Skip to main content
Top
Published in: International Journal of Machine Learning and Cybernetics 3/2016

01-06-2016 | Original Article

Fusing sequential minimal optimization and Newton’s method for support vector training

Author: Shigeo Abe

Published in: International Journal of Machine Learning and Cybernetics | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sequential minimal optimization (SMO) is widely used for training support vector machines (SVMs) because of fast training. But the training slows down when a large margin parameter value is used. Training by Newton’s method (NM) accelerates training in such a situation but it slows down for a small margin parameter value. To solve this problem, in this paper we fuse SMO with NM and call it SMO-NM. Because slow training is caused by repetitive corrections of the same variables, we modify the working set selection when they are detected. We call the variables that are selected by SMO, SMO variables. At the current step, if a variable selected as an SMO variable was selected in a previous step, we consider that a loop is detected. And in addition to the SMO variables, we add, to the working set, the unbounded variables that were selected as SMO variables and correct the variables by NM. If no loop is detected, the training procedure is the same as that of SMO. As a variant of this working set strategy, we further add violating variables to the working set. We clarify that if the classification problem is not linearly separable in the feature space, the solutions of L1/L2 SVMs (with the linear sum/square sum of slack variables) are unbounded as the margin parameter value approaches infinity but that, if the mapped training data are not linearly independent in the feature space, the solution of the least squares SVM is unbounded as the margin parameter approaches infinity. We also clarify the condition, in which the increment of the objective function value by SMO-NM is larger than that by SMO. We evaluate SMO-NM for several benchmark data sets and confirm the effectiveness over SMO especially for a large margin parameter value.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Footnotes
1
In the LS SVM, \(F_i\) are used instead of \(\bar{F_i}\) and \(\tilde{F_i}\).
 
Literature
2.
go back to reference Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, CambridgeCrossRefMATH Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, CambridgeCrossRefMATH
3.
go back to reference Khemchandani R, Karpatne A, Chandra S (2013) Proximal support tensor machines. Int J Mach Learn Cybernet 4(6):703–712CrossRef Khemchandani R, Karpatne A, Chandra S (2013) Proximal support tensor machines. Int J Mach Learn Cybernet 4(6):703–712CrossRef
4.
go back to reference He Q, Wu C (2011) Separating theorem of samples in Banach space for support vector machine learning. Int J Mach Learn Cybernet 2(1):49–54CrossRef He Q, Wu C (2011) Separating theorem of samples in Banach space for support vector machine learning. Int J Mach Learn Cybernet 2(1):49–54CrossRef
5.
go back to reference Wang X, Lu S, Zhai J (2008) Fast fuzzy multi-category SVM based on support vector domain description. Int J Pattern Recogn Artif Intell 22(1):109–120CrossRef Wang X, Lu S, Zhai J (2008) Fast fuzzy multi-category SVM based on support vector domain description. Int J Pattern Recogn Artif Intell 22(1):109–120CrossRef
6.
go back to reference Wang X, He Q, Chen D, Yeung D (2005) A genetic algorithm for solving the inverse problem of support vector machines. Neurocomputing 68:225–238CrossRef Wang X, He Q, Chen D, Yeung D (2005) A genetic algorithm for solving the inverse problem of support vector machines. Neurocomputing 68:225–238CrossRef
7.
go back to reference Byun H, Lee S-W (2003) A survey on pattern recognition applications of support vector machines. Int J Pattern Recogn Artif Intell 17(3):459–486CrossRef Byun H, Lee S-W (2003) A survey on pattern recognition applications of support vector machines. Int J Pattern Recogn Artif Intell 17(3):459–486CrossRef
8.
go back to reference Widodo A, Yang B-S (2007) Support vector machine in machine condition monitoring and fault diagnosis. Mech Syst Signal Process 21(6):2560–2574CrossRef Widodo A, Yang B-S (2007) Support vector machine in machine condition monitoring and fault diagnosis. Mech Syst Signal Process 21(6):2560–2574CrossRef
9.
go back to reference Schölkopf B, Tsuda K, Vert J-P (2004) Kernel methods in computational biology. MIT Press, Cambridge Schölkopf B, Tsuda K, Vert J-P (2004) Kernel methods in computational biology. MIT Press, Cambridge
10.
go back to reference Chen N, Lu W, Yang J, Li G (2004) Support vector machine in chemistry. World Scientific Publishing Company, SingaporeCrossRef Chen N, Lu W, Yang J, Li G (2004) Support vector machine in chemistry. World Scientific Publishing Company, SingaporeCrossRef
11.
go back to reference Bradford JR, Westhead DR (2005) Improved prediction of protein-protein binding sites using a support vector machines approach. Bioinformatics 21(8):1487–1494CrossRef Bradford JR, Westhead DR (2005) Improved prediction of protein-protein binding sites using a support vector machines approach. Bioinformatics 21(8):1487–1494CrossRef
12.
go back to reference Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinf Comput Biol 3(2):185–205MathSciNetCrossRef Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinf Comput Biol 3(2):185–205MathSciNetCrossRef
13.
14.
go back to reference Platt JC (1999) Fast training of support vector machines using sequential minimal optimization. In: Schölkopf B, Burges CJC, Smola AJ (eds) Advances in kernel methods: support vector learning. MIT Press, Cambridge, pp 185–208 Platt JC (1999) Fast training of support vector machines using sequential minimal optimization. In: Schölkopf B, Burges CJC, Smola AJ (eds) Advances in kernel methods: support vector learning. MIT Press, Cambridge, pp 185–208
15.
go back to reference Keerthi SS, Gilbert EG (2002) Convergence of a generalized SMO algorithm for SVM classifier design. Mach Learn 46(1–3):351–360CrossRefMATH Keerthi SS, Gilbert EG (2002) Convergence of a generalized SMO algorithm for SVM classifier design. Mach Learn 46(1–3):351–360CrossRefMATH
16.
go back to reference Fan R-E, Chen P-H, Lin C-J (2005) Working set selection using second order information for training support vector machines. J Mach Learn Res 6:1889–1918MathSciNetMATH Fan R-E, Chen P-H, Lin C-J (2005) Working set selection using second order information for training support vector machines. J Mach Learn Res 6:1889–1918MathSciNetMATH
17.
go back to reference Barbero Á, Dorronsoro JR (2010) Faster directions for second order SMO. In: Diamantaras K, Duch W, Iliadis LS (eds) Artificial neural networks—ICANN 2010, vol 6353 of lecture notes in computer science. Springer, pp 30–39 Barbero Á, Dorronsoro JR (2010) Faster directions for second order SMO. In: Diamantaras K, Duch W, Iliadis LS (eds) Artificial neural networks—ICANN 2010, vol 6353 of lecture notes in computer science. Springer, pp 30–39
18.
go back to reference Barbero Á, Dorronsoro JR (2011) Momentum sequential minimal optimization: an accelerated method for support vector machine training. In: Proceedings of the 2011 International Joint Conference on neural networks (IJCNN 2011), San Jose, pp 370–377 Barbero Á, Dorronsoro JR (2011) Momentum sequential minimal optimization: an accelerated method for support vector machine training. In: Proceedings of the 2011 International Joint Conference on neural networks (IJCNN 2011), San Jose, pp 370–377
19.
go back to reference Chu W, Ong CJ, Keerthi SS (2005) An improved conjugate gradient scheme to the solution of least squares SVM. IEEE Trans Neural Netw 16(2):498–501CrossRef Chu W, Ong CJ, Keerthi SS (2005) An improved conjugate gradient scheme to the solution of least squares SVM. IEEE Trans Neural Netw 16(2):498–501CrossRef
20.
go back to reference López J, Suykens JAK (2011) First and second order SMO algorithms for LS-SVM classifiers. Neural Process Lett 33(1):33–44 López J, Suykens JAK (2011) First and second order SMO algorithms for LS-SVM classifiers. Neural Process Lett 33(1):33–44
21.
go back to reference López J, Barbero Á, Dorronsoro JR (2011) Momentum acceleration of least-squares support vector machines. In: Honkela T, Duch W, Girolami M, Kaski S (eds) Artificial neural networks and machine learning—ICANN 2011, vol 6792 of lecture notes in computer science. Springer, pp 135–142 López J, Barbero Á, Dorronsoro JR (2011) Momentum acceleration of least-squares support vector machines. In: Honkela T, Duch W, Girolami M, Kaski S (eds) Artificial neural networks and machine learning—ICANN 2011, vol 6792 of lecture notes in computer science. Springer, pp 135–142
22.
go back to reference Joachims T (1999) Making large-scale support vector machine learning practical. In: Schölkopf B, Burges CJC, Smola AJ (eds) Advances in kernel methods: support vector learning. MIT Press, Cambridge, pp 169–184 Joachims T (1999) Making large-scale support vector machine learning practical. In: Schölkopf B, Burges CJC, Smola AJ (eds) Advances in kernel methods: support vector learning. MIT Press, Cambridge, pp 169–184
23.
go back to reference Vishwanathan SVN, Smola AJ, Murty MN (2003) SimpleSVM. In: Proceedings of the Twentieth International Conference on machine learning (ICML-2003), vol 2, Washington DC, pp 760–767 Vishwanathan SVN, Smola AJ, Murty MN (2003) SimpleSVM. In: Proceedings of the Twentieth International Conference on machine learning (ICML-2003), vol 2, Washington DC, pp 760–767
24.
go back to reference Kienzle W, Schölkopf B (2005) Training support vector machines with multiple equality constraints. In: Proceedings of Sixteenth European Conference on machine learning (ECML 2005)., vol LNAI 3720Porto, Portugal, pp 182–193 Kienzle W, Schölkopf B (2005) Training support vector machines with multiple equality constraints. In: Proceedings of Sixteenth European Conference on machine learning (ECML 2005)., vol LNAI 3720Porto, Portugal, pp 182–193
25.
go back to reference Sentelle C, Georgiopoulos M, Anagnostopoulos GC, Young C (2007) On extending the SMO algorithm sub-problem. In: Proceedings of the 2007 International Joint Conference on neural networks (IJCNN 2007), Orlando, pp 886–891 Sentelle C, Georgiopoulos M, Anagnostopoulos GC, Young C (2007) On extending the SMO algorithm sub-problem. In: Proceedings of the 2007 International Joint Conference on neural networks (IJCNN 2007), Orlando, pp 886–891
26.
go back to reference Hernandez RA, Strum M, Wang JC, Gonzalez JAQ (2009) The multiple pairs SMO: a modified SMO algorithm for the acceleration of the SVM training. In: Proceedings of the 2009 International Joint Conference on neural networks (IJCNN 2009), Atlanta, pp 1221–1228 Hernandez RA, Strum M, Wang JC, Gonzalez JAQ (2009) The multiple pairs SMO: a modified SMO algorithm for the acceleration of the SVM training. In: Proceedings of the 2009 International Joint Conference on neural networks (IJCNN 2009), Atlanta, pp 1221–1228
27.
go back to reference Abe S (2011) Fast support vector training by Newton’s method. In: Honkela T, Duch W, Girolami M, Kaski S (eds) Artificial neural networks and machine learning—ICANN 2011, vol 6792 of lecture notes in computer science. Springer, pp 143–150 Abe S (2011) Fast support vector training by Newton’s method. In: Honkela T, Duch W, Girolami M, Kaski S (eds) Artificial neural networks and machine learning—ICANN 2011, vol 6792 of lecture notes in computer science. Springer, pp 143–150
28.
go back to reference Loosli G, Canu S (2007) Comments on the “Core vector machines: fast SVM training on very large data sets”. J Mach Learn Res 8:291–301MATH Loosli G, Canu S (2007) Comments on the “Core vector machines: fast SVM training on very large data sets”. J Mach Learn Res 8:291–301MATH
30.
go back to reference Cauwenberghs G, Poggio T (2001) Incremental and decremental support vector machine learning. In: Leen TK, Dietterich TG, Tresp V (eds) Advances in neural information processing systems, vol 13. MIT Press, Cambridge, pp 409–415 Cauwenberghs G, Poggio T (2001) Incremental and decremental support vector machine learning. In: Leen TK, Dietterich TG, Tresp V (eds) Advances in neural information processing systems, vol 13. MIT Press, Cambridge, pp 409–415
31.
go back to reference Shilton A, Palaniswami M, Ralph D, Tsoi AC (2005) Incremental training of support vector machines. IEEE Trans Neural Netw 16(1):114–131CrossRef Shilton A, Palaniswami M, Ralph D, Tsoi AC (2005) Incremental training of support vector machines. IEEE Trans Neural Netw 16(1):114–131CrossRef
32.
go back to reference Scheinberg K (2006) An efficient implementation of an active set method for SVMs. J Mach Learn Res 7:2237–2257MathSciNetMATH Scheinberg K (2006) An efficient implementation of an active set method for SVMs. J Mach Learn Res 7:2237–2257MathSciNetMATH
33.
go back to reference Abe S (2008) Batch support vector training based on exact incremental training. In: Kůrková V, Neruda R, Koutnik J (eds) Artificial neural networks (ICANN 2008)–Proceedings of the Eighteenth International Conference, Prague, Czech Republic, Part I. Springer, Berlin, pp 527–536 Abe S (2008) Batch support vector training based on exact incremental training. In: Kůrková V, Neruda R, Koutnik J (eds) Artificial neural networks (ICANN 2008)–Proceedings of the Eighteenth International Conference, Prague, Czech Republic, Part I. Springer, Berlin, pp 527–536
34.
go back to reference Gâlmeanu H, Andonie R (2008) Implementation issues of an incremental and decremental SVM. In: Kůrková V, Neruda R, Koutnik J (eds) Artificial neural networks (ICANN 2008)–Proceedings of the Eighteenth International Conference, Prague, Czech Republic, Part I. Springer, Berlin, pp 325–335 Gâlmeanu H, Andonie R (2008) Implementation issues of an incremental and decremental SVM. In: Kůrková V, Neruda R, Koutnik J (eds) Artificial neural networks (ICANN 2008)–Proceedings of the Eighteenth International Conference, Prague, Czech Republic, Part I. Springer, Berlin, pp 325–335
35.
go back to reference Sentelle C, Anagnostopoulos GC, Georgiopoulos M (2009) An efficient active set method for SVM training without singular inner problems. In Proceedings of the 2009 International Joint Conference on neural networks (IJCNN 2009), Atlanta, pp 2875–2882 Sentelle C, Anagnostopoulos GC, Georgiopoulos M (2009) An efficient active set method for SVM training without singular inner problems. In Proceedings of the 2009 International Joint Conference on neural networks (IJCNN 2009), Atlanta, pp 2875–2882
36.
go back to reference Sentelle C, Anagnostopoulos GC, Georgiopoulos M (2011) Efficient revised simplex method for SVM training. IEEE Trans Neural Netw 22(10):1650–1661CrossRef Sentelle C, Anagnostopoulos GC, Georgiopoulos M (2011) Efficient revised simplex method for SVM training. IEEE Trans Neural Netw 22(10):1650–1661CrossRef
37.
go back to reference Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. The Johns Hopkins University Press, BaltimoreMATH Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. The Johns Hopkins University Press, BaltimoreMATH
38.
go back to reference Abe S (2007) Sparse least squares support vector training in the reduced empirical feature space. Pattern Anal Appl 10(3):203–214MathSciNetCrossRef Abe S (2007) Sparse least squares support vector training in the reduced empirical feature space. Pattern Anal Appl 10(3):203–214MathSciNetCrossRef
Metadata
Title
Fusing sequential minimal optimization and Newton’s method for support vector training
Author
Shigeo Abe
Publication date
01-06-2016
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics / Issue 3/2016
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-014-0265-x

Other articles of this Issue 3/2016

International Journal of Machine Learning and Cybernetics 3/2016 Go to the issue