Skip to main content
Erschienen in:
Buchtitelbild

2023 | OriginalPaper | Buchkapitel

1. Fundamentals of New-Generation Cement-Based Nanocomposites

verfasst von : Siqi Ding, Xinyue Wang, Baoguo Han

Erschienen in: New-Generation Cement-Based Nanocomposites

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nano science and technology can help understand and control the structures and properties of cement-based composites more fundamentally. Incorporating nanomaterials as fillers is commonly used approach for tailoring the cement-based composites via nano science and technology. The manipulation of nanomaterials on cement-based composites strongly depends on the compositions, structures, processing and properties of nanomaterials as well as the composite methods of nanomaterials with cement-based composites. Recent advances in nano-synthetic technologies, nanocomposite technologies and nano-surface modification technologies are driving the progressive exploitation of advanced nanocomposites. In view of their unique structures and mutual synergy, these advanced nanocomposites are expected to alleviate the dispersion issue of traditional nanomaterials in cement-based composites, improve their nanocomposite effectiveness and efficiency, and impart new properties and functionalities to cement-based composites, thus boosting the development of new-generation cement-based nanocomposites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Han, S. Ding, J. Wang, J. Ou, Nano-Engineered Cementitious Composites: Principles and Practices (Springer, Singapore, 2019)CrossRef B. Han, S. Ding, J. Wang, J. Ou, Nano-Engineered Cementitious Composites: Principles and Practices (Springer, Singapore, 2019)CrossRef
2.
Zurück zum Zitat B. Han, L. Zhang, J. Ou, Smart and Multifunctional Concrete Toward Sustainable Infrastructures (Springer Singapore, Singapore, 2017) B. Han, L. Zhang, J. Ou, Smart and Multifunctional Concrete Toward Sustainable Infrastructures (Springer Singapore, Singapore, 2017)
3.
Zurück zum Zitat K. Mehta, J.M. Monteiro, Concrete: Microstructure, Properties, and Materials, 4th edn. (McGraw-Hill Education, New York, 2014) K. Mehta, J.M. Monteiro, Concrete: Microstructure, Properties, and Materials, 4th edn. (McGraw-Hill Education, New York, 2014)
4.
Zurück zum Zitat B. Han, L. Zhang, S. Zeng, S. Dong, X. Yu, R. Yang, J. Ou, Nano-core effect in nano-engineered cementitious composites. Compos. A Appl. Sci. Manuf. 95, 100–109 (2017)CrossRef B. Han, L. Zhang, S. Zeng, S. Dong, X. Yu, R. Yang, J. Ou, Nano-core effect in nano-engineered cementitious composites. Compos. A Appl. Sci. Manuf. 95, 100–109 (2017)CrossRef
5.
Zurück zum Zitat H. Gleiter, Nanostructured materials: basic concepts and microstructure. Acta Mater. 48, 1–29 (2000)CrossRef H. Gleiter, Nanostructured materials: basic concepts and microstructure. Acta Mater. 48, 1–29 (2000)CrossRef
6.
Zurück zum Zitat X. Wang, D. Feng, X. Shi, J. Zhong, Carbon nanotubes do not provide strong seeding effect for the nucleation of C3S hydration. Mater. Struct. 55, 172 (2022)CrossRef X. Wang, D. Feng, X. Shi, J. Zhong, Carbon nanotubes do not provide strong seeding effect for the nucleation of C3S hydration. Mater. Struct. 55, 172 (2022)CrossRef
7.
Zurück zum Zitat Y. Zhang, Z. Jiang, J. Huang, L.Y. Lim, W. Li, J. Deng, D. Gong, Y. Tang, Y. Lai, Z. Chen, Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Adv. 5, 79479–79510 (2015)CrossRef Y. Zhang, Z. Jiang, J. Huang, L.Y. Lim, W. Li, J. Deng, D. Gong, Y. Tang, Y. Lai, Z. Chen, Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Adv. 5, 79479–79510 (2015)CrossRef
8.
Zurück zum Zitat R. Siddique, A. Mehta, Effect of carbon nanotubes on properties of cement mortars. Constr. Build. Mater. 50, 116–129 (2014)CrossRef R. Siddique, A. Mehta, Effect of carbon nanotubes on properties of cement mortars. Constr. Build. Mater. 50, 116–129 (2014)CrossRef
9.
Zurück zum Zitat M. Barisik, S. Atalay, A. Beskok, S. Qian, Size dependent surface charge properties of silica nanoparticles. J. Phys. Chem. C. 118, 1836–1842 (2014)CrossRef M. Barisik, S. Atalay, A. Beskok, S. Qian, Size dependent surface charge properties of silica nanoparticles. J. Phys. Chem. C. 118, 1836–1842 (2014)CrossRef
10.
Zurück zum Zitat P. Couvreur, G. Barratt, E. Fattal, C. Vauthier, Nanocapsule Technology: A Review, CRT, 19 (2002) P. Couvreur, G. Barratt, E. Fattal, C. Vauthier, Nanocapsule Technology: A Review, CRT, 19 (2002)
11.
Zurück zum Zitat R. Singh, J.W. Lillard, Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86, 215–223 (2009)CrossRef R. Singh, J.W. Lillard, Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86, 215–223 (2009)CrossRef
12.
Zurück zum Zitat C.N.R. Rao, A. Müller, A.K. Cheetham, The Chemistry of Nanomaterials: Synthesis, Properties and Applications (Wiley-VCH, Germany, 2004) C.N.R. Rao, A. Müller, A.K. Cheetham, The Chemistry of Nanomaterials: Synthesis, Properties and Applications (Wiley-VCH, Germany, 2004)
13.
Zurück zum Zitat L. Xu, H. Liang, Y. Yang, S. Yu, Stability and reactivity: positive and negative aspects for nanoparticle processing. Chem. Rev. 118, 3209–3250 (2018)CrossRef L. Xu, H. Liang, Y. Yang, S. Yu, Stability and reactivity: positive and negative aspects for nanoparticle processing. Chem. Rev. 118, 3209–3250 (2018)CrossRef
14.
Zurück zum Zitat T. Hayashi, Y.A. Kim, T. Natsuki, M. Endo, Mechanical properties of carbon nanomaterials. ChemPhysChem 8, 999–1004 (2007)CrossRef T. Hayashi, Y.A. Kim, T. Natsuki, M. Endo, Mechanical properties of carbon nanomaterials. ChemPhysChem 8, 999–1004 (2007)CrossRef
15.
Zurück zum Zitat C. Wei, K. Cho, D. Srivastava, Tensile strength of carbon nanotubes under realistic temperature and strain rate. Phys. Rev. B 67, 115407 (2003)CrossRef C. Wei, K. Cho, D. Srivastava, Tensile strength of carbon nanotubes under realistic temperature and strain rate. Phys. Rev. B 67, 115407 (2003)CrossRef
16.
Zurück zum Zitat Y. Liu, B. Xie, Z. Zhang, Q. Zheng, Z. Xu, Mechanical properties of graphene papers. J. Mech. Phys. Solids 60, 591–605 (2012)CrossRef Y. Liu, B. Xie, Z. Zhang, Q. Zheng, Z. Xu, Mechanical properties of graphene papers. J. Mech. Phys. Solids 60, 591–605 (2012)CrossRef
17.
Zurück zum Zitat M. Singh, M. Goyal, K. Devlal, Size and shape effects on the band gap of semiconductor compound nanomaterials. J. Taibah Univ. Sci. 12, 470–475 (2018)CrossRef M. Singh, M. Goyal, K. Devlal, Size and shape effects on the band gap of semiconductor compound nanomaterials. J. Taibah Univ. Sci. 12, 470–475 (2018)CrossRef
18.
Zurück zum Zitat L. Liu, A. Corma, Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018)CrossRef L. Liu, A. Corma, Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018)CrossRef
19.
Zurück zum Zitat S.M. Bergin, Y.-H. Chen, A.R. Rathmell, P. Charbonneau, Z.-Y. Li, B.J. Wiley, The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4, 1996–2004 (2012)CrossRef S.M. Bergin, Y.-H. Chen, A.R. Rathmell, P. Charbonneau, Z.-Y. Li, B.J. Wiley, The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4, 1996–2004 (2012)CrossRef
20.
Zurück zum Zitat L. Qiu, N. Zhu, Y. Feng, E.E. Michaelides, G. Żyła, D. Jing, X. Zhang, P.M. Norris, C.N. Markides, O. Mahian, A review of recent advances in thermophysical properties at the nanoscale: from solid state to colloids. Phys. Rep. 843, 1–81 (2020)CrossRef L. Qiu, N. Zhu, Y. Feng, E.E. Michaelides, G. Żyła, D. Jing, X. Zhang, P.M. Norris, C.N. Markides, O. Mahian, A review of recent advances in thermophysical properties at the nanoscale: from solid state to colloids. Phys. Rep. 843, 1–81 (2020)CrossRef
21.
Zurück zum Zitat E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 35, 583 (2006)CrossRef E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 35, 583 (2006)CrossRef
22.
Zurück zum Zitat A. Akbarzadeh, M. Samiei, S. Davaran, Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 7, 144 (2012)CrossRef A. Akbarzadeh, M. Samiei, S. Davaran, Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 7, 144 (2012)CrossRef
23.
Zurück zum Zitat J. Xu, F. Zhang, J. Sun, J. Sheng, F. Wang, M. Sun, Bio and nanomaterials based on Fe3O4. Molecules 19, 21506–21528 (2014)CrossRef J. Xu, F. Zhang, J. Sun, J. Sheng, F. Wang, M. Sun, Bio and nanomaterials based on Fe3O4. Molecules 19, 21506–21528 (2014)CrossRef
24.
Zurück zum Zitat S. Rajeshkanna, O. Nirmalkumar, Synthesis and characterization of Cu nanoparticle using high energy ball milling route and compare with Scherrer equation. Int. J. Sci. Eng. Res. 2, 30–35 (2014) S. Rajeshkanna, O. Nirmalkumar, Synthesis and characterization of Cu nanoparticle using high energy ball milling route and compare with Scherrer equation. Int. J. Sci. Eng. Res. 2, 30–35 (2014)
25.
Zurück zum Zitat R.W. Kelsall, I.W. Hamley, M. Geoghegan (eds.), Nanoscale Science and Technology (John Wiley, Chichester, England; Hoboken, NJ, 2005) R.W. Kelsall, I.W. Hamley, M. Geoghegan (eds.), Nanoscale Science and Technology (John Wiley, Chichester, England; Hoboken, NJ, 2005)
26.
Zurück zum Zitat B. Deng, Z. Liu, H. Peng, Toward mass production of CVD graphene films. Adv. Mater. 31, 1800996 (2018)CrossRef B. Deng, Z. Liu, H. Peng, Toward mass production of CVD graphene films. Adv. Mater. 31, 1800996 (2018)CrossRef
27.
Zurück zum Zitat Z. Chen, Y. Qi, X. Chen, Y. Zhang, Z. Liu, Direct CVD growth of graphene on traditional glass: methods and mechanisms, Adv. Mater. 31, 1803639 (2018) Z. Chen, Y. Qi, X. Chen, Y. Zhang, Z. Liu, Direct CVD growth of graphene on traditional glass: methods and mechanisms, Adv. Mater. 31, 1803639 (2018)
28.
Zurück zum Zitat C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, M. Sindoro, H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017)CrossRef C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, M. Sindoro, H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017)CrossRef
29.
Zurück zum Zitat M. Kumar, Y. Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10, 3739–3758 (2010)CrossRef M. Kumar, Y. Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10, 3739–3758 (2010)CrossRef
30.
Zurück zum Zitat B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Recent Advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893–3946 (2004)CrossRef B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Recent Advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893–3946 (2004)CrossRef
31.
Zurück zum Zitat Z.S. Pillai, P.V. Kamat, What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J. Phys. Chem. B 108, 945–951 (2004)CrossRef Z.S. Pillai, P.V. Kamat, What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J. Phys. Chem. B 108, 945–951 (2004)CrossRef
32.
Zurück zum Zitat R.I. Walton, Subcritical solvothermal synthesis of condensed inorganic materials. Chem. Soc. Rev. 31, 230–238 (2002)CrossRef R.I. Walton, Subcritical solvothermal synthesis of condensed inorganic materials. Chem. Soc. Rev. 31, 230–238 (2002)CrossRef
33.
Zurück zum Zitat Thermal Technology, A Technology for Crystal Growth and Materials Processing (Noyes Publications, Norwich, NY, 2001) Thermal Technology, A Technology for Crystal Growth and Materials Processing (Noyes Publications, Norwich, NY, 2001)
34.
Zurück zum Zitat B.I. Lee, S. Komarneni (eds.), Chemical Processing of Ceramics, 2nd edn. (Taylor & Francis, Boca Raton, 2005) B.I. Lee, S. Komarneni (eds.), Chemical Processing of Ceramics, 2nd edn. (Taylor & Francis, Boca Raton, 2005)
35.
Zurück zum Zitat C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Elsevier Inc., 2013) C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Elsevier Inc., 2013)
36.
Zurück zum Zitat P. Saravanan, R. Gopalan, V. Chandrasekaran, Synthesis and characterisation of nanomaterials. Def. Sci. J. 58, 504–516 (2008)CrossRef P. Saravanan, R. Gopalan, V. Chandrasekaran, Synthesis and characterisation of nanomaterials. Def. Sci. J. 58, 504–516 (2008)CrossRef
37.
Zurück zum Zitat I. Capek, Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv. Coll. Interface. Sci. 110, 49–74 (2004)CrossRef I. Capek, Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv. Coll. Interface. Sci. 110, 49–74 (2004)CrossRef
38.
Zurück zum Zitat J. Tanori, M. Paule Pileni, Change in the shape of copper nanoparticles in ordered phases, in Advanced Materials, vol. 7 (1995), pp. 862–864 J. Tanori, M. Paule Pileni, Change in the shape of copper nanoparticles in ordered phases, in Advanced Materials, vol. 7 (1995), pp. 862–864
39.
Zurück zum Zitat C.O. Kappe, How to measure reaction temperature in microwave-heated transformations. Chem. Soc. Rev. 42, 4977–4990 (2013)CrossRef C.O. Kappe, How to measure reaction temperature in microwave-heated transformations. Chem. Soc. Rev. 42, 4977–4990 (2013)CrossRef
40.
Zurück zum Zitat D. Nunes, A. Pimentel, L. Santos, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, 2-Synthesis, design, and morphology of metal oxide nanostructures, in Metal Oxide Nanostructures. ed. by D. Nunes, A. Pimentel, L. Santos, P. Barquinha, L. Pereira, E. Fortunato, R. Martins (Elsevier, 2019), pp.21–57 D. Nunes, A. Pimentel, L. Santos, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, 2-Synthesis, design, and morphology of metal oxide nanostructures, in Metal Oxide Nanostructures. ed. by D. Nunes, A. Pimentel, L. Santos, P. Barquinha, L. Pereira, E. Fortunato, R. Martins (Elsevier, 2019), pp.21–57
41.
Zurück zum Zitat T.D. Chu, H.N. Nguyen, Synthesis and characteristics of multifunctional magneto-luminescent nanoparticles by an ultrasonic wave-assisted stӧber method. J. Phys. Sci. 32, 75–87 (2021)CrossRef T.D. Chu, H.N. Nguyen, Synthesis and characteristics of multifunctional magneto-luminescent nanoparticles by an ultrasonic wave-assisted stӧber method. J. Phys. Sci. 32, 75–87 (2021)CrossRef
42.
Zurück zum Zitat M.F. Pantano, H.D. Espinosa, L. Pagnotta, Mechanical characterization of materials at small length scales. J. Mech. Sci. Technol. 26, 545–561 (2012)CrossRef M.F. Pantano, H.D. Espinosa, L. Pagnotta, Mechanical characterization of materials at small length scales. J. Mech. Sci. Technol. 26, 545–561 (2012)CrossRef
43.
Zurück zum Zitat Z. Hu, Chapter 6—Characterization of materials, nanomaterials, and thin films by nanoindentation, in Microscopy Methods in Nanomaterials Characterization. ed. by S. Thomas, R. Thomas, A.K. Zachariah, R.K. Mishra (Elsevier, 2017), pp.165–239CrossRef Z. Hu, Chapter 6—Characterization of materials, nanomaterials, and thin films by nanoindentation, in Microscopy Methods in Nanomaterials Characterization. ed. by S. Thomas, R. Thomas, A.K. Zachariah, R.K. Mishra (Elsevier, 2017), pp.165–239CrossRef
44.
Zurück zum Zitat A.J. Bard, L.R. Faulkner, H.S. White, Electrochemical Methods: Fundamentals and Applications (Wiley-VCH, Germany, 2022) A.J. Bard, L.R. Faulkner, H.S. White, Electrochemical Methods: Fundamentals and Applications (Wiley-VCH, Germany, 2022)
45.
Zurück zum Zitat S. Mohan, F. Okomu, O.S. Oluwafemi, M. Matoetoe, O. Arotiba, Electrochemical behaviour of silver nanoparticle-MWCNTs hybrid nanostructures synthesized via a simple method. Int. J. Electrochem. Sci. 11, 745–753 (2016) S. Mohan, F. Okomu, O.S. Oluwafemi, M. Matoetoe, O. Arotiba, Electrochemical behaviour of silver nanoparticle-MWCNTs hybrid nanostructures synthesized via a simple method. Int. J. Electrochem. Sci. 11, 745–753 (2016)
46.
Zurück zum Zitat P.S. Nnamchi, C.S. Obayi, Chapter 4—Electrochemical characterization of nanomaterials, in Characterization of Nanomaterials, eds. by S. Mohan Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S. Thomas (Woodhead Publishing, 2018), pp. 103–127 P.S. Nnamchi, C.S. Obayi, Chapter 4—Electrochemical characterization of nanomaterials, in Characterization of Nanomaterials, eds. by S. Mohan Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S. Thomas (Woodhead Publishing, 2018), pp. 103–127
47.
Zurück zum Zitat J.L. Wang, M. Gu, X. Zhang, Y. Song, Thermal conductivity measurement of an individual fibre using a T type probe method. J. Phys. D: Appl. Phys. 42,105502 (2009) J.L. Wang, M. Gu, X. Zhang, Y. Song, Thermal conductivity measurement of an individual fibre using a T type probe method. J. Phys. D: Appl. Phys. 42,105502 (2009)
48.
Zurück zum Zitat M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, T. Shimizu, Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95, 065502 (2005) M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, T. Shimizu, Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95, 065502 (2005)
49.
Zurück zum Zitat L. Qiu, P. Guo, H. Zou, Y. Feng, X. Zhang, S. Pervaiz, D. Wen, Extremely low thermal conductivity of graphene nanoplatelets using nanoparticle decoration. ES Energy Environ. 2, 66–72‬‬‬‬‬‬‬‬‬ (2018) L. Qiu, P. Guo, H. Zou, Y. Feng, X. Zhang, S. Pervaiz, D. Wen, Extremely low thermal conductivity of graphene nanoplatelets using nanoparticle decoration. ES Energy Environ. 2, 66–72‬‬‬‬‬‬‬‬‬ (2018)
50.
Zurück zum Zitat E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96–100 (2006)CrossRef E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96–100 (2006)CrossRef
51.
Zurück zum Zitat R.M. Costescu, M.A. Wall, D.G. Cahill, Thermal conductance of epitaxial interfaces. Phys. Rev. B 67, 054302 (2003)CrossRef R.M. Costescu, M.A. Wall, D.G. Cahill, Thermal conductance of epitaxial interfaces. Phys. Rev. B 67, 054302 (2003)CrossRef
52.
Zurück zum Zitat H. Xie, A. Cai, X. Wang, Thermal diffusivity and conductivity of multiwalled carbon nanotube arrays. Phys. Lett. A 369, 120–123 (2007)CrossRef H. Xie, A. Cai, X. Wang, Thermal diffusivity and conductivity of multiwalled carbon nanotube arrays. Phys. Lett. A 369, 120–123 (2007)CrossRef
53.
Zurück zum Zitat Q.Y. Li, W.G. Ma, X. Zhang, Laser flash Raman spectroscopy method for characterizing thermal diffusivity of supported 2D nanomaterials. Int. J. Heat Mass Transf. 95, 956–963 (2016)CrossRef Q.Y. Li, W.G. Ma, X. Zhang, Laser flash Raman spectroscopy method for characterizing thermal diffusivity of supported 2D nanomaterials. Int. J. Heat Mass Transf. 95, 956–963 (2016)CrossRef
54.
Zurück zum Zitat C. Xing, T. Munro, C. Jensen, H. Ban, C.G. Copeland, R.V. Lewis, Thermal characterization of natural and synthetic spider silks by both the 3ω and transient electrothermal methods. Mater. Des. 119, 22–29 (2017)CrossRef C. Xing, T. Munro, C. Jensen, H. Ban, C.G. Copeland, R.V. Lewis, Thermal characterization of natural and synthetic spider silks by both the 3ω and transient electrothermal methods. Mater. Des. 119, 22–29 (2017)CrossRef
55.
Zurück zum Zitat J. Hou, X. Wang, J. Guo, Thermal characterization of micro/nanoscale conductive and non-conductive wires based on optical heating and electrical thermal sensing. J. Phys. D Appl. Phys. 39, 3362 (2006)CrossRef J. Hou, X. Wang, J. Guo, Thermal characterization of micro/nanoscale conductive and non-conductive wires based on optical heating and electrical thermal sensing. J. Phys. D Appl. Phys. 39, 3362 (2006)CrossRef
56.
Zurück zum Zitat L.I. Giri, S. Tuli, M. Sharma, P. Bugnon, H. Berger, A. Magrez, Thermal diffusivity measurements of templated nanocomposite using infrared thermography. Mater. Lett. 115, 106–108 (2014)CrossRef L.I. Giri, S. Tuli, M. Sharma, P. Bugnon, H. Berger, A. Magrez, Thermal diffusivity measurements of templated nanocomposite using infrared thermography. Mater. Lett. 115, 106–108 (2014)CrossRef
57.
Zurück zum Zitat L. Qiu, P. Guo, X. Yang, Y. Ouyang, Y. Feng, X. Zhang, J. Zhao, X. Zhang, Q. Li, Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances. Carbon 145, 650–657 (2019)CrossRef L. Qiu, P. Guo, X. Yang, Y. Ouyang, Y. Feng, X. Zhang, J. Zhao, X. Zhang, Q. Li, Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances. Carbon 145, 650–657 (2019)CrossRef
58.
Zurück zum Zitat A.K. Nair, A. Mayeen, L.K. Shaji, M.S. Kala, S. Thomas, N. Kalarikkal, Chapter 10—Optical characterization of nanomaterials, in Characterization of Nanomaterials, eds. by S. Mohan Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S. Thomas (Woodhead Publishing, 2018), pp. 269–299 A.K. Nair, A. Mayeen, L.K. Shaji, M.S. Kala, S. Thomas, N. Kalarikkal, Chapter 10—Optical characterization of nanomaterials, in Characterization of Nanomaterials, eds. by S. Mohan Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S. Thomas (Woodhead Publishing, 2018), pp. 269–299
59.
Zurück zum Zitat R. Karoui, Chapter 7—Spectroscopic technique: fluorescence and Ultraviolet-Visible (UV-Vis) spectroscopies, in Modern Techniques for Food Authentication, ed. by D.-W. Sun, 2nd edn (Academic Press, 2018), pp. 219–252 R. Karoui, Chapter 7—Spectroscopic technique: fluorescence and Ultraviolet-Visible (UV-Vis) spectroscopies, in Modern Techniques for Food Authentication, ed. by D.-W. Sun, 2nd edn (Academic Press, 2018), pp. 219–252
60.
Zurück zum Zitat A.M. Smith, S. Nie, Chemical analysis and cellular imaging with quantum dots. Analyst 129, 672–677 (2004)CrossRef A.M. Smith, S. Nie, Chemical analysis and cellular imaging with quantum dots. Analyst 129, 672–677 (2004)CrossRef
61.
Zurück zum Zitat J. Alonso, J.M. Barandiarán, L. Fernández Barquín, A. García-Arribas, Chapter 1—Magnetic nanoparticles, synthesis, properties, and applications, in Magnetic Nanostructured Materials, eds. by A.A. El-Gendy, J.M. Barandiarán, R.L. Hadimani (Elsevier, 2018), pp. 1–40 J. Alonso, J.M. Barandiarán, L. Fernández Barquín, A. García-Arribas, Chapter 1—Magnetic nanoparticles, synthesis, properties, and applications, in Magnetic Nanostructured Materials, eds. by A.A. El-Gendy, J.M. Barandiarán, R.L. Hadimani (Elsevier, 2018), pp. 1–40
62.
Zurück zum Zitat C.S.S.R. Kumar (ed.), Magnetic Characterization Techniques for Nanomaterials. (Springer, Heidelberg, 2017) C.S.S.R. Kumar (ed.), Magnetic Characterization Techniques for Nanomaterials. (Springer, Heidelberg, 2017)
63.
Zurück zum Zitat F.A. Chyad, The Effects of Metastable Zirconia on the Properties of Ordinary Portland Cement, Ph.D., University of Bradford (1989) F.A. Chyad, The Effects of Metastable Zirconia on the Properties of Ordinary Portland Cement, Ph.D., University of Bradford (1989)
64.
Zurück zum Zitat B. Han, X. Yu, J. Ou, Self-Sensing Concrete in Smart Structures, Elsevier, 2014. B. Han, X. Yu, J. Ou, Self-Sensing Concrete in Smart Structures, Elsevier, 2014.
65.
Zurück zum Zitat S. Ding, Y. Xiang, Y.-Q. Ni, V.K. Thakur, X. Wang, B. Han, J. Ou, In-situ synthesizing carbon nanotubes on cement to develop self-sensing cementitious composites for smart high-speed rail infrastructures. Nano Today 43, 101438 (2022)CrossRef S. Ding, Y. Xiang, Y.-Q. Ni, V.K. Thakur, X. Wang, B. Han, J. Ou, In-situ synthesizing carbon nanotubes on cement to develop self-sensing cementitious composites for smart high-speed rail infrastructures. Nano Today 43, 101438 (2022)CrossRef
66.
Zurück zum Zitat L. Zhang, S. Ding, L. Li, S. Dong, D. Wang, X. Yu, B. Han, Effect of characteristics of assembly unit of CNT/NCB composite fillers on properties of smart cement-based materials. Compos. A Appl. Sci. Manuf. 109, 303–320 (2018)CrossRef L. Zhang, S. Ding, L. Li, S. Dong, D. Wang, X. Yu, B. Han, Effect of characteristics of assembly unit of CNT/NCB composite fillers on properties of smart cement-based materials. Compos. A Appl. Sci. Manuf. 109, 303–320 (2018)CrossRef
67.
Zurück zum Zitat H. Li, M. Liebscher, I. Curosu, S. Choudhury, S. Hempel, M. Davoodabadi, T.T. Dinh, J. Yang, V. Mechtcherine, Electrophoretic deposition of nano-silica onto carbon fiber surfaces for an improved bond strength with cementitious matrices. Cement Concr. Compos. 114, 103777 (2020)CrossRef H. Li, M. Liebscher, I. Curosu, S. Choudhury, S. Hempel, M. Davoodabadi, T.T. Dinh, J. Yang, V. Mechtcherine, Electrophoretic deposition of nano-silica onto carbon fiber surfaces for an improved bond strength with cementitious matrices. Cement Concr. Compos. 114, 103777 (2020)CrossRef
Metadaten
Titel
Fundamentals of New-Generation Cement-Based Nanocomposites
verfasst von
Siqi Ding
Xinyue Wang
Baoguo Han
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-2306-9_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.