Skip to main content
Top
Published in: Applicable Algebra in Engineering, Communication and Computing 5/2023

01-09-2023 | Preface

Further perspectives on elimination

Author: Teo Mora

Published in: Applicable Algebra in Engineering, Communication and Computing | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Excerpt

In order to save the junior reader the trouble of referring to other works, I have put together here those elementary principles with regard to elimination, of which use has been made in the preceding pages.
G. Salmon A treatise on the higher plane curves Dublin 1852 pg.285
The device that follows, which, it may be hoped, finally eliminates from algebraic geometry the last traces of elimination-theory
A. Weil Foundations of Algebraic Geometry A.M.S. 1962 pg.31
Eliminate, eliminate, eliminate
Eliminate the eliminators of elimination theory.
S. S. Abhyankar Polynomials and Power Series (A Poem) 1970
Abhyankar’s ’eliminate’ rhythmic refrain scans the climax periods in the evolution of the approach to solving by the Computational Algebraic Geometry communities, those around conferences as MEGA, ISSAC, CoCoA, JAA and which mainly publish in journals as Commutative Algebra, JSC, AAC and also AAECC:
  • In 1750 Cramer [14] gave [54]
    (1)
    a rule for forming the terms of the common denominator of the fractions which express the values of the unknowns in a set of linear equations;
     
    (2)
    a rule for determining the sign of any individual term in the said common denominator (and, included in the rule, the notion of a “dérangement”).
     
    (3)
    A rule for obtaining the numerators from the expression for the common denominator
     
    and in 1979 Bézout [3] introduced his [12] abbreviated method of elimination.
  • Anticipated by Salmon [56] who is the first to reformulate Bézout’s result as
    $$\begin{aligned} \frac{U(x)V(y)-V(x)U(y)}{x-y} \end{aligned}$$
    the English School (Sylvester [6062], Cayley [10, 12, 13], Dixon [1517] and Macaulay [45, 47]) introduced their method of indeterminate coefficients.
  • Hilbert’s fundamental paper [34] soon attracted and gave different tools for solvers as Macaulay [46, 47] (see also [48, 49]), Gunther [3033] and Janet [3639].
  • It is notable that when Weil [65] was expressing his hopes on elimination of elimination theory, the dominant textbooks on geometry devoted wide space to elimination [64] and determinants [66].
  • Abhyankar’s call to arms for eliminating the eliminators of elimination theory coincides with a period when the availability of new computational tools reoriented the Computational Algebraic Geometry communities, which included also Abhyankar himself [1], to reconsider and reformulate the results of the community inspired by Hilbert introducing Buchberger’s Gröbner bases [47] (see also [22]), Faugère’s \(F_4\) [20] and \(F_5\) [21] (see also [18, 19]) and Gerdt’s [23, 24] and Seiler’s [5759] involutive bases.
  • While Kapur [4043] was reconsidering in [42] the results of Dixon [15], Cardinal’s Ph.D. Thesis [8] oriented the French school to reconsidering Bézout’s results [2, 9, 5153] and such investigation culminated with the introductions of RURs [55].
  • In the meentime, the TERA group based in École Polytechnique, Buenos Aires and Santander around Marc Giusti, Joos Heintz and Luis M.Pardo in a series of papers [2529, 44, 50] devised a solver with good complexity.
Hitherto I acted as a historian but now my rôle changes to that of chronicler if not even of a biased participant. As such I record in a first period two research streams, actually mutually supporting, one stabilizing, improving and extending to wider algebras what I called the gröbnerian technology, the other applying it as a panacea for solving each available research problem. In a second period, such attitude was substituted by a reaction aiming to eliminate gröbnerian technology in favour of new operational methods based on linear algebra and combinatorics; there was a different perspective in the algebraic representation of the problems to be solved, substituting the prior representation, based on polynomial ideals with a representation given by quotient algebras, expressed via a vector-space basis and multiplication matrices. I recorded and supported this new attitude under the names of Gröbner-free solving and degröbnerization but that is another story and shall be told another time. …

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abhyankar, S.S., Li, W.: On the Jacobian conjecture: a new approach via Gröbner bases. J. Pure Appl. Algebra 61, 211–222 (1989)MathSciNetMATH Abhyankar, S.S., Li, W.: On the Jacobian conjecture: a new approach via Gröbner bases. J. Pure Appl. Algebra 61, 211–222 (1989)MathSciNetMATH
2.
go back to reference Alonso, M.E., Becker, E., Roy, M.-F., Wörmann Zeroes, T.: Multiplcicities and idempotents for zerodimensional systems. Progress Math. 143, 1–16 (1996) Alonso, M.E., Becker, E., Roy, M.-F., Wörmann Zeroes, T.: Multiplcicities and idempotents for zerodimensional systems. Progress Math. 143, 1–16 (1996)
3.
go back to reference Bézout, E.: Théorie generale des èquations algébriques. Pierres, Paris (1771) Bézout, E.: Théorie generale des èquations algébriques. Pierres, Paris (1771)
4.
go back to reference Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, Ph. D. Thesis, Innsbruck (1965) Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, Ph. D. Thesis, Innsbruck (1965)
5.
go back to reference Buchberger, B.: Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleischunssystem. Aeq. Math. 4, 374–383 (1970)MATH Buchberger, B.: Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleischunssystem. Aeq. Math. 4, 374–383 (1970)MATH
6.
go back to reference Buchberger, B.: Gröbner bases: an algorithmic method in polynomial ideal theory. In: Bose, N.K. (ed.) Multidimensional Systems Theory, pp. 184–232. Reider, New York (1985) Buchberger, B.: Gröbner bases: an algorithmic method in polynomial ideal theory. In: Bose, N.K. (ed.) Multidimensional Systems Theory, pp. 184–232. Reider, New York (1985)
7.
go back to reference Buchberger, B.: Introduction to Göbner bases. In: Buchberger, B., Winkler, F. (eds.) Gröbner Bases and Application, pp. 3–31. Cambridge University Press, Cambridge (1998)MATH Buchberger, B.: Introduction to Göbner bases. In: Buchberger, B., Winkler, F. (eds.) Gröbner Bases and Application, pp. 3–31. Cambridge University Press, Cambridge (1998)MATH
8.
go back to reference Cardinal, J.P.: Dualité et algorithms itératifs pour la résolution de systémes polynomiaux Ph.D. Thesis Univ. Rennes I (1993) Cardinal, J.P.: Dualité et algorithms itératifs pour la résolution de systémes polynomiaux Ph.D. Thesis Univ. Rennes I (1993)
9.
go back to reference Cardinal, J.P., Mourrain, B.: Algebraic approach of residues and applications. Lect. Notes Appl. Math. 32, 189–210 (1999)MathSciNetMATH Cardinal, J.P., Mourrain, B.: Algebraic approach of residues and applications. Lect. Notes Appl. Math. 32, 189–210 (1999)MathSciNetMATH
10.
go back to reference Cayley, A.: On the theory of elimination. Cambr. Dublin Math. J. 3, 116–120 (1848) Cayley, A.: On the theory of elimination. Cambr. Dublin Math. J. 3, 116–120 (1848)
11.
go back to reference Cayley, A.: Researches on the partition of numbers. Philos. Trans. R. Soc. London 146, 127–140 (1856) Cayley, A.: Researches on the partition of numbers. Philos. Trans. R. Soc. London 146, 127–140 (1856)
12.
go back to reference Cayley, A., Cayley, A.: Note sur la méthode d’élimination de Bezout. J. Reine Und Ang. Math. 53, 366–367 (1857)MATH Cayley, A., Cayley, A.: Note sur la méthode d’élimination de Bezout. J. Reine Und Ang. Math. 53, 366–367 (1857)MATH
13.
go back to reference Cayley, A.: A fourth memory upon quantics. Philos. Trans. R. Soc. London 148, 415–427 (1858) Cayley, A.: A fourth memory upon quantics. Philos. Trans. R. Soc. London 148, 415–427 (1858)
14.
go back to reference Cramer, D.: Introduction a l’analyse des lignes Courbes Algebriques. Geneve (2022) Cramer, D.: Introduction a l’analyse des lignes Courbes Algebriques. Geneve (2022)
15.
16.
go back to reference Dixon, A.L.: The eliminant of three quatics in two independent variables. Proc. London Math. Soc. 7, 49–69 (1908) Dixon, A.L.: The eliminant of three quatics in two independent variables. Proc. London Math. Soc. 7, 49–69 (1908)
17.
go back to reference Dixon, A.L.: Some results in the theory of elimination. London R. Soc. Proc. 82, 468–78 (1909) Dixon, A.L.: Some results in the theory of elimination. London R. Soc. Proc. 82, 468–78 (1909)
18.
go back to reference Eder, C., Perry, J.: F5C: A variant of Faugère’s \(F_5\) Algorithm with reduced Gröbner bases. J. Symb. Comp. 45, 1442–1450 (2010)MATH Eder, C., Perry, J.: F5C: A variant of Faugère’s \(F_5\) Algorithm with reduced Gröbner bases. J. Symb. Comp. 45, 1442–1450 (2010)MATH
19.
go back to reference Eder, C., Perry, J.: Signature-based Algoritms to compute Gröbner bases. Proc. ISSAC’11 , 99–106, ACM (2011) Eder, C., Perry, J.: Signature-based Algoritms to compute Gröbner bases. Proc. ISSAC’11 , 99–106, ACM (2011)
20.
go back to reference Faugère, J.-C.: A new efficient algorithm for computating Gröbner bases (\(F_4\)). J. Pure Appl. Algebra 139, 61–88 (1999)MathSciNetMATH Faugère, J.-C.: A new efficient algorithm for computating Gröbner bases (\(F_4\)). J. Pure Appl. Algebra 139, 61–88 (1999)MathSciNetMATH
21.
go back to reference Faugère, J.-C.: A new efficient algorithm for computating Gröbner bases without reduction to zero (\(F_5\)). Proc. ISSAC 2002. 75–83, ACM (2002) Faugère, J.-C.: A new efficient algorithm for computating Gröbner bases without reduction to zero (\(F_5\)). Proc. ISSAC 2002. 75–83, ACM (2002)
22.
go back to reference Gebauer, R., Möller, H.M.: On an Installation of Buchbgerger’s Algorithm. J. Symb. Comp. 6, 275–286 (1988)MATH Gebauer, R., Möller, H.M.: On an Installation of Buchbgerger’s Algorithm. J. Symb. Comp. 6, 275–286 (1988)MATH
23.
go back to reference Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math. Comp. Simul. 45, 543–560 (1998)MathSciNetMATH Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math. Comp. Simul. 45, 543–560 (1998)MathSciNetMATH
24.
go back to reference Gerdt, V.P., Blinkov, Y.A.: Minimal involutive bases. ACM SIGSAM Bull. 31, 44 (1997)MATH Gerdt, V.P., Blinkov, Y.A.: Minimal involutive bases. ACM SIGSAM Bull. 31, 44 (1997)MATH
25.
go back to reference Giusti, M., Heintz, J., Morais, J.E., Pardo, L.M.: When polynomial equation systems can be “solved’’ fast? L. N. Comp. Sci. 948, 205–231 (1995)MathSciNetMATH Giusti, M., Heintz, J., Morais, J.E., Pardo, L.M.: When polynomial equation systems can be “solved’’ fast? L. N. Comp. Sci. 948, 205–231 (1995)MathSciNetMATH
26.
go back to reference Giusti, M., Heintz, J., Morais, J.E., Morgensten, J., Pardo, L.M.: Straight-line programs in geometric elimination theory. J. Pure Appl. Algebra 124, 101–146r (1998)MathSciNetMATH Giusti, M., Heintz, J., Morais, J.E., Morgensten, J., Pardo, L.M.: Straight-line programs in geometric elimination theory. J. Pure Appl. Algebra 124, 101–146r (1998)MathSciNetMATH
27.
go back to reference Giusti, M., Heintz, J., Hägele, K., Morais, J.E., Pardo, L.M.: Montaña, Lower bounds for diophantine approximation. J. Pure Appl. Algebra 117–118, 277–311 (1997)MATH Giusti, M., Heintz, J., Hägele, K., Morais, J.E., Pardo, L.M.: Montaña, Lower bounds for diophantine approximation. J. Pure Appl. Algebra 117–118, 277–311 (1997)MATH
28.
go back to reference Giusti, M., Heintz, J., Morais, J.E., Pardo, L.M.: Le rôle des structures de données dans les problèmes d’élimination. C. R. Acad. Sci. Paris 325, 1223–1228 (1997)MathSciNetMATH Giusti, M., Heintz, J., Morais, J.E., Pardo, L.M.: Le rôle des structures de données dans les problèmes d’élimination. C. R. Acad. Sci. Paris 325, 1223–1228 (1997)MathSciNetMATH
29.
go back to reference Giusti, M., Lecerf, G., Salvy, B.: A Gröbner Free Alternative for Polynomial System Solving. J. Complex. 17, 154–211 (2001)MATH Giusti, M., Lecerf, G., Salvy, B.: A Gröbner Free Alternative for Polynomial System Solving. J. Complex. 17, 154–211 (2001)MATH
30.
go back to reference Gunther, N.: Sur les caractéristiques des systémes d’équations aux dérivées partialles. C. R. Acad. Sci. Paris 156, 1147–1150 (1913)MATH Gunther, N.: Sur les caractéristiques des systémes d’équations aux dérivées partialles. C. R. Acad. Sci. Paris 156, 1147–1150 (1913)MATH
31.
go back to reference Gunther, N.: Sur la forme canonique des equations algébriques. C. R. Acad. Sci. Paris 157, 577–580 (1913)MATH Gunther, N.: Sur la forme canonique des equations algébriques. C. R. Acad. Sci. Paris 157, 577–580 (1913)MATH
32.
go back to reference Gunther, N.: Sur la théorie générale des systèmes d’équations aux dérivées partielles. C. R. Acad. Sci. Paris 158, 853–856 (1914)MATH Gunther, N.: Sur la théorie générale des systèmes d’équations aux dérivées partielles. C. R. Acad. Sci. Paris 158, 853–856 (1914)MATH
33.
go back to reference Gunther, N.: Sur les modules des formes algébriques Trudy Tbilis. Mat. Inst. 9, 97–206 (1941)MathSciNet Gunther, N.: Sur les modules des formes algébriques Trudy Tbilis. Mat. Inst. 9, 97–206 (1941)MathSciNet
34.
35.
go back to reference Jacob, C.G.: De eliminatione variabilis e duabus aequationibus algebraicis. J. die reine und Angew. Math. 15, 101–124 (1836)MathSciNetMATH Jacob, C.G.: De eliminatione variabilis e duabus aequationibus algebraicis. J. die reine und Angew. Math. 15, 101–124 (1836)MathSciNetMATH
36.
go back to reference Janet, M.: Sur les systèmes d’équations aux dérivées partielles. J. Math. Pure Appl. 3, 65–151 (1920)MATH Janet, M.: Sur les systèmes d’équations aux dérivées partielles. J. Math. Pure Appl. 3, 65–151 (1920)MATH
37.
go back to reference Janet, M.: Les modules de formes algébraiques et la théorie générale des systèmes diffèrentielles. Ann. Éc. Norm. \(3^e\)série 41 27–65, (1924) Janet, M.: Les modules de formes algébraiques et la théorie générale des systèmes diffèrentielles. Ann. Éc. Norm. \(3^e\)série 41 27–65, (1924)
38.
go back to reference Janet, M.: Les systèmes d’équations aux dérivées partielles. Mémorial Sci. Math. XXI, Gauthiers-Villars (1927) Janet, M.: Les systèmes d’équations aux dérivées partielles. Mémorial Sci. Math. XXI, Gauthiers-Villars (1927)
39.
go back to reference Janet, M.: Leçons sur les systèmes d’équations aux dérivées partielles. Gauthiers-Villars. (1929) Janet, M.: Leçons sur les systèmes d’équations aux dérivées partielles. Gauthiers-Villars. (1929)
40.
go back to reference Kapur, D., Chtcherba, A.D.: Conditions for exact resultants using the dixon resultant formulation. Proc. ISSAC 2000 62–70, ACM (2000) Kapur, D., Chtcherba, A.D.: Conditions for exact resultants using the dixon resultant formulation. Proc. ISSAC 2000 62–70, ACM (2000)
41.
go back to reference Kapur, D., Chtcherba, A.D.: On the efficiency and oprimality of Dixon-based resultant method. Proc. ISSAC 2002, 29–36, ACM (2002) Kapur, D., Chtcherba, A.D.: On the efficiency and oprimality of Dixon-based resultant method. Proc. ISSAC 2002, 29–36, ACM (2002)
42.
go back to reference Kapur, D., Saxena, T., Yang, L.: Algebraic and geometric reasoning using Dixon resultants. Proc. ISSAC 94, 99–36, ACM (1994) Kapur, D., Saxena, T., Yang, L.: Algebraic and geometric reasoning using Dixon resultants. Proc. ISSAC 94, 99–36, ACM (1994)
43.
go back to reference Kapur, D., Saxena, T.: Extraneus factors in the Dixon resultant formulation. Proc. ISSAC 97, 141–148, ACM (1997) Kapur, D., Saxena, T.: Extraneus factors in the Dixon resultant formulation. Proc. ISSAC 97, 141–148, ACM (1997)
44.
go back to reference Lecerf, G.: Une alternative aux méthodes de réécriture pour résolution des systémes algébriques Ph.D. Thesis, École Polytechnique (2001) Lecerf, G.: Une alternative aux méthodes de réécriture pour résolution des systémes algébriques Ph.D. Thesis, École Polytechnique (2001)
45.
46.
go back to reference Macaulay, F.S.: On the resolution of a given modular system into primary systems including some properties of Hilbert numbers. Math. Ann. 74, 66–121 (1913)MathSciNetMATH Macaulay, F.S.: On the resolution of a given modular system into primary systems including some properties of Hilbert numbers. Math. Ann. 74, 66–121 (1913)MathSciNetMATH
47.
go back to reference Macaulay, F.S.: The Algebraic Theory of Modular Systems. Cambridge University Press, Cambridge (1916)MATH Macaulay, F.S.: The Algebraic Theory of Modular Systems. Cambridge University Press, Cambridge (1916)MATH
48.
go back to reference Macaulay, F.S.: Some properties of enumeration in the theory of modular systems. Proc. London Math. Soc. 26, 531–555 (1927)MathSciNetMATH Macaulay, F.S.: Some properties of enumeration in the theory of modular systems. Proc. London Math. Soc. 26, 531–555 (1927)MathSciNetMATH
49.
50.
go back to reference Morais, J.E.: Resolución eficaz de systemas de ecuaciones polinomiales, Ph. D. Thesis, Univ. Cantabria, Santander (1997) Morais, J.E.: Resolución eficaz de systemas de ecuaciones polinomiales, Ph. D. Thesis, Univ. Cantabria, Santander (1997)
51.
go back to reference Mourrain, B.: A New Criterion for Normal Form Algorithms. In: Fossorier M., Imai H., Lin S., Poli A. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1999. Lecture Notes in Computer Science, vol 1719. Springer, Berlin, Heidelberg (1999) Mourrain, B.: A New Criterion for Normal Form Algorithms. In: Fossorier M., Imai H., Lin S., Poli A. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1999. Lecture Notes in Computer Science, vol 1719. Springer, Berlin, Heidelberg (1999)
52.
53.
go back to reference Mourrain, B., Trebuchet, P.: Solving projective complete intersection faster, Proc. ISSAC’00 234–241, ACM (2000) Mourrain, B., Trebuchet, P.: Solving projective complete intersection faster, Proc. ISSAC’00 234–241, ACM (2000)
54.
go back to reference Muir, T.: The Theory of Determinants in the Historical Order of Development. MacMillan, London (1906) Muir, T.: The Theory of Determinants in the Historical Order of Development. MacMillan, London (1906)
55.
go back to reference Rouillier, F.: Solving zero-dimensional systems through the rational univariate representation. J. AAECC 9, 433–461 (1999)MathSciNetMATH Rouillier, F.: Solving zero-dimensional systems through the rational univariate representation. J. AAECC 9, 433–461 (1999)MathSciNetMATH
56.
go back to reference Salmon, G.: A treatise on the higher plane curves Dublin (1852) Salmon, G.: A treatise on the higher plane curves Dublin (1852)
57.
go back to reference Seiler, W.M.: A combinatorial approach to involution and \(\delta\)-regularity I: involutive bases in polynomial algebras of solvable type. J. AAECC 20(3–4), 207–259 (2009)MathSciNetMATH Seiler, W.M.: A combinatorial approach to involution and \(\delta\)-regularity I: involutive bases in polynomial algebras of solvable type. J. AAECC 20(3–4), 207–259 (2009)MathSciNetMATH
58.
go back to reference Seiler, W.M.: A combinatorial approach to involution and \(\delta\)-regularity II: structure analysis of polynomial modules with Pommaret bases. J. AAECC 20(3–4), 261–338 (2009)MathSciNetMATH Seiler, W.M.: A combinatorial approach to involution and \(\delta\)-regularity II: structure analysis of polynomial modules with Pommaret bases. J. AAECC 20(3–4), 261–338 (2009)MathSciNetMATH
59.
go back to reference Seiler, W.M.: Involution: The Formal Theory of Differential Equations and its Applications. Springer, New York (2010)MATH Seiler, W.M.: Involution: The Formal Theory of Differential Equations and its Applications. Springer, New York (2010)MATH
60.
go back to reference Sylvester, J.J.: A method of determining by mere inspection the derivatives from two equations of any degree. Philos. Magaz. 16, 132–135 (1840) Sylvester, J.J.: A method of determining by mere inspection the derivatives from two equations of any degree. Philos. Magaz. 16, 132–135 (1840)
61.
go back to reference Sylvester, J.J.: Memoir on the dialytic method of elimination. Part I. Philos. Magaz. 31, 534–539 (1842) Sylvester, J.J.: Memoir on the dialytic method of elimination. Part I. Philos. Magaz. 31, 534–539 (1842)
62.
go back to reference Sylvester, J.J.: On a theory of the syzygietic relations of two rational integral functions, comprising an application to the theory of Sturm’s functions, and that of the greatest algebraic common measure. Philos. Trans. R. Soc. London 148, 407–548 (1853) Sylvester, J.J.: On a theory of the syzygietic relations of two rational integral functions, comprising an application to the theory of Sturm’s functions, and that of the greatest algebraic common measure. Philos. Trans. R. Soc. London 148, 407–548 (1853)
63.
go back to reference Sylvester, J.J.: On the partition of numbers. Quart. J. Pure Appl. Math. 1, 141–152 (1855) Sylvester, J.J.: On the partition of numbers. Quart. J. Pure Appl. Math. 1, 141–152 (1855)
64.
go back to reference van der Waerden, B.L.: Modern Algebra. Ungar, New York (1949) van der Waerden, B.L.: Modern Algebra. Ungar, New York (1949)
65.
go back to reference Weil, A.: Foundations of Algebraic Geometry. American Mathematical Society, Rhode Island (1962)MATH Weil, A.: Foundations of Algebraic Geometry. American Mathematical Society, Rhode Island (1962)MATH
66.
go back to reference Zariski, O., Samuel, P.: Commutative Algebra. Van Nostrand, New York (1958)MATH Zariski, O., Samuel, P.: Commutative Algebra. Van Nostrand, New York (1958)MATH
Metadata
Title
Further perspectives on elimination
Author
Teo Mora
Publication date
01-09-2023
Publisher
Springer Berlin Heidelberg
Published in
Applicable Algebra in Engineering, Communication and Computing / Issue 5/2023
Print ISSN: 0938-1279
Electronic ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-023-00618-2

Premium Partner