Skip to main content
Top
Published in:
Cover of the book

2023 | OriginalPaper | Chapter

1. Fundamentals of New-Generation Cement-Based Nanocomposites

Authors : Siqi Ding, Xinyue Wang, Baoguo Han

Published in: New-Generation Cement-Based Nanocomposites

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nano science and technology can help understand and control the structures and properties of cement-based composites more fundamentally. Incorporating nanomaterials as fillers is commonly used approach for tailoring the cement-based composites via nano science and technology. The manipulation of nanomaterials on cement-based composites strongly depends on the compositions, structures, processing and properties of nanomaterials as well as the composite methods of nanomaterials with cement-based composites. Recent advances in nano-synthetic technologies, nanocomposite technologies and nano-surface modification technologies are driving the progressive exploitation of advanced nanocomposites. In view of their unique structures and mutual synergy, these advanced nanocomposites are expected to alleviate the dispersion issue of traditional nanomaterials in cement-based composites, improve their nanocomposite effectiveness and efficiency, and impart new properties and functionalities to cement-based composites, thus boosting the development of new-generation cement-based nanocomposites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Han, S. Ding, J. Wang, J. Ou, Nano-Engineered Cementitious Composites: Principles and Practices (Springer, Singapore, 2019)CrossRef B. Han, S. Ding, J. Wang, J. Ou, Nano-Engineered Cementitious Composites: Principles and Practices (Springer, Singapore, 2019)CrossRef
2.
go back to reference B. Han, L. Zhang, J. Ou, Smart and Multifunctional Concrete Toward Sustainable Infrastructures (Springer Singapore, Singapore, 2017) B. Han, L. Zhang, J. Ou, Smart and Multifunctional Concrete Toward Sustainable Infrastructures (Springer Singapore, Singapore, 2017)
3.
go back to reference K. Mehta, J.M. Monteiro, Concrete: Microstructure, Properties, and Materials, 4th edn. (McGraw-Hill Education, New York, 2014) K. Mehta, J.M. Monteiro, Concrete: Microstructure, Properties, and Materials, 4th edn. (McGraw-Hill Education, New York, 2014)
4.
go back to reference B. Han, L. Zhang, S. Zeng, S. Dong, X. Yu, R. Yang, J. Ou, Nano-core effect in nano-engineered cementitious composites. Compos. A Appl. Sci. Manuf. 95, 100–109 (2017)CrossRef B. Han, L. Zhang, S. Zeng, S. Dong, X. Yu, R. Yang, J. Ou, Nano-core effect in nano-engineered cementitious composites. Compos. A Appl. Sci. Manuf. 95, 100–109 (2017)CrossRef
5.
go back to reference H. Gleiter, Nanostructured materials: basic concepts and microstructure. Acta Mater. 48, 1–29 (2000)CrossRef H. Gleiter, Nanostructured materials: basic concepts and microstructure. Acta Mater. 48, 1–29 (2000)CrossRef
6.
go back to reference X. Wang, D. Feng, X. Shi, J. Zhong, Carbon nanotubes do not provide strong seeding effect for the nucleation of C3S hydration. Mater. Struct. 55, 172 (2022)CrossRef X. Wang, D. Feng, X. Shi, J. Zhong, Carbon nanotubes do not provide strong seeding effect for the nucleation of C3S hydration. Mater. Struct. 55, 172 (2022)CrossRef
7.
go back to reference Y. Zhang, Z. Jiang, J. Huang, L.Y. Lim, W. Li, J. Deng, D. Gong, Y. Tang, Y. Lai, Z. Chen, Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Adv. 5, 79479–79510 (2015)CrossRef Y. Zhang, Z. Jiang, J. Huang, L.Y. Lim, W. Li, J. Deng, D. Gong, Y. Tang, Y. Lai, Z. Chen, Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Adv. 5, 79479–79510 (2015)CrossRef
8.
go back to reference R. Siddique, A. Mehta, Effect of carbon nanotubes on properties of cement mortars. Constr. Build. Mater. 50, 116–129 (2014)CrossRef R. Siddique, A. Mehta, Effect of carbon nanotubes on properties of cement mortars. Constr. Build. Mater. 50, 116–129 (2014)CrossRef
9.
go back to reference M. Barisik, S. Atalay, A. Beskok, S. Qian, Size dependent surface charge properties of silica nanoparticles. J. Phys. Chem. C. 118, 1836–1842 (2014)CrossRef M. Barisik, S. Atalay, A. Beskok, S. Qian, Size dependent surface charge properties of silica nanoparticles. J. Phys. Chem. C. 118, 1836–1842 (2014)CrossRef
10.
go back to reference P. Couvreur, G. Barratt, E. Fattal, C. Vauthier, Nanocapsule Technology: A Review, CRT, 19 (2002) P. Couvreur, G. Barratt, E. Fattal, C. Vauthier, Nanocapsule Technology: A Review, CRT, 19 (2002)
11.
go back to reference R. Singh, J.W. Lillard, Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86, 215–223 (2009)CrossRef R. Singh, J.W. Lillard, Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86, 215–223 (2009)CrossRef
12.
go back to reference C.N.R. Rao, A. Müller, A.K. Cheetham, The Chemistry of Nanomaterials: Synthesis, Properties and Applications (Wiley-VCH, Germany, 2004) C.N.R. Rao, A. Müller, A.K. Cheetham, The Chemistry of Nanomaterials: Synthesis, Properties and Applications (Wiley-VCH, Germany, 2004)
13.
go back to reference L. Xu, H. Liang, Y. Yang, S. Yu, Stability and reactivity: positive and negative aspects for nanoparticle processing. Chem. Rev. 118, 3209–3250 (2018)CrossRef L. Xu, H. Liang, Y. Yang, S. Yu, Stability and reactivity: positive and negative aspects for nanoparticle processing. Chem. Rev. 118, 3209–3250 (2018)CrossRef
14.
go back to reference T. Hayashi, Y.A. Kim, T. Natsuki, M. Endo, Mechanical properties of carbon nanomaterials. ChemPhysChem 8, 999–1004 (2007)CrossRef T. Hayashi, Y.A. Kim, T. Natsuki, M. Endo, Mechanical properties of carbon nanomaterials. ChemPhysChem 8, 999–1004 (2007)CrossRef
15.
go back to reference C. Wei, K. Cho, D. Srivastava, Tensile strength of carbon nanotubes under realistic temperature and strain rate. Phys. Rev. B 67, 115407 (2003)CrossRef C. Wei, K. Cho, D. Srivastava, Tensile strength of carbon nanotubes under realistic temperature and strain rate. Phys. Rev. B 67, 115407 (2003)CrossRef
16.
go back to reference Y. Liu, B. Xie, Z. Zhang, Q. Zheng, Z. Xu, Mechanical properties of graphene papers. J. Mech. Phys. Solids 60, 591–605 (2012)CrossRef Y. Liu, B. Xie, Z. Zhang, Q. Zheng, Z. Xu, Mechanical properties of graphene papers. J. Mech. Phys. Solids 60, 591–605 (2012)CrossRef
17.
go back to reference M. Singh, M. Goyal, K. Devlal, Size and shape effects on the band gap of semiconductor compound nanomaterials. J. Taibah Univ. Sci. 12, 470–475 (2018)CrossRef M. Singh, M. Goyal, K. Devlal, Size and shape effects on the band gap of semiconductor compound nanomaterials. J. Taibah Univ. Sci. 12, 470–475 (2018)CrossRef
18.
go back to reference L. Liu, A. Corma, Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018)CrossRef L. Liu, A. Corma, Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018)CrossRef
19.
go back to reference S.M. Bergin, Y.-H. Chen, A.R. Rathmell, P. Charbonneau, Z.-Y. Li, B.J. Wiley, The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4, 1996–2004 (2012)CrossRef S.M. Bergin, Y.-H. Chen, A.R. Rathmell, P. Charbonneau, Z.-Y. Li, B.J. Wiley, The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4, 1996–2004 (2012)CrossRef
20.
go back to reference L. Qiu, N. Zhu, Y. Feng, E.E. Michaelides, G. Żyła, D. Jing, X. Zhang, P.M. Norris, C.N. Markides, O. Mahian, A review of recent advances in thermophysical properties at the nanoscale: from solid state to colloids. Phys. Rep. 843, 1–81 (2020)CrossRef L. Qiu, N. Zhu, Y. Feng, E.E. Michaelides, G. Żyła, D. Jing, X. Zhang, P.M. Norris, C.N. Markides, O. Mahian, A review of recent advances in thermophysical properties at the nanoscale: from solid state to colloids. Phys. Rep. 843, 1–81 (2020)CrossRef
21.
go back to reference E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 35, 583 (2006)CrossRef E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 35, 583 (2006)CrossRef
22.
go back to reference A. Akbarzadeh, M. Samiei, S. Davaran, Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 7, 144 (2012)CrossRef A. Akbarzadeh, M. Samiei, S. Davaran, Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 7, 144 (2012)CrossRef
23.
go back to reference J. Xu, F. Zhang, J. Sun, J. Sheng, F. Wang, M. Sun, Bio and nanomaterials based on Fe3O4. Molecules 19, 21506–21528 (2014)CrossRef J. Xu, F. Zhang, J. Sun, J. Sheng, F. Wang, M. Sun, Bio and nanomaterials based on Fe3O4. Molecules 19, 21506–21528 (2014)CrossRef
24.
go back to reference S. Rajeshkanna, O. Nirmalkumar, Synthesis and characterization of Cu nanoparticle using high energy ball milling route and compare with Scherrer equation. Int. J. Sci. Eng. Res. 2, 30–35 (2014) S. Rajeshkanna, O. Nirmalkumar, Synthesis and characterization of Cu nanoparticle using high energy ball milling route and compare with Scherrer equation. Int. J. Sci. Eng. Res. 2, 30–35 (2014)
25.
go back to reference R.W. Kelsall, I.W. Hamley, M. Geoghegan (eds.), Nanoscale Science and Technology (John Wiley, Chichester, England; Hoboken, NJ, 2005) R.W. Kelsall, I.W. Hamley, M. Geoghegan (eds.), Nanoscale Science and Technology (John Wiley, Chichester, England; Hoboken, NJ, 2005)
26.
go back to reference B. Deng, Z. Liu, H. Peng, Toward mass production of CVD graphene films. Adv. Mater. 31, 1800996 (2018)CrossRef B. Deng, Z. Liu, H. Peng, Toward mass production of CVD graphene films. Adv. Mater. 31, 1800996 (2018)CrossRef
27.
go back to reference Z. Chen, Y. Qi, X. Chen, Y. Zhang, Z. Liu, Direct CVD growth of graphene on traditional glass: methods and mechanisms, Adv. Mater. 31, 1803639 (2018) Z. Chen, Y. Qi, X. Chen, Y. Zhang, Z. Liu, Direct CVD growth of graphene on traditional glass: methods and mechanisms, Adv. Mater. 31, 1803639 (2018)
28.
go back to reference C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, M. Sindoro, H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017)CrossRef C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, M. Sindoro, H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017)CrossRef
29.
go back to reference M. Kumar, Y. Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10, 3739–3758 (2010)CrossRef M. Kumar, Y. Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10, 3739–3758 (2010)CrossRef
30.
go back to reference B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Recent Advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893–3946 (2004)CrossRef B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Recent Advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893–3946 (2004)CrossRef
31.
go back to reference Z.S. Pillai, P.V. Kamat, What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J. Phys. Chem. B 108, 945–951 (2004)CrossRef Z.S. Pillai, P.V. Kamat, What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J. Phys. Chem. B 108, 945–951 (2004)CrossRef
32.
go back to reference R.I. Walton, Subcritical solvothermal synthesis of condensed inorganic materials. Chem. Soc. Rev. 31, 230–238 (2002)CrossRef R.I. Walton, Subcritical solvothermal synthesis of condensed inorganic materials. Chem. Soc. Rev. 31, 230–238 (2002)CrossRef
33.
go back to reference Thermal Technology, A Technology for Crystal Growth and Materials Processing (Noyes Publications, Norwich, NY, 2001) Thermal Technology, A Technology for Crystal Growth and Materials Processing (Noyes Publications, Norwich, NY, 2001)
34.
go back to reference B.I. Lee, S. Komarneni (eds.), Chemical Processing of Ceramics, 2nd edn. (Taylor & Francis, Boca Raton, 2005) B.I. Lee, S. Komarneni (eds.), Chemical Processing of Ceramics, 2nd edn. (Taylor & Francis, Boca Raton, 2005)
35.
go back to reference C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Elsevier Inc., 2013) C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Elsevier Inc., 2013)
36.
go back to reference P. Saravanan, R. Gopalan, V. Chandrasekaran, Synthesis and characterisation of nanomaterials. Def. Sci. J. 58, 504–516 (2008)CrossRef P. Saravanan, R. Gopalan, V. Chandrasekaran, Synthesis and characterisation of nanomaterials. Def. Sci. J. 58, 504–516 (2008)CrossRef
37.
go back to reference I. Capek, Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv. Coll. Interface. Sci. 110, 49–74 (2004)CrossRef I. Capek, Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv. Coll. Interface. Sci. 110, 49–74 (2004)CrossRef
38.
go back to reference J. Tanori, M. Paule Pileni, Change in the shape of copper nanoparticles in ordered phases, in Advanced Materials, vol. 7 (1995), pp. 862–864 J. Tanori, M. Paule Pileni, Change in the shape of copper nanoparticles in ordered phases, in Advanced Materials, vol. 7 (1995), pp. 862–864
39.
go back to reference C.O. Kappe, How to measure reaction temperature in microwave-heated transformations. Chem. Soc. Rev. 42, 4977–4990 (2013)CrossRef C.O. Kappe, How to measure reaction temperature in microwave-heated transformations. Chem. Soc. Rev. 42, 4977–4990 (2013)CrossRef
40.
go back to reference D. Nunes, A. Pimentel, L. Santos, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, 2-Synthesis, design, and morphology of metal oxide nanostructures, in Metal Oxide Nanostructures. ed. by D. Nunes, A. Pimentel, L. Santos, P. Barquinha, L. Pereira, E. Fortunato, R. Martins (Elsevier, 2019), pp.21–57 D. Nunes, A. Pimentel, L. Santos, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, 2-Synthesis, design, and morphology of metal oxide nanostructures, in Metal Oxide Nanostructures. ed. by D. Nunes, A. Pimentel, L. Santos, P. Barquinha, L. Pereira, E. Fortunato, R. Martins (Elsevier, 2019), pp.21–57
41.
go back to reference T.D. Chu, H.N. Nguyen, Synthesis and characteristics of multifunctional magneto-luminescent nanoparticles by an ultrasonic wave-assisted stӧber method. J. Phys. Sci. 32, 75–87 (2021)CrossRef T.D. Chu, H.N. Nguyen, Synthesis and characteristics of multifunctional magneto-luminescent nanoparticles by an ultrasonic wave-assisted stӧber method. J. Phys. Sci. 32, 75–87 (2021)CrossRef
42.
go back to reference M.F. Pantano, H.D. Espinosa, L. Pagnotta, Mechanical characterization of materials at small length scales. J. Mech. Sci. Technol. 26, 545–561 (2012)CrossRef M.F. Pantano, H.D. Espinosa, L. Pagnotta, Mechanical characterization of materials at small length scales. J. Mech. Sci. Technol. 26, 545–561 (2012)CrossRef
43.
go back to reference Z. Hu, Chapter 6—Characterization of materials, nanomaterials, and thin films by nanoindentation, in Microscopy Methods in Nanomaterials Characterization. ed. by S. Thomas, R. Thomas, A.K. Zachariah, R.K. Mishra (Elsevier, 2017), pp.165–239CrossRef Z. Hu, Chapter 6—Characterization of materials, nanomaterials, and thin films by nanoindentation, in Microscopy Methods in Nanomaterials Characterization. ed. by S. Thomas, R. Thomas, A.K. Zachariah, R.K. Mishra (Elsevier, 2017), pp.165–239CrossRef
44.
go back to reference A.J. Bard, L.R. Faulkner, H.S. White, Electrochemical Methods: Fundamentals and Applications (Wiley-VCH, Germany, 2022) A.J. Bard, L.R. Faulkner, H.S. White, Electrochemical Methods: Fundamentals and Applications (Wiley-VCH, Germany, 2022)
45.
go back to reference S. Mohan, F. Okomu, O.S. Oluwafemi, M. Matoetoe, O. Arotiba, Electrochemical behaviour of silver nanoparticle-MWCNTs hybrid nanostructures synthesized via a simple method. Int. J. Electrochem. Sci. 11, 745–753 (2016) S. Mohan, F. Okomu, O.S. Oluwafemi, M. Matoetoe, O. Arotiba, Electrochemical behaviour of silver nanoparticle-MWCNTs hybrid nanostructures synthesized via a simple method. Int. J. Electrochem. Sci. 11, 745–753 (2016)
46.
go back to reference P.S. Nnamchi, C.S. Obayi, Chapter 4—Electrochemical characterization of nanomaterials, in Characterization of Nanomaterials, eds. by S. Mohan Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S. Thomas (Woodhead Publishing, 2018), pp. 103–127 P.S. Nnamchi, C.S. Obayi, Chapter 4—Electrochemical characterization of nanomaterials, in Characterization of Nanomaterials, eds. by S. Mohan Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S. Thomas (Woodhead Publishing, 2018), pp. 103–127
47.
go back to reference J.L. Wang, M. Gu, X. Zhang, Y. Song, Thermal conductivity measurement of an individual fibre using a T type probe method. J. Phys. D: Appl. Phys. 42,105502 (2009) J.L. Wang, M. Gu, X. Zhang, Y. Song, Thermal conductivity measurement of an individual fibre using a T type probe method. J. Phys. D: Appl. Phys. 42,105502 (2009)
48.
go back to reference M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, T. Shimizu, Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95, 065502 (2005) M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, T. Shimizu, Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95, 065502 (2005)
49.
go back to reference L. Qiu, P. Guo, H. Zou, Y. Feng, X. Zhang, S. Pervaiz, D. Wen, Extremely low thermal conductivity of graphene nanoplatelets using nanoparticle decoration. ES Energy Environ. 2, 66–72‬‬‬‬‬‬‬‬‬ (2018) L. Qiu, P. Guo, H. Zou, Y. Feng, X. Zhang, S. Pervaiz, D. Wen, Extremely low thermal conductivity of graphene nanoplatelets using nanoparticle decoration. ES Energy Environ. 2, 66–72‬‬‬‬‬‬‬‬‬ (2018)
50.
go back to reference E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96–100 (2006)CrossRef E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96–100 (2006)CrossRef
51.
go back to reference R.M. Costescu, M.A. Wall, D.G. Cahill, Thermal conductance of epitaxial interfaces. Phys. Rev. B 67, 054302 (2003)CrossRef R.M. Costescu, M.A. Wall, D.G. Cahill, Thermal conductance of epitaxial interfaces. Phys. Rev. B 67, 054302 (2003)CrossRef
52.
go back to reference H. Xie, A. Cai, X. Wang, Thermal diffusivity and conductivity of multiwalled carbon nanotube arrays. Phys. Lett. A 369, 120–123 (2007)CrossRef H. Xie, A. Cai, X. Wang, Thermal diffusivity and conductivity of multiwalled carbon nanotube arrays. Phys. Lett. A 369, 120–123 (2007)CrossRef
53.
go back to reference Q.Y. Li, W.G. Ma, X. Zhang, Laser flash Raman spectroscopy method for characterizing thermal diffusivity of supported 2D nanomaterials. Int. J. Heat Mass Transf. 95, 956–963 (2016)CrossRef Q.Y. Li, W.G. Ma, X. Zhang, Laser flash Raman spectroscopy method for characterizing thermal diffusivity of supported 2D nanomaterials. Int. J. Heat Mass Transf. 95, 956–963 (2016)CrossRef
54.
go back to reference C. Xing, T. Munro, C. Jensen, H. Ban, C.G. Copeland, R.V. Lewis, Thermal characterization of natural and synthetic spider silks by both the 3ω and transient electrothermal methods. Mater. Des. 119, 22–29 (2017)CrossRef C. Xing, T. Munro, C. Jensen, H. Ban, C.G. Copeland, R.V. Lewis, Thermal characterization of natural and synthetic spider silks by both the 3ω and transient electrothermal methods. Mater. Des. 119, 22–29 (2017)CrossRef
55.
go back to reference J. Hou, X. Wang, J. Guo, Thermal characterization of micro/nanoscale conductive and non-conductive wires based on optical heating and electrical thermal sensing. J. Phys. D Appl. Phys. 39, 3362 (2006)CrossRef J. Hou, X. Wang, J. Guo, Thermal characterization of micro/nanoscale conductive and non-conductive wires based on optical heating and electrical thermal sensing. J. Phys. D Appl. Phys. 39, 3362 (2006)CrossRef
56.
go back to reference L.I. Giri, S. Tuli, M. Sharma, P. Bugnon, H. Berger, A. Magrez, Thermal diffusivity measurements of templated nanocomposite using infrared thermography. Mater. Lett. 115, 106–108 (2014)CrossRef L.I. Giri, S. Tuli, M. Sharma, P. Bugnon, H. Berger, A. Magrez, Thermal diffusivity measurements of templated nanocomposite using infrared thermography. Mater. Lett. 115, 106–108 (2014)CrossRef
57.
go back to reference L. Qiu, P. Guo, X. Yang, Y. Ouyang, Y. Feng, X. Zhang, J. Zhao, X. Zhang, Q. Li, Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances. Carbon 145, 650–657 (2019)CrossRef L. Qiu, P. Guo, X. Yang, Y. Ouyang, Y. Feng, X. Zhang, J. Zhao, X. Zhang, Q. Li, Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances. Carbon 145, 650–657 (2019)CrossRef
58.
go back to reference A.K. Nair, A. Mayeen, L.K. Shaji, M.S. Kala, S. Thomas, N. Kalarikkal, Chapter 10—Optical characterization of nanomaterials, in Characterization of Nanomaterials, eds. by S. Mohan Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S. Thomas (Woodhead Publishing, 2018), pp. 269–299 A.K. Nair, A. Mayeen, L.K. Shaji, M.S. Kala, S. Thomas, N. Kalarikkal, Chapter 10—Optical characterization of nanomaterials, in Characterization of Nanomaterials, eds. by S. Mohan Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S. Thomas (Woodhead Publishing, 2018), pp. 269–299
59.
go back to reference R. Karoui, Chapter 7—Spectroscopic technique: fluorescence and Ultraviolet-Visible (UV-Vis) spectroscopies, in Modern Techniques for Food Authentication, ed. by D.-W. Sun, 2nd edn (Academic Press, 2018), pp. 219–252 R. Karoui, Chapter 7—Spectroscopic technique: fluorescence and Ultraviolet-Visible (UV-Vis) spectroscopies, in Modern Techniques for Food Authentication, ed. by D.-W. Sun, 2nd edn (Academic Press, 2018), pp. 219–252
60.
go back to reference A.M. Smith, S. Nie, Chemical analysis and cellular imaging with quantum dots. Analyst 129, 672–677 (2004)CrossRef A.M. Smith, S. Nie, Chemical analysis and cellular imaging with quantum dots. Analyst 129, 672–677 (2004)CrossRef
61.
go back to reference J. Alonso, J.M. Barandiarán, L. Fernández Barquín, A. García-Arribas, Chapter 1—Magnetic nanoparticles, synthesis, properties, and applications, in Magnetic Nanostructured Materials, eds. by A.A. El-Gendy, J.M. Barandiarán, R.L. Hadimani (Elsevier, 2018), pp. 1–40 J. Alonso, J.M. Barandiarán, L. Fernández Barquín, A. García-Arribas, Chapter 1—Magnetic nanoparticles, synthesis, properties, and applications, in Magnetic Nanostructured Materials, eds. by A.A. El-Gendy, J.M. Barandiarán, R.L. Hadimani (Elsevier, 2018), pp. 1–40
62.
go back to reference C.S.S.R. Kumar (ed.), Magnetic Characterization Techniques for Nanomaterials. (Springer, Heidelberg, 2017) C.S.S.R. Kumar (ed.), Magnetic Characterization Techniques for Nanomaterials. (Springer, Heidelberg, 2017)
63.
go back to reference F.A. Chyad, The Effects of Metastable Zirconia on the Properties of Ordinary Portland Cement, Ph.D., University of Bradford (1989) F.A. Chyad, The Effects of Metastable Zirconia on the Properties of Ordinary Portland Cement, Ph.D., University of Bradford (1989)
64.
go back to reference B. Han, X. Yu, J. Ou, Self-Sensing Concrete in Smart Structures, Elsevier, 2014. B. Han, X. Yu, J. Ou, Self-Sensing Concrete in Smart Structures, Elsevier, 2014.
65.
go back to reference S. Ding, Y. Xiang, Y.-Q. Ni, V.K. Thakur, X. Wang, B. Han, J. Ou, In-situ synthesizing carbon nanotubes on cement to develop self-sensing cementitious composites for smart high-speed rail infrastructures. Nano Today 43, 101438 (2022)CrossRef S. Ding, Y. Xiang, Y.-Q. Ni, V.K. Thakur, X. Wang, B. Han, J. Ou, In-situ synthesizing carbon nanotubes on cement to develop self-sensing cementitious composites for smart high-speed rail infrastructures. Nano Today 43, 101438 (2022)CrossRef
66.
go back to reference L. Zhang, S. Ding, L. Li, S. Dong, D. Wang, X. Yu, B. Han, Effect of characteristics of assembly unit of CNT/NCB composite fillers on properties of smart cement-based materials. Compos. A Appl. Sci. Manuf. 109, 303–320 (2018)CrossRef L. Zhang, S. Ding, L. Li, S. Dong, D. Wang, X. Yu, B. Han, Effect of characteristics of assembly unit of CNT/NCB composite fillers on properties of smart cement-based materials. Compos. A Appl. Sci. Manuf. 109, 303–320 (2018)CrossRef
67.
go back to reference H. Li, M. Liebscher, I. Curosu, S. Choudhury, S. Hempel, M. Davoodabadi, T.T. Dinh, J. Yang, V. Mechtcherine, Electrophoretic deposition of nano-silica onto carbon fiber surfaces for an improved bond strength with cementitious matrices. Cement Concr. Compos. 114, 103777 (2020)CrossRef H. Li, M. Liebscher, I. Curosu, S. Choudhury, S. Hempel, M. Davoodabadi, T.T. Dinh, J. Yang, V. Mechtcherine, Electrophoretic deposition of nano-silica onto carbon fiber surfaces for an improved bond strength with cementitious matrices. Cement Concr. Compos. 114, 103777 (2020)CrossRef
Metadata
Title
Fundamentals of New-Generation Cement-Based Nanocomposites
Authors
Siqi Ding
Xinyue Wang
Baoguo Han
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-2306-9_1

Premium Partners