CY, Muraza O, Cococcioni M, Hashimi SA (2011) H2S adsorption by Ag and Cu ion exchanged faujasite. Microporous Mesoporous Mater 156:127–133 Kumar P, Sung CY, Muraza O, Cococcioni M, Hashimi SA (2011) H2S adsorption by Ag and Cu ion exchanged faujasite. Microporous Mesoporous Mater 156:127–133
243.
go back to reference Julbe A, Motuzas J, Cazeville F, Volle G, Guizard C (2003) Synthesis of sodalite/α-Al2O3 composite membranes by microwave heating. Sep Purif Technol 32:139–149 Julbe A, Motuzas J, Cazeville F, Volle G, Guizard C (2003) Synthesis of sodalite/α-Al2O3 composite membranes by microwave heating. Sep Purif Technol 32:139–149
244.
go back to reference Xu X, Bao Y, Song C, Yang W, Liu J, Lin L (2004) Microwave-assisted hydrothermal synthesis of hydroxyl-sodalite zeolite membrane. Microporous Mesoporous Mater 75:173–181 Xu X, Bao Y, Song C, Yang W, Liu J, Lin L (2004) Microwave-assisted hydrothermal synthesis of hydroxyl-sodalite zeolite membrane. Microporous Mesoporous Mater 75:173–181
245.
go back to reference Cui Y, Kita H, Okamoto KI (2004) Preparation and gas separation performance of zeolite T membrane. J Mater Chem 14:924–952 Cui Y, Kita H, Okamoto KI (2004) Preparation and gas separation performance of zeolite T membrane. J Mater Chem 14:924–952
246.
go back to reference Chen X, Wang J, Yin D, Yang J, Lu J, Zhang Y, Chen Z (2013) High performance zeolite T membrane for dehydration of organics by a new varying temperature hot-dip coating method. AIChE J 59:936–947 Chen X, Wang J, Yin D, Yang J, Lu J, Zhang Y, Chen Z (2013) High performance zeolite T membrane for dehydration of organics by a new varying temperature hot-dip coating method. AIChE J 59:936–947
247.
go back to reference Barrer RM, Villger H (1969) The crystal structure of the synthetic zeolite L. Z Kristallogr Bd 128:352–370 Barrer RM, Villger H (1969) The crystal structure of the synthetic zeolite L. Z Kristallogr Bd 128:352–370
248.
go back to reference Tsapatsis M, Lovallo M, Okubo T, Davis ME, Sadakata M (1995) Characterization of zeolite L nanoclusters. Chem Mater 7:1734–1741 Tsapatsis M, Lovallo M, Okubo T, Davis ME, Sadakata M (1995) Characterization of zeolite L nanoclusters. Chem Mater 7:1734–1741
249.
go back to reference Yin X, Wang X, Chu N, Yang J, Lu J, Zhang Y, Yin D (2010) Zeolite L/carbon nanocomposite membrane on the porous alumina tubes and their gas separation properties. J Membr Sci 348:181–189 Yin X, Wang X, Chu N, Yang J, Lu J, Zhang Y, Yin D (2010) Zeolite L/carbon nanocomposite membrane on the porous alumina tubes and their gas separation properties. J Membr Sci 348:181–189
250.
go back to reference Corma A, Rey F, Rius J, Sabater MJ, Valencia S (2004) Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature 431:287–290 Corma A, Rey F, Rius J, Sabater MJ, Valencia S (2004) Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature 431:287–290
251.
go back to reference Casado-Coterillo C, Sato J, Jimare MT, Valencia S, Corma A (2012) Preparation and characterization of ITQ-29/polysulfone mixed-matrix-membranes for gas separation: effect of zeolite composition crystal size. Chem Eng Sci 73:116–122 Casado-Coterillo C, Sato J, Jimare MT, Valencia S, Corma A (2012) Preparation and characterization of ITQ-29/polysulfone mixed-matrix-membranes for gas separation: effect of zeolite composition crystal size. Chem Eng Sci 73:116–122
252.
go back to reference Tiscornia I, Valencia S, Corma A, Téllez C, Coronas J, Santamaria J (2008) Preparation of ITQ-29 (Al-free zeolite A) membranes. Microporous Mesoporous Mater 110:303–309 Tiscornia I, Valencia S, Corma A, Téllez C, Coronas J, Santamaria J (2008) Preparation of ITQ-29 (Al-free zeolite A) membranes. Microporous Mesoporous Mater 110:303–309
253.
go back to reference Huang A, Caro J (2010) Steam-stable hydrophobic ITQ-29 molecular sieve membrane with H2 selectivity prepared by secondary growth using Krytofix 222 as SDA. Chem Commun 46:7748–7750 Huang A, Caro J (2010) Steam-stable hydrophobic ITQ-29 molecular sieve membrane with H2 selectivity prepared by secondary growth using Krytofix 222 as SDA. Chem Commun 46:7748–7750
254.
go back to reference Moscoso JG, Lewis GJ, Miller MA, Jan DY, Patton RL, Rohde LM (2003) UZM-5, UZM-5P and UZM-6: crystalline aluminosilicate zeolite and processes using the same. US Patent 6613302 B1, 2 Sept 2003 Moscoso JG, Lewis GJ, Miller MA, Jan DY, Patton RL, Rohde LM (2003) UZM-5, UZM-5P and UZM-6: crystalline aluminosilicate zeolite and processes using the same. US Patent 6613302 B1, 2 Sept 2003
255.
go back to reference Blackwell CS, Broach RW, Gatter MG, Holmgren JS, Jan DY, Lewis GJ, Mezza BJ, Mezza TM, Miller MA, Moscoso JG, Patton RL, Rohde LM, Schoonover MW, Sinkler W, Wilson BA, Wilson ST (2003) Open-framework materials synthesized in the TMA + TEA + Mixed-Template system: the new low Si/Al ratio zeolites UZM-4 and UZM5. Angew Chem Int Ed 42:1737–1740 Blackwell CS, Broach RW, Gatter MG, Holmgren JS, Jan DY, Lewis GJ, Mezza BJ, Mezza TM, Miller MA, Moscoso JG, Patton RL, Rohde LM, Schoonover MW, Sinkler W, Wilson BA, Wilson ST (2003) Open-framework materials synthesized in the TMA + TEA + Mixed-Template system: the new low Si/Al ratio zeolites UZM-4 and UZM5. Angew Chem Int Ed 42:1737–1740
256.
go back to reference Liu C, Moscoso JG, Wilson ST (2012) Microporous UZM-5 inorganic zeolite membranes for gas, vapor, and liquid separations. US Patent 20120240763 A1, 27 Sept 2012 Liu C, Moscoso JG, Wilson ST (2012) Microporous UZM-5 inorganic zeolite membranes for gas, vapor, and liquid separations. US Patent 20120240763 A1, 27 Sept 2012
257.
go back to reference Maghsoodloorad H, Mirfendereski SY, Mohammadi T, Pak A (2011) Effects of gel parameters on the synthesis and characteristics of W-type zeolite nanoparticles. Clay Clay Miner 59:328–335 Maghsoodloorad H, Mirfendereski SY, Mohammadi T, Pak A (2011) Effects of gel parameters on the synthesis and characteristics of W-type zeolite nanoparticles. Clay Clay Miner 59:328–335
258.
go back to reference Mohammdi T, Maghsoodloorad H (2012) Synthesis and characterization of ceramic membranes (W-Type) zeolite membrane. Int J Appl Ceram Technol 1:1–11 Mohammdi T, Maghsoodloorad H (2012) Synthesis and characterization of ceramic membranes (W-Type) zeolite membrane. Int J Appl Ceram Technol 1:1–11
259.
go back to reference Li T, Pan Y, Peinemann KV, Lai Z (2013) Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J Membr Sci 425–426:235–242 Li T, Pan Y, Peinemann KV, Lai Z (2013) Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J Membr Sci 425–426:235–242
260.
go back to reference Bae TH, Lee JS, Qiu W, Koros WJ, Jones CW, Nair S (2010) A high performance gas-separation containing submicrometer-sized metal-organic framework crystals. Angew Chem Int Ed 49:9863–9866 Bae TH, Lee JS, Qiu W, Koros WJ, Jones CW, Nair S (2010) A high performance gas-separation containing submicrometer-sized metal-organic framework crystals. Angew Chem Int Ed 49:9863–9866
261.
go back to reference Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro J (2009) Zeolitic imidazolate membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J Am Chem Soc 131:1600–1601 Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro J (2009) Zeolitic imidazolate membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J Am Chem Soc 131:1600–1601
262.
go back to reference Li YS, Liang FY, Bux H, Feldhoff A, Yand WS, Caro J (2010) Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity. Angew Chem Int Ed 49:548–551 Li YS, Liang FY, Bux H, Feldhoff A, Yand WS, Caro J (2010) Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity. Angew Chem Int Ed 49:548–551
263.
go back to reference Liu Y, Hu E, Khan EA, Lai Z (2010) Synthesis of ZIF-69 membranes and separation of CO2/CO mixture. J Membr Sci 153:36–40 Liu Y, Hu E, Khan EA, Lai Z (2010) Synthesis of ZIF-69 membranes and separation of CO2/CO mixture. J Membr Sci 153:36–40
264.
go back to reference Venna SR, Carreon MA (2010) Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J Am Chem Soc 132:76–78 Venna SR, Carreon MA (2010) Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J Am Chem Soc 132:76–78
265.
go back to reference Sandström L, Sjöberg E, Hedlund J (2011) Very high flux MFI membrane for CO2 separation. J Membr Sci 380:232–240 Sandström L, Sjöberg E, Hedlund J (2011) Very high flux MFI membrane for CO2 separation. J Membr Sci 380:232–240
266.
go back to reference Nair S, Lai Z, Nikolakis V, Xomeritakis G, Bonilla G, Tsapatsis M (2001) Separation of close-boiling hydrocarbon mixtures by MFI and FAU membranes made by secondary growth. Microporous Mesoporous Mater 48:219–228 Nair S, Lai Z, Nikolakis V, Xomeritakis G, Bonilla G, Tsapatsis M (2001) Separation of close-boiling hydrocarbon mixtures by MFI and FAU membranes made by secondary growth. Microporous Mesoporous Mater 48:219–228
267.
go back to reference Bétard A, Bux HG, Henke S, Zacher D, Caro J, Fischer RA (2012) Fabrication of a CO2-selective membrane by step-wise liquid-phase deposition of an alkylether functionalized pillared-layer metal-organic framework [Cu2L2P] n on a macroporous support. Microporous Mesoporous Mater 150:76–82 Bétard A, Bux HG, Henke S, Zacher D, Caro J, Fischer RA (2012) Fabrication of a CO2-selective membrane by step-wise liquid-phase deposition of an alkylether functionalized pillared-layer metal-organic framework [Cu2L2P] n on a macroporous support. Microporous Mesoporous Mater 150:76–82
268.
go back to reference Bennett TD, Goodwin AL, Dove MT, Keen DA, Tucker MG, Barney ER, Soper AK, Bithell EG, Tan JC, Cheetham AK (2010) Structure and properties of an amorphous metal-organic framework. Phys Rev Lett 104:115503–115506 Bennett TD, Goodwin AL, Dove MT, Keen DA, Tucker MG, Barney ER, Soper AK, Bithell EG, Tan JC, Cheetham AK (2010) Structure and properties of an amorphous metal-organic framework. Phys Rev Lett 104:115503–115506
269.
go back to reference Ranjan R, Tsapatsis M (2009) Microporous metal organic framework membrane on porous support using the seeded growth method. Chem Mater 21:4920–4924 Ranjan R, Tsapatsis M (2009) Microporous metal organic framework membrane on porous support using the seeded growth method. Chem Mater 21:4920–4924
270.
go back to reference Bohrman JA, Carreon MA (2012) Synthesis of CO2/CH4 separation performance of Bio-MOF-1 membranes. Chem Commun 48:5130–5132 Bohrman JA, Carreon MA (2012) Synthesis of CO2/CH4 separation performance of Bio-MOF-1 membranes. Chem Commun 48:5130–5132
271.
go back to reference An J, Rosi NL (2010) Tuning MOF CO2 adsorption properties via cation exchange. J Am Chem Soc 132:5578–5579 An J, Rosi NL (2010) Tuning MOF CO2 adsorption properties via cation exchange. J Am Chem Soc 132:5578–5579
272.
go back to reference An J, Shade CM, Chengelis-Czegan DA, Petoud S, Rosi NL (2011) Zinc-adeninate metal–organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations. J Am Chem Soc 133:1220–1223 An J, Shade CM, Chengelis-Czegan DA, Petoud S, Rosi NL (2011) Zinc-adeninate metal–organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations. J Am Chem Soc 133:1220–1223
273.
go back to reference Xomeritakis G, Naik S, Braunbarth CM, Cornelius CJ, Pardey R, Brinker CJ (2003) Organic-templated silica membranes. I. Gas and vapor transport properties. J Membr Sci 215:225–233 Xomeritakis G, Naik S, Braunbarth CM, Cornelius CJ, Pardey R, Brinker CJ (2003) Organic-templated silica membranes. I. Gas and vapor transport properties. J Membr Sci 215:225–233
274.
go back to reference Li Y, Chung TS (2008) Exploratory development of dual-layer carbon-zeolite nanocomposite hollow fiber membrane with high performance for oxygen enrichment and natural gas separation. Microporous Mesoporous Mater 113:315–324 Li Y, Chung TS (2008) Exploratory development of dual-layer carbon-zeolite nanocomposite hollow fiber membrane with high performance for oxygen enrichment and natural gas separation. Microporous Mesoporous Mater 113:315–324
275.
go back to reference Alfaro S, Valenzuela A (2006) Zeolite membrane prepared by the dry gel method for gas separation. Adv Mater Technol Mater Proc J 8:63–66 Alfaro S, Valenzuela A (2006) Zeolite membrane prepared by the dry gel method for gas separation. Adv Mater Technol Mater Proc J 8:63–66
276.
go back to reference Kuznicki SM (1990) Preparation of small-pored crystalline titanium molecular sieve zeolites. US Patent 4938939 A, 3 July 1990 Kuznicki SM (1990) Preparation of small-pored crystalline titanium molecular sieve zeolites. US Patent 4938939 A, 3 July 1990
277.
go back to reference Stoeger JA, Veziri CM, Palomino M, Corma A, Kanellopoulos NK, Tsapatsis MN, Karanikolos G (2012) On stability and performance of highly c-oriented AlPO4-5 and CoAPO-5 membranes. Microporous Mesoporous Mater 147:286–294 Stoeger JA, Veziri CM, Palomino M, Corma A, Kanellopoulos NK, Tsapatsis MN, Karanikolos G (2012) On stability and performance of highly c-oriented AlPO4-5 and CoAPO-5 membranes. Microporous Mesoporous Mater 147:286–294
278.
go back to reference Nagase T, Kiyozumi Y, Hasegava Y, Inoue T, Ikeda T (2007) Dehydration of concentrated acetic acid solutions by pervaporation using novel MER zeolite membranes. Chem Lett 36:594–595 Nagase T, Kiyozumi Y, Hasegava Y, Inoue T, Ikeda T (2007) Dehydration of concentrated acetic acid solutions by pervaporation using novel MER zeolite membranes. Chem Lett 36:594–595
279.
go back to reference Hasegawa Y, Nagase T, Kiyozumi Y, Mizukami F (2010) Preparation, characterization, and dehydration performance of MER-type zeolite membranes. Sep Purif Technol 73:25–31 Hasegawa Y, Nagase T, Kiyozumi Y, Mizukami F (2010) Preparation, characterization, and dehydration performance of MER-type zeolite membranes. Sep Purif Technol 73:25–31
280.
go back to reference Kim SJ, Yang S, Reddy GK, Smirniotis P, Dong J (2013) Zeolite membrane reactor for high-temperature water-gas shift reaction: effects of membrane properties and operating conditions. Energy Fuel 27:4471–4480 Kim SJ, Yang S, Reddy GK, Smirniotis P, Dong J (2013) Zeolite membrane reactor for high-temperature water-gas shift reaction: effects of membrane properties and operating conditions. Energy Fuel 27:4471–4480
281.
go back to reference Yang S, Lin X, Lewis W, Suyetin M, Bichoutskaia E, Parker JE, Tang CC, Allan DR, Rizkallah PJ, Hubberstey P, Champness NR, Thomas KM, Blake AJ, Schro´´der M (2012) A partially interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide. Nat Mater 11:710–716 Yang S, Lin X, Lewis W, Suyetin M, Bichoutskaia E, Parker JE, Tang CC, Allan DR, Rizkallah PJ, Hubberstey P, Champness NR, Thomas KM, Blake AJ, Schro´´der M (2012) A partially interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide. Nat Mater 11:710–716
282.
go back to reference Radnedge S (2012) New holey material soaks up CO2/News/gasworld. 18 June 2012 Radnedge S (2012) New holey material soaks up CO2/News/gasworld. 18 June 2012
284.
go back to reference Shah M, McCarthy MC, Sachdeva S, Lee AK, Jeong HK (2012) Current status of metal-organic framework membranes for gas separations: promises and challenges. Ind Eng Chem Res 51:2179–2199 Shah M, McCarthy MC, Sachdeva S, Lee AK, Jeong HK (2012) Current status of metal-organic framework membranes for gas separations: promises and challenges. Ind Eng Chem Res 51:2179–2199
285.
go back to reference Rowsell JLC, Yaghi OM (2004) Metal-organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73:3–14 Rowsell JLC, Yaghi OM (2004) Metal-organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73:3–14
286.
go back to reference Yoo Y, Lai Z, Jeong HK (2009) Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth. Microporous Mesoporous Mater 123:100–106 Yoo Y, Lai Z, Jeong HK (2009) Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth. Microporous Mesoporous Mater 123:100–106
287.
go back to reference Liu Y, Ng Z, Khan AE, Jeong HK, Ching CB, Lai Z (2009) Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Microporous Mesoporous Mater 118:296–301 Liu Y, Ng Z, Khan AE, Jeong HK, Ching CB, Lai Z (2009) Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Microporous Mesoporous Mater 118:296–301
288.
go back to reference Klinowski J, Paz FAA, Silva P, Rocha J (2011) Microwave-assisted synthesis of metal-organic frameworks. Dalton Trans 40:321–330 Klinowski J, Paz FAA, Silva P, Rocha J (2011) Microwave-assisted synthesis of metal-organic frameworks. Dalton Trans 40:321–330
289.
go back to reference Hu Y, Dong X, Nan J, Jin W, Ren X, Xu N, Lee YM (2011) Metal-organic framework membranes fabricated via reactive seeding. Chem Commun 47:737–739 Hu Y, Dong X, Nan J, Jin W, Ren X, Xu N, Lee YM (2011) Metal-organic framework membranes fabricated via reactive seeding. Chem Commun 47:737–739
290.
go back to reference Schoedel A, Scherb C, Bein T (2010) Oriented nanoscale films of metal-organic frameworks by temperature gel-layer synthesis. Angew Chem Int Ed 49:7225–7228 Schoedel A, Scherb C, Bein T (2010) Oriented nanoscale films of metal-organic frameworks by temperature gel-layer synthesis. Angew Chem Int Ed 49:7225–7228
291.
go back to reference Lu H, Zhu S (2013) Interfacial synthesis of free standing metal-organic framework-membranes. Eur J Inorg Chem 2013:1294–1300 Lu H, Zhu S (2013) Interfacial synthesis of free standing metal-organic framework-membranes. Eur J Inorg Chem 2013:1294–1300
292.
go back to reference Ben T, Lu C, Pei C, Xu S, Qiu S (2012) Polymer-supported and free-standing metal-organic framework membrane. Chem Eur 18:10250–10253 Ben T, Lu C, Pei C, Xu S, Qiu S (2012) Polymer-supported and free-standing metal-organic framework membrane. Chem Eur 18:10250–10253
293.
go back to reference Ai X, Hu X (2003) Study on organic-inorganic hybrid membranes. Huxue Jinzhan 16:83–89 Ai X, Hu X (2003) Study on organic-inorganic hybrid membranes. Huxue Jinzhan 16:83–89
294.
go back to reference Chung TS, Jiang LY, Kulprathipanja S (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog Polym Sci 32:483–507 Chung TS, Jiang LY, Kulprathipanja S (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog Polym Sci 32:483–507
295.
go back to reference Bouma RHB, Checchetti A, Chidichimo G, Drioli E (1997) Permeation through a heterogeneous membrane: the effect of the dispersed phase. J Membr Sci 128:141–149 Bouma RHB, Checchetti A, Chidichimo G, Drioli E (1997) Permeation through a heterogeneous membrane: the effect of the dispersed phase. J Membr Sci 128:141–149
296.
go back to reference Funk CV, Lloyd DRE (2008) Zeolite-filled microporous mixed matrix (ZeoTIPS) membranes: prediction of gas separation performance. J Membr Sci 313:224–231 Funk CV, Lloyd DRE (2008) Zeolite-filled microporous mixed matrix (ZeoTIPS) membranes: prediction of gas separation performance. J Membr Sci 313:224–231
297.
go back to reference Paul DR, Kemps DR (1973) The diffusion time lag in polymer membranes containing adsorptive fillers. J Polym Sci Polym Phys 41:79–93 Paul DR, Kemps DR (1973) The diffusion time lag in polymer membranes containing adsorptive fillers. J Polym Sci Polym Phys 41:79–93
298.
go back to reference Kulprathipanja S, Neuzil RW, Li NN (1988) Separation of fluids by means of mixed matrix membranes. US Patent 4740219, 26 Apr 1988 Kulprathipanja S, Neuzil RW, Li NN (1988) Separation of fluids by means of mixed matrix membranes. US Patent 4740219, 26 Apr 1988
299.
go back to reference Kulprathipanja S, Neuzil RW, Li NN (1992) Separation of gases by means of mixed matrix membranes. US Patent 5127925, 7 July 1992 Kulprathipanja S, Neuzil RW, Li NN (1992) Separation of gases by means of mixed matrix membranes. US Patent 5127925, 7 July 1992
300.
go back to reference Hussain M, König A (2012) Mixed-matrix membranes for gas separation, polydimethylsiloxane filled with zeolite. Chem Eng Technol 35:561–569 Hussain M, König A (2012) Mixed-matrix membranes for gas separation, polydimethylsiloxane filled with zeolite. Chem Eng Technol 35:561–569
301.
go back to reference Ismail AF, Kusworo TD, Mustafa A (2008) Enhanced gas permeation of polyethersulfone mixed matrix hollow fiber membranes using novel Dynasylan Ameo silane agent. J Membr Sci 319:306–312 Ismail AF, Kusworo TD, Mustafa A (2008) Enhanced gas permeation of polyethersulfone mixed matrix hollow fiber membranes using novel Dynasylan Ameo silane agent. J Membr Sci 319:306–312
302.
go back to reference Widjojo N, Chung TS, Kulprathipanja S (2008) The fabrication of hollow fiber membranes with double-layer mixed-matrix materials for gas separation. J Membr Sci 325:326–335 Widjojo N, Chung TS, Kulprathipanja S (2008) The fabrication of hollow fiber membranes with double-layer mixed-matrix materials for gas separation. J Membr Sci 325:326–335
303.
go back to reference Chaidou CI, Pantoleontos G, Koutsonikolas DE, Kaldis SP, Sakellaropoulos GP (2012) Gas separation properties of polyimide-zeolite mixed matrix membrane. Sep Purif Technol 47:950–962 Chaidou CI, Pantoleontos G, Koutsonikolas DE, Kaldis SP, Sakellaropoulos GP (2012) Gas separation properties of polyimide-zeolite mixed matrix membrane. Sep Purif Technol 47:950–962
304.
go back to reference Boroglu MS, Gurkaynak MA (2011) Fabrication and characterization of silica modified polyimide-zeolite mixed matrix membranes for gas separation properties. Polym Bull 66:463–478 Boroglu MS, Gurkaynak MA (2011) Fabrication and characterization of silica modified polyimide-zeolite mixed matrix membranes for gas separation properties. Polym Bull 66:463–478
305.
go back to reference Karkhanechi H, Kazemian H, Nazockdast H, Mozdianfard MR, Bidoki SM (2012) Fabrication of homogeneous polymer-zeolite nanocomposites as mixed-matrix membranes for gas separation. Chem Eng Technol 35:885–888 Karkhanechi H, Kazemian H, Nazockdast H, Mozdianfard MR, Bidoki SM (2012) Fabrication of homogeneous polymer-zeolite nanocomposites as mixed-matrix membranes for gas separation. Chem Eng Technol 35:885–888
306.
go back to reference Adams R, Carson C, Ward J, Tannenbaum R, Koros W (2010) Metal organic framework mixed matrix membranes for gas separation. Microporous Mesoporous Mater 131:13–20 Adams R, Carson C, Ward J, Tannenbaum R, Koros W (2010) Metal organic framework mixed matrix membranes for gas separation. Microporous Mesoporous Mater 131:13–20
307.
go back to reference Nik OG, Chen XY, Kaliaguine S (2012) Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. J Membr Sci 413–414:48–61 Nik OG, Chen XY, Kaliaguine S (2012) Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. J Membr Sci 413–414:48–61
308.
go back to reference Tanh Jeazet HB, Staudt C, Janiak C (2012) Metal–organic frameworks in mixed-matrix membranes for gas separation. Dalton Trans 41:14003–14027 Tanh Jeazet HB, Staudt C, Janiak C (2012) Metal–organic frameworks in mixed-matrix membranes for gas separation. Dalton Trans 41:14003–14027
309.
go back to reference Hu J, Cai H, Ren H, Wei Y, Xu Z, Liu H, Hu Y (2010) Mixed-matrix membrane hollow fibers of Cu2(BTC)2 MOF and polyimide for gas separation and adsorption. Ind Eng Chem Res 49:12605–12612 Hu J, Cai H, Ren H, Wei Y, Xu Z, Liu H, Hu Y (2010) Mixed-matrix membrane hollow fibers of Cu2(BTC)2 MOF and polyimide for gas separation and adsorption. Ind Eng Chem Res 49:12605–12612
310.
go back to reference Basu S, Cano-Odena A, Vankelecom IFJ (2011) MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations. Sep Purif Technol 81:31–40 Basu S, Cano-Odena A, Vankelecom IFJ (2011) MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations. Sep Purif Technol 81:31–40
311.
go back to reference Li Y, Chung TS, Huang Z, Kulprathipanja S (2008) Dual-layer polyethersulfone (PES)/BTDA-TDI/MDI co-polyimide (P84) hollow fiber membrane with submicron PES-zeolite beta mixed matrix dense-selective layer for gas separation. J Membr Sci 277:28–37 Li Y, Chung TS, Huang Z, Kulprathipanja S (2008) Dual-layer polyethersulfone (PES)/BTDA-TDI/MDI co-polyimide (P84) hollow fiber membrane with submicron PES-zeolite beta mixed matrix dense-selective layer for gas separation. J Membr Sci 277:28–37
312.
go back to reference Jiang LY, Chung TS, Kulprathipanja S (2006) Fabrication of mixed matrix hollow fibers with intimate polymer-zeolite interface for gas separation. AIChE J 52:2898–2908 Jiang LY, Chung TS, Kulprathipanja S (2006) Fabrication of mixed matrix hollow fibers with intimate polymer-zeolite interface for gas separation. AIChE J 52:2898–2908
313.
go back to reference Cong H, Radosz M, Towler BF, Shen Y (2007) Polymer-inorganic membrane for gas separation. Sep Purif Technol 55:281–291 Cong H, Radosz M, Towler BF, Shen Y (2007) Polymer-inorganic membrane for gas separation. Sep Purif Technol 55:281–291
314.
go back to reference Liu H (1997) Synthesis of TiO2 nanopowder enwrapped by organic membrane with microwave induced plasma method. Huaxue Tongbao 10:44–46 Liu H (1997) Synthesis of TiO2 nanopowder enwrapped by organic membrane with microwave induced plasma method. Huaxue Tongbao 10:44–46
315.
go back to reference Iwata M, Adahi T, Tomidokoro M, Ohta M, Kobayashi T (2003) Hybrid sol-gel membranes of polyacrylonitrile-tetraethoxysilane composites for gas perm selectivity. J Appl Polym Sci 88:1752–1759 Iwata M, Adahi T, Tomidokoro M, Ohta M, Kobayashi T (2003) Hybrid sol-gel membranes of polyacrylonitrile-tetraethoxysilane composites for gas perm selectivity. J Appl Polym Sci 88:1752–1759
316.
go back to reference Ahmad J, Deshmukh K, Hägg MB (2013) Influence of TiO2 on the chemical, mechanical, and gas separation properties of polyvinyl alcohol-titanium dioxide (PVA-TiO2) nanocomposite membrane. Int J Polym Anal Charact 18:287–296 Ahmad J, Deshmukh K, Hägg MB (2013) Influence of TiO2 on the chemical, mechanical, and gas separation properties of polyvinyl alcohol-titanium dioxide (PVA-TiO2) nanocomposite membrane. Int J Polym Anal Charact 18:287–296
317.
go back to reference Perez EV, Balkus KJ, Ferraris JP, Musselman IH (2009) Mixed-matrix membranes containing MOF-5 for gas separation. J Membr Sci 328:165–173 Perez EV, Balkus KJ, Ferraris JP, Musselman IH (2009) Mixed-matrix membranes containing MOF-5 for gas separation. J Membr Sci 328:165–173
318.
go back to reference Morooka S, Kusakabe K (1999) Ceramics: getting into the 2000s, Part D. In: Advances in science and technology (Faenza, Italy), vol 16, pp 389–400 Morooka S, Kusakabe K (1999) Ceramics: getting into the 2000s, Part D. In: Advances in science and technology (Faenza, Italy), vol 16, pp 389–400
319.
go back to reference Gopolan S (2002) Using ceramic mixed ionic and electronic conductors for gas separation. JOM 54:26–29 Gopolan S (2002) Using ceramic mixed ionic and electronic conductors for gas separation. JOM 54:26–29
320.
go back to reference Kulprathipanja A, Alptekin GO, Falconer JL, Way JD (2005) Pd and Pd-Cu membranes: inhibition of H2 Permeation by H2S. J Membr Sci 254:49–62 Kulprathipanja A, Alptekin GO, Falconer JL, Way JD (2005) Pd and Pd-Cu membranes: inhibition of H2 Permeation by H2S. J Membr Sci 254:49–62
321.
go back to reference Kluiters SCA (2004) Status review on membrane system for hydrogen preparation. Intermediate Report EU Project MIGREYD NNES-2001-670, ECNC-04-102 Kluiters SCA (2004) Status review on membrane system for hydrogen preparation. Intermediate Report EU Project MIGREYD NNES-2001-670, ECNC-04-102
322.
go back to reference Fuertes AB (2000) Adsorption-selective carbon membranes for gas separation. J Membr Sci 177:9–16 Fuertes AB (2000) Adsorption-selective carbon membranes for gas separation. J Membr Sci 177:9–16
323.
go back to reference Jones CW, Koros WJ (1994) Carbon molecular sieve gas separation membranes. Part I. Preparation and characterization based on polyimide precursors. Carbon 32:1419–1425 Jones CW, Koros WJ (1994) Carbon molecular sieve gas separation membranes. Part I. Preparation and characterization based on polyimide precursors. Carbon 32:1419–1425
324.
go back to reference Ismail AF, David LIB (2001) A review of the latest development of carbon membranes for gas separation. J Membr Sci 193:1–18 Ismail AF, David LIB (2001) A review of the latest development of carbon membranes for gas separation. J Membr Sci 193:1–18
325.
go back to reference Sauf SM, Ismail AF (2004) Fabrication of carbon membranes for gas separation—a review. Carbon 42:241–259 Sauf SM, Ismail AF (2004) Fabrication of carbon membranes for gas separation—a review. Carbon 42:241–259
326.
go back to reference Saufi SM, Ismail AF (2002) Development and characterization of polyacrylonitrile (PAN) based carbon hollow fiber membrane. Songklanakarin J Sci Technol 24:843–854 Saufi SM, Ismail AF (2002) Development and characterization of polyacrylonitrile (PAN) based carbon hollow fiber membrane. Songklanakarin J Sci Technol 24:843–854
327.
go back to reference Song C, Wang T, Qiu Y, Qiu J, Cheng H (2009) Effect of carbonization atmosphere on the structure changes of PAN carbon membranes. J Porous Mater 16:197–203 Song C, Wang T, Qiu Y, Qiu J, Cheng H (2009) Effect of carbonization atmosphere on the structure changes of PAN carbon membranes. J Porous Mater 16:197–203
328.
go back to reference Grainger D, Hägg MB (2008) The recovery of carbon molecular sieve membranes of hydrogen transmitted in natural gas networks. Int J Hydrogen Energy 33:2379–2388 Grainger D, Hägg MB (2008) The recovery of carbon molecular sieve membranes of hydrogen transmitted in natural gas networks. Int J Hydrogen Energy 33:2379–2388
329.
go back to reference Favas EP, Kapantaidakis GC, Nolan JW, Mitropoulos AC, Kanellopoulos NK (2007) Preparation, characterization and gas permeation properties of carbon hollow fiber membranes based on Matrimid® 5218 precursor. J Mater Process Technol 186:102–110 Favas EP, Kapantaidakis GC, Nolan JW, Mitropoulos AC, Kanellopoulos NK (2007) Preparation, characterization and gas permeation properties of carbon hollow fiber membranes based on Matrimid® 5218 precursor. J Mater Process Technol 186:102–110
330.
go back to reference Salleh WNW, Ismail AF (2011) Fabrication and characterization of PEI/PVP-based carbon hollow fiber membranes for CO2/CH4 and CO2/N2 separation. AIChE J 58:3167–3175 Salleh WNW, Ismail AF (2011) Fabrication and characterization of PEI/PVP-based carbon hollow fiber membranes for CO2/CH4 and CO2/N2 separation. AIChE J 58:3167–3175
331.
go back to reference Favvas EP, Kouvelos EP, Romanos GE, Pillatos GL, Mitropoulos AC, Kanellopoulos NK (2008) Characterization of highly selective microporous carbon hollow fiber membranes prepared from commercial co-polyimide. J Porous Mater 15:625–613 Favvas EP, Kouvelos EP, Romanos GE, Pillatos GL, Mitropoulos AC, Kanellopoulos NK (2008) Characterization of highly selective microporous carbon hollow fiber membranes prepared from commercial co-polyimide. J Porous Mater 15:625–613
332.
go back to reference Rao PS, Wey MY, Tseng HH, Kumjar IA, Weng TH (2008) A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application. Microporous Mesoporous Mater 113:499–510 Rao PS, Wey MY, Tseng HH, Kumjar IA, Weng TH (2008) A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application. Microporous Mesoporous Mater 113:499–510
333.
go back to reference Kim YK, Park HB, Lee YM (2004) Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their gas separation properties. J Membr Sci 343:9–17 Kim YK, Park HB, Lee YM (2004) Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their gas separation properties. J Membr Sci 343:9–17
334.
go back to reference Kim YK, Park HB, Lee YM (2005) Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: effect of the molecular weight of polyvinylpyrrolidone. J Membr Sci 251:159–167 Kim YK, Park HB, Lee YM (2005) Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: effect of the molecular weight of polyvinylpyrrolidone. J Membr Sci 251:159–167
335.
go back to reference Lee HJ, Suda H, Haraya K, Moon SH (2007) Gas permeation properties of carbon molecular sieving membranes derived from the polymer blend of polyphenylene oxide (PPO)/polyvinylpyrrolidone (PVP). J Membr Sci 296:139–146 Lee HJ, Suda H, Haraya K, Moon SH (2007) Gas permeation properties of carbon molecular sieving membranes derived from the polymer blend of polyphenylene oxide (PPO)/polyvinylpyrrolidone (PVP). J Membr Sci 296:139–146
336.
go back to reference Zhang B, Wang T, Wu Y, Liu Q, Liu S, Qiu J (2008) Preparation and gas permeation of composite carbon membranes from poly(phthalazinone ether sulfone ketone). Sep Purif Technol 60:259–263 Zhang B, Wang T, Wu Y, Liu Q, Liu S, Qiu J (2008) Preparation and gas permeation of composite carbon membranes from poly(phthalazinone ether sulfone ketone). Sep Purif Technol 60:259–263
337.
go back to reference Yoshimune M, Fujiwara I, Suda H, Haraya K (2005) Novel carbon molecular sieve membranes derived from poly (phenylene oxide) and its derivatives for gas separation. Chem Lett 34:958–959 Yoshimune M, Fujiwara I, Suda H, Haraya K (2005) Novel carbon molecular sieve membranes derived from poly (phenylene oxide) and its derivatives for gas separation. Chem Lett 34:958–959
338.
go back to reference Hatori H, Yamada Y, Shiraishi M (1992) Preparation of macroporous carbon films from polyimide by phase inversion method. Carbon 30:303–304 Hatori H, Yamada Y, Shiraishi M (1992) Preparation of macroporous carbon films from polyimide by phase inversion method. Carbon 30:303–304
339.
go back to reference Hatori H, Shiraishi M, Nakata H, Yoshitomi S (1992) Carbon molecular sieve films from polyimide. Carbon 30:305–306 Hatori H, Shiraishi M, Nakata H, Yoshitomi S (1992) Carbon molecular sieve films from polyimide. Carbon 30:305–306
340.
go back to reference Rao MB, Sirkar S (1993) Nanoporous carbon membranes for separation of gas mixtures by selective surface flow. J Membr Sci 85:253–254 Rao MB, Sirkar S (1993) Nanoporous carbon membranes for separation of gas mixtures by selective surface flow. J Membr Sci 85:253–254
341.
go back to reference Rao MB, Sirkar S (1996) Performance and pore characterization of nanoporous carbon membrane for gas separation. J Membr Sci 110:109–118 Rao MB, Sirkar S (1996) Performance and pore characterization of nanoporous carbon membrane for gas separation. J Membr Sci 110:109–118
342.
go back to reference Rao MB, Sirkar S (1993) Nanoporous carbon membrane for gas separation. Gas Sep Purif 7:279–284 Rao MB, Sirkar S (1993) Nanoporous carbon membrane for gas separation. Gas Sep Purif 7:279–284
343.
go back to reference Centeno TA, Vilas JL, Fuertes AB (2004) Effect of phenolic resin pyrolysis conditions on carbon membrane performance for gas separation. J Membr Sci 228:45–54 Centeno TA, Vilas JL, Fuertes AB (2004) Effect of phenolic resin pyrolysis conditions on carbon membrane performance for gas separation. J Membr Sci 228:45–54
344.
go back to reference Acharya M, Foley HC (1991) Spray-coating of nanoporous carbon membranes for air separation. J Membr Sci 161:1–5 Acharya M, Foley HC (1991) Spray-coating of nanoporous carbon membranes for air separation. J Membr Sci 161:1–5
345.
go back to reference Centeno TA, Fuertes AB (2000) Carbon molecular sieve gas separation membranes based on poly(vinylidene chloride-co-vinyl chloride). Carbon 38:1067–1073 Centeno TA, Fuertes AB (2000) Carbon molecular sieve gas separation membranes based on poly(vinylidene chloride-co-vinyl chloride). Carbon 38:1067–1073
346.
go back to reference Park HB, Lee YM (2003) Pyrolytic carbon-silica membrane: a promising membrane for improved gas separation. J Membr Sci 213:263–272 Park HB, Lee YM (2003) Pyrolytic carbon-silica membrane: a promising membrane for improved gas separation. J Membr Sci 213:263–272
347.
go back to reference Hosseini SS, Chung TS (2009) Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification. J Membr Sci 328:174–185 Hosseini SS, Chung TS (2009) Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification. J Membr Sci 328:174–185
348.
go back to reference Zhang B, Shen G, Wu Y, Wang T, Qiu J, Xu T, Fu C (2009) Preparation and characterization of carbon membranes derived from poly(phthalazinone ether) for gas separation. Ind Eng Chem Res 48:2886–2890 Zhang B, Shen G, Wu Y, Wang T, Qiu J, Xu T, Fu C (2009) Preparation and characterization of carbon membranes derived from poly(phthalazinone ether) for gas separation. Ind Eng Chem Res 48:2886–2890
349.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58 Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58
350.
go back to reference Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 663:603–605 Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 663:603–605
351.
go back to reference Cho SJ, Shrestha SP, Lee SB, Boo JH (2014) Electrical characteristics of carbon nanotubes by plasma and microwave surface treatments. Bull Korean Chem Soc 35(3):905–907 Cho SJ, Shrestha SP, Lee SB, Boo JH (2014) Electrical characteristics of carbon nanotubes by plasma and microwave surface treatments. Bull Korean Chem Soc 35(3):905–907
352.
go back to reference Wang X, Li Q, Xie J, Jin Z, Wang J, Li Y, Jiang K, Fan S (2009) Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett 9:3137–3141 Wang X, Li Q, Xie J, Jin Z, Wang J, Li Y, Jiang K, Fan S (2009) Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett 9:3137–3141
353.
go back to reference Zhao YL, Stoddart JF (2009) Noncovalent functionalization of single-walled carbon nanotubes. Acc Chem Res 42:1161–1171 Zhao YL, Stoddart JF (2009) Noncovalent functionalization of single-walled carbon nanotubes. Acc Chem Res 42:1161–1171
354.
go back to reference Bernhole J, Brenner D, Buongiorno Nardelli M, Meunier V, Roland C (2002) Mechanical and electrical properties of nanotubes. Annu Rev Mater Sci 32:347–375 Bernhole J, Brenner D, Buongiorno Nardelli M, Meunier V, Roland C (2002) Mechanical and electrical properties of nanotubes. Annu Rev Mater Sci 32:347–375
355.
go back to reference Sholl DS, Johnson JK (2006) Making high-flux membranes with carbon nanotubes. Science 312:1003–1004 Sholl DS, Johnson JK (2006) Making high-flux membranes with carbon nanotubes. Science 312:1003–1004
356.
go back to reference Noy A (2013) Kinetic model of gas transport in carbon nanotube channels. J Phys Chem C 117:7656–7660 Noy A (2013) Kinetic model of gas transport in carbon nanotube channels. J Phys Chem C 117:7656–7660
357.
go back to reference Majumder M, Ajayan PM (2010) Carbon nanotube membranes: a new frontier in membrane science. In: Drioli E, Giorno L (eds) Comprehensive membrane science and engineering. Elsevier Science, Amsterdam Majumder M, Ajayan PM (2010) Carbon nanotube membranes: a new frontier in membrane science. In: Drioli E, Giorno L (eds) Comprehensive membrane science and engineering. Elsevier Science, Amsterdam
358.
go back to reference Bruggen BV (2012) The separation power of nanotubes in membranes: a review. ISRN Nanotechnol 2012:1–17 Bruggen BV (2012) The separation power of nanotubes in membranes: a review. ISRN Nanotechnol 2012:1–17
359.
go back to reference Arora G, Sandler SI (2006) Air separation by single wall carbon nanotubes: mass transport and kinetic selectivity. J Chem Phys 124:084702 Arora G, Sandler SI (2006) Air separation by single wall carbon nanotubes: mass transport and kinetic selectivity. J Chem Phys 124:084702
360.
go back to reference Chen H, Sholl DS (2006) Prediction of selectivity and flux for CH4/H2 separations using single walled carbon nanotubes as membranes. J Membr Sci 269:152–162 Chen H, Sholl DS (2006) Prediction of selectivity and flux for CH4/H2 separations using single walled carbon nanotubes as membranes. J Membr Sci 269:152–162
361.
go back to reference Ackerman DM, Skoulidas AI, Sholl DS, Johnson JK (2003) Diffusivities of Ar and Ne in carbon nanotubes. Mol Simulat 29:677–684 Ackerman DM, Skoulidas AI, Sholl DS, Johnson JK (2003) Diffusivities of Ar and Ne in carbon nanotubes. Mol Simulat 29:677–684
362.
go back to reference Skoulidas AI, Ackerman DM, Johnson JK, Sholl DS (2002) Rapid transport of gases in carbon nanotubes. Phys Rev Lett 89:185901/1–4 Skoulidas AI, Ackerman DM, Johnson JK, Sholl DS (2002) Rapid transport of gases in carbon nanotubes. Phys Rev Lett 89:185901/1–4
363.
go back to reference Kim S, Pechar TW, Marand E (2006) Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination 192:330–339 Kim S, Pechar TW, Marand E (2006) Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination 192:330–339
364.
go back to reference Tseng HH, Kumar IA, Weng TH, Lu CY, Wey MY (2009) Preparation and characterization of carbon molecular sieve membranes for gas separation—the effect of incorporated multi-wall carbon nanotubes. Desalination 240:40–45 Tseng HH, Kumar IA, Weng TH, Lu CY, Wey MY (2009) Preparation and characterization of carbon molecular sieve membranes for gas separation—the effect of incorporated multi-wall carbon nanotubes. Desalination 240:40–45
365.
go back to reference Kusworo TD, Ismail AF, Widiasa IN, Johari S, Sunarso S (2010) CO2 removal from biogas using carbon nanotubes mixed matrix membranes. Int J Sci Eng 1:1–6 Kusworo TD, Ismail AF, Widiasa IN, Johari S, Sunarso S (2010) CO2 removal from biogas using carbon nanotubes mixed matrix membranes. Int J Sci Eng 1:1–6
366.
go back to reference Geim AK, Novoselov KS (2007) The rise of grapheme. Nat Mater 6:183–191 Geim AK, Novoselov KS (2007) The rise of grapheme. Nat Mater 6:183–191
367.
go back to reference Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446:60–63 Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446:60–63
369.
go back to reference Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8:2458–2462 Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8:2458–2462
371.
go back to reference Forbeaux I, Themlin J-M, Debever J-M (1998) Heteroepitaxial graphite on 6H-SiC(0001): interface formation through conduction-band electronic structure. Phys Rev B 58:16396–16406 Forbeaux I, Themlin J-M, Debever J-M (1998) Heteroepitaxial graphite on 6H-SiC(0001): interface formation through conduction-band electronic structure. Phys Rev B 58:16396–16406
372.
go back to reference Cambaz ZG, Yushin G, Osswald S, Mochalin V, Gogotsi Y (2008) Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC. Carbon 48:841–849 Cambaz ZG, Yushin G, Osswald S, Mochalin V, Gogotsi Y (2008) Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC. Carbon 48:841–849
373.
go back to reference Du H, Li J, Zhang J, Su G, Li X, Zhao Y (2011) Separation of hydrogen and nitrogen gases with porous graphene membrane. J Phys Chem C 115:23261–23266 Du H, Li J, Zhang J, Su G, Li X, Zhao Y (2011) Separation of hydrogen and nitrogen gases with porous graphene membrane. J Phys Chem C 115:23261–23266
374.
go back to reference Hauser AW, Schwerdtfeger P (2012) Methane-selective nanoporous graphene membranes for gas purification. Phys Chem Chem Phys 14:13292–13298 Hauser AW, Schwerdtfeger P (2012) Methane-selective nanoporous graphene membranes for gas purification. Phys Chem Chem Phys 14:13292–13298
375.
go back to reference Koeing SP, Wang L, Pellegrino J, Bunch S (2012) Selective molecular sieving through porous graphene. Nat Nanotechnol 7:728–732 Koeing SP, Wang L, Pellegrino J, Bunch S (2012) Selective molecular sieving through porous graphene. Nat Nanotechnol 7:728–732
376.
go back to reference Oyama ST, Lee D, Hacarlioglu P, Saraf RF (2004) Theory of hydrogen permeability in nonporous silica membranes. J Membr Sci 244:45–53 Oyama ST, Lee D, Hacarlioglu P, Saraf RF (2004) Theory of hydrogen permeability in nonporous silica membranes. J Membr Sci 244:45–53
377.
go back to reference Ying J, Peng C, Lei F, Huiqian L, Huan Y, Cong R, Lei S, Changzhi G, Hai-Hu W (2008) Critical fields and anisotropy of NdFeAsO0.82F0.18 single crystals. Appl Phys Lett 93:032503 Ying J, Peng C, Lei F, Huiqian L, Huan Y, Cong R, Lei S, Changzhi G, Hai-Hu W (2008) Critical fields and anisotropy of NdFeAsO0.82F0.18 single crystals. Appl Phys Lett 93:032503
378.
go back to reference Qin X, Meng Q, Feng Y, Gao Y (2013) Graphene with line defect as a membrane for gas separation: design via a first-principles modeling. Surf Sci 607:153–158 Qin X, Meng Q, Feng Y, Gao Y (2013) Graphene with line defect as a membrane for gas separation: design via a first-principles modeling. Surf Sci 607:153–158
379.
go back to reference Jiang DE, Cooper VR, Dai S (2009) Porous graphene as the ultimate membrane for gas separation. Nano Lett 9:4019–4024 Jiang DE, Cooper VR, Dai S (2009) Porous graphene as the ultimate membrane for gas separation. Nano Lett 9:4019–4024
380.
go back to reference Blankenburg S, Bieri M, Fasel R, Mullen K, Pignedoli CA, Passerone D (2010) Graphene as an atmospheric nanofilter. Small 6:2266–2271 Blankenburg S, Bieri M, Fasel R, Mullen K, Pignedoli CA, Passerone D (2010) Graphene as an atmospheric nanofilter. Small 6:2266–2271
381.
go back to reference Schrier J (2010) Helium separation using porous graphene membranes. J Phys Chem Lett 1:2284–2287 Schrier J (2010) Helium separation using porous graphene membranes. J Phys Chem Lett 1:2284–2287
382.
go back to reference Schrier J, McClain J (2012) Thermally-driven isotope separation across nanoporous graphene. Chem Phys Lett 521:118–124 Schrier J, McClain J (2012) Thermally-driven isotope separation across nanoporous graphene. Chem Phys Lett 521:118–124
383.
go back to reference Jungthawan S, Reunchan P, Limpijumnog S (2013) Theoretical study of strained porous structures and their gas separation properties. Carbon 54:359–364 Jungthawan S, Reunchan P, Limpijumnog S (2013) Theoretical study of strained porous structures and their gas separation properties. Carbon 54:359–364
384.
go back to reference Lee J, Aluru NR (2013) Water-solubility-driven separation of gases using graphene membrane. J Membr Sci 428:546–553 Lee J, Aluru NR (2013) Water-solubility-driven separation of gases using graphene membrane. J Membr Sci 428:546–553
385.
go back to reference Lai Z, Bonilla G, Diaz I, Nery JG, Sujaoti K, Amat MA, Kokkoli E, Terasaki O, Thompson RW, Tsapatsis M, Vlachos DG (2003) Microstructural optimization of a zeolite membrane for organic vapor separation. Science 300:456–460 Lai Z, Bonilla G, Diaz I, Nery JG, Sujaoti K, Amat MA, Kokkoli E, Terasaki O, Thompson RW, Tsapatsis M, Vlachos DG (2003) Microstructural optimization of a zeolite membrane for organic vapor separation. Science 300:456–460
386.
go back to reference Park HB, Lee YM (2005) Fabrications and characterization of nanoporous carbon/silica membrane. Adv Mater 17:477–483 Park HB, Lee YM (2005) Fabrications and characterization of nanoporous carbon/silica membrane. Adv Mater 17:477–483
387.
go back to reference Yampolskii Y, Pinnau I, Freeman B (eds) (2006) Materials science of membrane for gas and vapor separation. John Wiley & Sons, Chichester, UK Yampolskii Y, Pinnau I, Freeman B (eds) (2006) Materials science of membrane for gas and vapor separation. John Wiley & Sons, Chichester, UK
388.
go back to reference Park HB, Jung CH, Lee YM, Hill AJ, Pas SJ, Mudie ST, Wagner EV, Freeman BD, Cookson DJ (2007) Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318:254–258 Park HB, Jung CH, Lee YM, Hill AJ, Pas SJ, Mudie ST, Wagner EV, Freeman BD, Cookson DJ (2007) Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318:254–258
389.
go back to reference Khayet M, Matsuura T (2011) Membrane distillation, principles and applications. Elsevier, Amsterdam Khayet M, Matsuura T (2011) Membrane distillation, principles and applications. Elsevier, Amsterdam
390.
go back to reference Henis JMS, Tripodi MK (1980) Multicomponent membranes for gas separation. US Patent 4230463A, 28 Oct 1980 Henis JMS, Tripodi MK (1980) Multicomponent membranes for gas separation. US Patent 4230463A, 28 Oct 1980
391.
go back to reference Fritzsche AK, Cruse CA, Kesting RE, Murphy MK (1990) Hollow fiber membranes spun from lewis acid:base complexes. I. Structure determination by oxygen plasma ablation. J Appl Polym Sci 40:19–40 Fritzsche AK, Cruse CA, Kesting RE, Murphy MK (1990) Hollow fiber membranes spun from lewis acid:base complexes. I. Structure determination by oxygen plasma ablation. J Appl Polym Sci 40:19–40
392.
go back to reference Kesting RE (1990) The four tires of structure in integrally skinned phase inversion membranes and their relevance to the various separation regimes. J Appl Polym Sci 41:2739–2752 Kesting RE (1990) The four tires of structure in integrally skinned phase inversion membranes and their relevance to the various separation regimes. J Appl Polym Sci 41:2739–2752
393.
go back to reference Chung TS, Teoh SK, Hu X (1997) Formation of ultrathin high-performance hollow fiber membranes. J Membr Sci 133:161–175 Chung TS, Teoh SK, Hu X (1997) Formation of ultrathin high-performance hollow fiber membranes. J Membr Sci 133:161–175
394.
go back to reference Shieh JJ, Chung TS, Wang R, Srinivasan MP, Paul DR (2001) Gas separation performance of poly(4-vinylpyridine)/polyetherimide composite hollow fibers. J Membr Sci 182:111–123 Shieh JJ, Chung TS, Wang R, Srinivasan MP, Paul DR (2001) Gas separation performance of poly(4-vinylpyridine)/polyetherimide composite hollow fibers. J Membr Sci 182:111–123
395.
go back to reference Husain S (2013) Methods of preparing a crosslinked fiber membrane. US Patent 20130239805 A1, 19 Sept 2013 Husain S (2013) Methods of preparing a crosslinked fiber membrane. US Patent 20130239805 A1, 19 Sept 2013
396.
go back to reference Baker WR (2002) Future directions of membrane gas separation technology. Ind Eng Chem Res 41:1393–1411 Baker WR (2002) Future directions of membrane gas separation technology. Ind Eng Chem Res 41:1393–1411
397.
go back to reference Kesting RE, Cruse CA, Fritzsche AK, Malon RF, Murphy MK, Handermann AC (1992) Asymmetric gas separation membranes having graded density skins. EP0257012 B1, 7 Oct 1992 Kesting RE, Cruse CA, Fritzsche AK, Malon RF, Murphy MK, Handermann AC (1992) Asymmetric gas separation membranes having graded density skins. EP0257012 B1, 7 Oct 1992
398.
go back to reference Kusakabe K, Li ZY, Maeda H, Morooka S (1995) Preparation of supported composite membrane by pyrolysis of polycarbosilane for gas separation at high temperature. J Membr Sci 103:175–180 Kusakabe K, Li ZY, Maeda H, Morooka S (1995) Preparation of supported composite membrane by pyrolysis of polycarbosilane for gas separation at high temperature. J Membr Sci 103:175–180
399.
go back to reference Ren X, Ren J, Deng M (2012) Poly(amide-6-b-ethylene oxide) membranes for sour gas separation. Sep Purif Technol 89:1–8 Ren X, Ren J, Deng M (2012) Poly(amide-6-b-ethylene oxide) membranes for sour gas separation. Sep Purif Technol 89:1–8
400.
go back to reference Jiang X, Ding J, Kumar A (2008) Polyurethane-poly(vinylidene fluoride) (PU-PVDF) thin film composite membranes for gas separation. J Membr Sci 323:371–378 Jiang X, Ding J, Kumar A (2008) Polyurethane-poly(vinylidene fluoride) (PU-PVDF) thin film composite membranes for gas separation. J Membr Sci 323:371–378
401.
go back to reference Gupta Y, Hellgardt K, Wakeman RJ (2006) Enhanced permeability of polyaniline based nano membranes for gas separation. J Membr Sci 282:60–70 Gupta Y, Hellgardt K, Wakeman RJ (2006) Enhanced permeability of polyaniline based nano membranes for gas separation. J Membr Sci 282:60–70
402.
go back to reference Lopez JL, Matson SL, Marchese J, Quinn JA (1986) Diffusion through composite membranes: a two dimensional analysis. J Membr Sci 27:301–325 Lopez JL, Matson SL, Marchese J, Quinn JA (1986) Diffusion through composite membranes: a two dimensional analysis. J Membr Sci 27:301–325
403.
go back to reference Henis JMS, Tripodi MK (1980) A novel approach to gas separations using composite hollow fiber membranes. Sep Sci Technol 15:1059–1068 Henis JMS, Tripodi MK (1980) A novel approach to gas separations using composite hollow fiber membranes. Sep Sci Technol 15:1059–1068
404.
go back to reference Henis JMS, Tripodi MK (1981) Composite hollow fiber membranes for gas separation: the resistance model approach. J Membr Sci 8:233–246 Henis JMS, Tripodi MK (1981) Composite hollow fiber membranes for gas separation: the resistance model approach. J Membr Sci 8:233–246
405.
go back to reference Reid BD, Ebron VHM, Musselman IH, Ferraris JP, Balkus JKJ (2002) Enhanced gas selectivity in thin film composite membranes of poly(3-(2-acetoxyethyl)thiophene). J Membr Sci 195:181–192 Reid BD, Ebron VHM, Musselman IH, Ferraris JP, Balkus JKJ (2002) Enhanced gas selectivity in thin film composite membranes of poly(3-(2-acetoxyethyl)thiophene). J Membr Sci 195:181–192
406.
go back to reference Way JD, Noble RD, Flynn TM, Sloan ED (1982) Liquid membrane transport: a survey. J Membr Sci 12:239–259 Way JD, Noble RD, Flynn TM, Sloan ED (1982) Liquid membrane transport: a survey. J Membr Sci 12:239–259
407.
go back to reference Kocherginsky NM, Yang Q, Seelam L (2007) Recent advances in supported liquid membrane technology. Sep Purif Technol 53:171–177 Kocherginsky NM, Yang Q, Seelam L (2007) Recent advances in supported liquid membrane technology. Sep Purif Technol 53:171–177
408.
go back to reference Ward WJ, Robb WL (1967) Carbon dioxide-oxygen separation: facilitated transport of carbon dioxide across a liquid film. Science 156:1481–1484 Ward WJ, Robb WL (1967) Carbon dioxide-oxygen separation: facilitated transport of carbon dioxide across a liquid film. Science 156:1481–1484
409.
go back to reference Baker RW, Roman I, Lonsdale HK (1987) Liquid membranes for the production of oxygen enriched air. J Membr Sci 31:15–29 Baker RW, Roman I, Lonsdale HK (1987) Liquid membranes for the production of oxygen enriched air. J Membr Sci 31:15–29
410.
go back to reference Lee SH, Kim BS, Lee EW, Park YI, Lee JM (2006) The removal of acid gases from crude natural gas by using novel supported liquid membranes. Desalination 200:21–22 Lee SH, Kim BS, Lee EW, Park YI, Lee JM (2006) The removal of acid gases from crude natural gas by using novel supported liquid membranes. Desalination 200:21–22
411.
go back to reference Chen XS, Nishide H, Tsuchida E (1996) Analysis of facilitated oxygen transport through in a liquid membrane of hemoglobin. Bull Chem Soc Jpn 69:255–259 Chen XS, Nishide H, Tsuchida E (1996) Analysis of facilitated oxygen transport through in a liquid membrane of hemoglobin. Bull Chem Soc Jpn 69:255–259
412.
go back to reference Castro-Domínguez B, Leelachaikul P, Takagaki A, Sugawara T, Kikuchi R, Oyama ST (2013) Perfluorocarbon-based supported liquid membrane for O2/N2. Sep Purif Technol 118:19–24 Castro-Domínguez B, Leelachaikul P, Takagaki A, Sugawara T, Kikuchi R, Oyama ST (2013) Perfluorocarbon-based supported liquid membrane for O2/N2. Sep Purif Technol 118:19–24
413.
go back to reference Deetz DW (1987) Stabilized ultrathin liquid membranes for gas separation. In: Noble RD, Way JD (eds) Liquid membranes, ACS symposium series. American Chemical Society, Washington, DC Deetz DW (1987) Stabilized ultrathin liquid membranes for gas separation. In: Noble RD, Way JD (eds) Liquid membranes, ACS symposium series. American Chemical Society, Washington, DC
414.
go back to reference Ward WJ (1970) Analytical and experimental studies of facilitated transport. AIChE J 16:405–410 Ward WJ (1970) Analytical and experimental studies of facilitated transport. AIChE J 16:405–410
415.
go back to reference Donaldson TL, Quinn JA (1975) Carbon dioxide transport through enzymatically active synthetic membranes. Chem Eng Sci 30:103–115 Donaldson TL, Quinn JA (1975) Carbon dioxide transport through enzymatically active synthetic membranes. Chem Eng Sci 30:103–115
416.
go back to reference Ghai RK, Ertl H, Dullien FAL (1973) Liquid diffusion of nonelectrolytes, Part I. AIChE J 19:881–900 Ghai RK, Ertl H, Dullien FAL (1973) Liquid diffusion of nonelectrolytes, Part I. AIChE J 19:881–900
417.
go back to reference Ghai RK, Ertl H, Dullien FAL (1974) Liquid diffusion of nonelectrolytes, Part II. AIChE J 20:1–20 Ghai RK, Ertl H, Dullien FAL (1974) Liquid diffusion of nonelectrolytes, Part II. AIChE J 20:1–20
418.
go back to reference Reid RC, Prausnitz JM, Sherwood TK (1977) The properties of gases and liquids. McGraw-Hill, New York Reid RC, Prausnitz JM, Sherwood TK (1977) The properties of gases and liquids. McGraw-Hill, New York
419.
go back to reference Cserjési P, Nemestóthy N, Vass A, Csanádi Z, Bélafi-Bako K (2009) Study on gas separation by supported liquid membranes applying novel ionic liquids. Desalination 246:370–374 Cserjési P, Nemestóthy N, Vass A, Csanádi Z, Bélafi-Bako K (2009) Study on gas separation by supported liquid membranes applying novel ionic liquids. Desalination 246:370–374
420.
go back to reference Seeberger A, Kern C, Uerdingen M, Jess A (2007) Gas separation by supported ionic liquid membranes. In: DGMK-conference, opportunities and challenges at the interface between petrochemistry and refinery, 10–12 Oct 2007, Hamburg, Germany Seeberger A, Kern C, Uerdingen M, Jess A (2007) Gas separation by supported ionic liquid membranes. In: DGMK-conference, opportunities and challenges at the interface between petrochemistry and refinery, 10–12 Oct 2007, Hamburg, Germany
421.
go back to reference Cserjési P, Nemestóthy N, Vass A, Csanádi Z, Bélafi-Bakó K (2009) Study on gas separation by supported liquid membranes applying novel ionic liquids. Desalination 245:743–747 Cserjési P, Nemestóthy N, Vass A, Csanádi Z, Bélafi-Bakó K (2009) Study on gas separation by supported liquid membranes applying novel ionic liquids. Desalination 245:743–747
422.
go back to reference Gan Q, Rooney D, Xue M, Thompson G, Zou Y (2006) An experimental study of gas transport and separation properties of ionic liquids supported on nanofiltration membranes. J Membr Sci 280:948–956 Gan Q, Rooney D, Xue M, Thompson G, Zou Y (2006) An experimental study of gas transport and separation properties of ionic liquids supported on nanofiltration membranes. J Membr Sci 280:948–956
423.
go back to reference Neves L, Nemestóthy N, Alves VD, Cserjési P, Bélafi-Bakó K, Coelhoso I (2009) Separation of bio-hydrogen by supported ionic liquid membranes. Desalination 240:311–315 Neves L, Nemestóthy N, Alves VD, Cserjési P, Bélafi-Bakó K, Coelhoso I (2009) Separation of bio-hydrogen by supported ionic liquid membranes. Desalination 240:311–315
424.
go back to reference Neves L, Dabek W, Coelhoso IM, Crespo JG (2006) Design of new selective Nafion membranes using room temperature ionic liquids. Desalination 199:525–526 Neves L, Dabek W, Coelhoso IM, Crespo JG (2006) Design of new selective Nafion membranes using room temperature ionic liquids. Desalination 199:525–526
425.
go back to reference Cserjési P, Nemestóthy N, Bélafi-Bakó K (2010) Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids. J Membr Sci 349:6–11 Cserjési P, Nemestóthy N, Bélafi-Bakó K (2010) Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids. J Membr Sci 349:6–11
426.
go back to reference Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400 Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400
427.
go back to reference Hanioka S, Maruyama T, Sotani T, Teramoto M, Matsuyama H, Nakashima K, Hanaki M, Kuboto F, Goto M (2008) CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane. J Membr Sci 314:1–4 Hanioka S, Maruyama T, Sotani T, Teramoto M, Matsuyama H, Nakashima K, Hanaki M, Kuboto F, Goto M (2008) CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane. J Membr Sci 314:1–4
428.
go back to reference Zhao W, He G, Nie F, Zhang L, Feng H, Liu H (2012) Membrane liquid loss mechanism of supported ionic liquid membrane for gas separation. J Membr Sci 411–412:73–80 Zhao W, He G, Nie F, Zhang L, Feng H, Liu H (2012) Membrane liquid loss mechanism of supported ionic liquid membrane for gas separation. J Membr Sci 411–412:73–80
429.
go back to reference Luis P, Neves LA, Afonso CAM, Coelhoso IM, Crespo JG, Garea A, Irabiena A (2009) Facilitated transport of CO2 and SO2 through supported ionic liquid membranes (SILMs). Desalination 245:485–493 Luis P, Neves LA, Afonso CAM, Coelhoso IM, Crespo JG, Garea A, Irabiena A (2009) Facilitated transport of CO2 and SO2 through supported ionic liquid membranes (SILMs). Desalination 245:485–493
430.
go back to reference Majumdar S, Guha AK, Sirkar KK (1998) A new liquid membrane technique for gas separation. AIChE J 34:1135–1245 Majumdar S, Guha AK, Sirkar KK (1998) A new liquid membrane technique for gas separation. AIChE J 34:1135–1245
Metadata
Title
Gas Separation Membrane Materials and Structures
Authors
Ahmad Fauzi Ismail
Kailash Chandra Khulbe
Takeshi Matsuura
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-01095-3_3