Skip to main content
Top

2016 | OriginalPaper | Chapter

33. Future Perspectives

Author : Junichiro Yamabe

Published in: Hydrogen Energy Engineering

Publisher: Springer Japan

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter describes future perspectives of the hydrogen safety achieved by combination of understanding hydrogen embrittlement (HE), hydrogen gas safety management, and hydrogen in practice. New materials having lower cost and higher resistance to HE and appropriate design methods in consideration for HE are introduced.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference NASA (1997) Safety standard for hydrogen and hydrogen systems. Washington, D.C: NSS 1740.16 NASA (1997) Safety standard for hydrogen and hydrogen systems. Washington, D.C: NSS 1740.16
2.
go back to reference Matsunaga H, Yoshikawa M, Kondo R, Yamabe J, Matsuoka S (2015) Slow strain rate tensile and fatigue properties of Cr–Mo and carbon steels in a 115 MPa hydrogen gas atmosphere. Int J Hydrogen Energy 40:5739–5748CrossRef Matsunaga H, Yoshikawa M, Kondo R, Yamabe J, Matsuoka S (2015) Slow strain rate tensile and fatigue properties of Cr–Mo and carbon steels in a 115 MPa hydrogen gas atmosphere. Int J Hydrogen Energy 40:5739–5748CrossRef
3.
go back to reference Matsuoka S, Tsutsumi N, Murakami Y (2008) Effects of hydrogen on fatigue crack growth and stretch zone of 0.08 Mass% low carbon steel pipe. Trans JSME A 74:1528–1537CrossRef Matsuoka S, Tsutsumi N, Murakami Y (2008) Effects of hydrogen on fatigue crack growth and stretch zone of 0.08 Mass% low carbon steel pipe. Trans JSME A 74:1528–1537CrossRef
4.
go back to reference Tanaka H, Homma N, Matsuoka S, Murakami Y (2007) Effect of hydrogen and frequency on fatigue behavior of SCM435 steel for storage cylinder of hydrogen station. Trans JSME A 73:1358–1365CrossRef Tanaka H, Homma N, Matsuoka S, Murakami Y (2007) Effect of hydrogen and frequency on fatigue behavior of SCM435 steel for storage cylinder of hydrogen station. Trans JSME A 73:1358–1365CrossRef
5.
go back to reference Kanezaki T, Narazaki C, Mine Y, Matsuoka S, Murakami Y (2008) Effects of hydrogen on fatigue crack growth behavior of austenitic stainless steels. Int J Hydrogen Energy 33:2604–2619CrossRef Kanezaki T, Narazaki C, Mine Y, Matsuoka S, Murakami Y (2008) Effects of hydrogen on fatigue crack growth behavior of austenitic stainless steels. Int J Hydrogen Energy 33:2604–2619CrossRef
6.
go back to reference Murakami Y, Kanezaki T, Mine Y, Matsuoka S (2008) Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels. Metall Mater Trans A 39:1327–1339CrossRef Murakami Y, Kanezaki T, Mine Y, Matsuoka S (2008) Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels. Metall Mater Trans A 39:1327–1339CrossRef
7.
go back to reference Yoshikawa M, Matsuo T, Tsutsumi N, Matsunaga H, Matsuoka S (2014) Effects of hydrogen gas pressure and test frequency on fatigue crack growth properties of low carbon steel in 0.1–9 0 MPa hydrogen gas. Trans JSME A 80 Yoshikawa M, Matsuo T, Tsutsumi N, Matsunaga H, Matsuoka S (2014) Effects of hydrogen gas pressure and test frequency on fatigue crack growth properties of low carbon steel in 0.1–9 0 MPa hydrogen gas. Trans JSME A 80
8.
go back to reference Matsuo T, Matsuoka S, Murakami Y (2010) Fatigue crack growth properties of quenched and tempered Cr-Mo steel in 0.7 MPa hydrogen gas. In: Proceedings of the 18th European conference on fracture (ECF18) Matsuo T, Matsuoka S, Murakami Y (2010) Fatigue crack growth properties of quenched and tempered Cr-Mo steel in 0.7 MPa hydrogen gas. In: Proceedings of the 18th European conference on fracture (ECF18)
9.
go back to reference Yamabe J, Itoga H, Awane T, Matsuo T, Matsunaga H, Matsuoka S (2016) Pressure cycle testing of Cr-Mo steel pressure vessels subjected to gaseous hydrogen. J. Press Vess Technol ASME 183–011401:1–13 Yamabe J, Itoga H, Awane T, Matsuo T, Matsunaga H, Matsuoka S (2016) Pressure cycle testing of Cr-Mo steel pressure vessels subjected to gaseous hydrogen. J. Press Vess Technol ASME 183–011401:1–13
10.
go back to reference Miyamoto T, Matsuo T, Kobayashi N, Mukaie Y, Matsuoka S (2012) Characteristics of fatigue life and fatigue crack growth of SCM435 steel in high-pressure hydrogen gas. Trans Jpn Soc Mech Eng A 78:531–546CrossRef Miyamoto T, Matsuo T, Kobayashi N, Mukaie Y, Matsuoka S (2012) Characteristics of fatigue life and fatigue crack growth of SCM435 steel in high-pressure hydrogen gas. Trans Jpn Soc Mech Eng A 78:531–546CrossRef
11.
go back to reference Sofronis P, McMeeking RM (1989) Numerical analysis of hydrogen transport near a blunting crack tip. J Mech Phys Solid 37:317–350CrossRef Sofronis P, McMeeking RM (1989) Numerical analysis of hydrogen transport near a blunting crack tip. J Mech Phys Solid 37:317–350CrossRef
12.
go back to reference Birnbaum HK, Sofronis P (1994) Hydrogen-enhanced localized plasticity: a mechanism for hydrogen-related fracture. Mater Sci Eng A 176:191–202CrossRef Birnbaum HK, Sofronis P (1994) Hydrogen-enhanced localized plasticity: a mechanism for hydrogen-related fracture. Mater Sci Eng A 176:191–202CrossRef
13.
go back to reference Robertson IM, Birnbaum HK (1986) An HVEM study of hydrogen effects on the deformation and fracture of nickel. Acta Metall 34:353–366CrossRef Robertson IM, Birnbaum HK (1986) An HVEM study of hydrogen effects on the deformation and fracture of nickel. Acta Metall 34:353–366CrossRef
14.
go back to reference Morlet JG, Johnson HH, Triano AR (1958) A new concept of hydrogen embrittlement in steel. J Iron Steel Inst 189–1:37–41 Morlet JG, Johnson HH, Triano AR (1958) A new concept of hydrogen embrittlement in steel. J Iron Steel Inst 189–1:37–41
15.
go back to reference Troiano AR (1960) The role of hydrogen and other interstitials in the mechanical behavior of metals. Trans ASM 52:54–80 Troiano AR (1960) The role of hydrogen and other interstitials in the mechanical behavior of metals. Trans ASM 52:54–80
16.
go back to reference Oriani RA, Josephic H (1974) Equilibrium aspects of hydrogen-induced cracking of steels. Acta Metall 22:1065–1074CrossRef Oriani RA, Josephic H (1974) Equilibrium aspects of hydrogen-induced cracking of steels. Acta Metall 22:1065–1074CrossRef
17.
go back to reference Yamabe J, Matsumoto T, Matsuoka S, Murakami Y (2012) A New mechanism in hydrogen-enhanced fatigue crack growth behavior of a 1900-MPa-class high-strength steel. Int J Fract 177:141–162CrossRef Yamabe J, Matsumoto T, Matsuoka S, Murakami Y (2012) A New mechanism in hydrogen-enhanced fatigue crack growth behavior of a 1900-MPa-class high-strength steel. Int J Fract 177:141–162CrossRef
18.
go back to reference Somerday BP, Sofronis P, Nibur KA, San Marchi C, Kirchheim R (2013) Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations. Acta Mater 61:6153–6170CrossRef Somerday BP, Sofronis P, Nibur KA, San Marchi C, Kirchheim R (2013) Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations. Acta Mater 61:6153–6170CrossRef
19.
go back to reference Yamabe J, Matsunaga H, Furuya Y, Hamada S, Itoga H, Yoshikawa M, Takeuchi E, Matsuoka S (2014) Qualification of chromium–molybdenum steel based on the safety factor multiplier method in CHMC1-2014. Int J Hydrogen Energy 40:719–728CrossRef Yamabe J, Matsunaga H, Furuya Y, Hamada S, Itoga H, Yoshikawa M, Takeuchi E, Matsuoka S (2014) Qualification of chromium–molybdenum steel based on the safety factor multiplier method in CHMC1-2014. Int J Hydrogen Energy 40:719–728CrossRef
20.
go back to reference Itoga H, Matsuo T, Orita A, Matsunaga H, Matsuoka S, Hirotani R (2014) SSRT and fatigue crack growth properties of high-strength austenitic stainless steels in high-pressure hydrogen gas (PVP2014-28640). In: Proceedings of PVP-2014: ASME pressure vessels and piping division conference. American Society of Mechanical Engineers, Anaheim, California, USA, July 20–24 ASME, New York Itoga H, Matsuo T, Orita A, Matsunaga H, Matsuoka S, Hirotani R (2014) SSRT and fatigue crack growth properties of high-strength austenitic stainless steels in high-pressure hydrogen gas (PVP2014-28640). In: Proceedings of PVP-2014: ASME pressure vessels and piping division conference. American Society of Mechanical Engineers, Anaheim, California, USA, July 20–24 ASME, New York
21.
go back to reference Hirayama T, Ogirima (1970) Influence of chemical composition on martensitic transformation in Fe–Cr–Ni stainless steel. J Jpn Inst Met Mater 34:507–510 Hirayama T, Ogirima (1970) Influence of chemical composition on martensitic transformation in Fe–Cr–Ni stainless steel. J Jpn Inst Met Mater 34:507–510
22.
go back to reference Sanga M, Yukawa N, Ishikawa T (2000) Influence of chemical composition on deformation-induced martensitic transformation in austenitic stainless steel. J Jpn Soc Technol Plast 41:64–68 Sanga M, Yukawa N, Ishikawa T (2000) Influence of chemical composition on deformation-induced martensitic transformation in austenitic stainless steel. J Jpn Soc Technol Plast 41:64–68
23.
go back to reference Yamada T, Kobayashi H (2012) J High Press. Gas Safety Inst Jpn 49:885–893 Yamada T, Kobayashi H (2012) J High Press. Gas Safety Inst Jpn 49:885–893
24.
go back to reference Hirayama T, Ogirima M (1970) Influence of martensitic transformation and chemical composition on mechanical properties of Fe-Cr-Ni stainless steel. J Jpn Inst Met Mater 34:511–516 Hirayama T, Ogirima M (1970) Influence of martensitic transformation and chemical composition on mechanical properties of Fe-Cr-Ni stainless steel. J Jpn Inst Met Mater 34:511–516
25.
go back to reference Oshima T, Habara Y, Kuroda K (2007) Effects of alloying elements on mechanical properties and deformation-induced martensite transformation in Cr-Mn-Ni austenitic stainless steels (transformations and microstructures). Tetsu- to- Hagane 93:544–551CrossRef Oshima T, Habara Y, Kuroda K (2007) Effects of alloying elements on mechanical properties and deformation-induced martensite transformation in Cr-Mn-Ni austenitic stainless steels (transformations and microstructures). Tetsu- to- Hagane 93:544–551CrossRef
26.
go back to reference Itoga H, Matsuo T, Orita A, Matsunaga H, Matsuoka S (2013) SSRT and fatigue crack growth properties of two types of high strength austenitic stainless steels in high pressure hydrogen gas. Trans JSME A 79:1726–1740CrossRef Itoga H, Matsuo T, Orita A, Matsunaga H, Matsuoka S (2013) SSRT and fatigue crack growth properties of two types of high strength austenitic stainless steels in high pressure hydrogen gas. Trans JSME A 79:1726–1740CrossRef
27.
go back to reference ANSI/CSA, CHMC 1-2014 (2014) Test method for evaluating material compatibility in compressed hydrogen applications–Phase I–Metals. Mississauga, In: Canadian Standards Association ANSI/CSA, CHMC 1-2014 (2014) Test method for evaluating material compatibility in compressed hydrogen applicationsPhase IMetals. Mississauga, In: Canadian Standards Association
28.
go back to reference San Marchi C, Somerday BP, Nibur KA (2014) Development of methods for evaluating hydrogen compatibility and suitability. Int J Hydrogen Energy 39:20434–20439CrossRef San Marchi C, Somerday BP, Nibur KA (2014) Development of methods for evaluating hydrogen compatibility and suitability. Int J Hydrogen Energy 39:20434–20439CrossRef
29.
go back to reference Mizobe K, Shiraishi Y, Kubota M, Kondo Y (2011) Effect of hydrogen on fretting fatigue strength of SUS304 and SUS316L austenitic stainless steels. In: Proceedings. ICM&P2011, Corvallis, Oregon, USA: ICMP2011-51138 Mizobe K, Shiraishi Y, Kubota M, Kondo Y (2011) Effect of hydrogen on fretting fatigue strength of SUS304 and SUS316L austenitic stainless steels. In: Proceedings. ICM&P2011, Corvallis, Oregon, USA: ICMP2011-51138
30.
go back to reference Kubota M, Tanaka Y, Kondo Y (2007) Fretting fatigue properties of SCM435H and SUH660 in hydrogen gas environment. Trans JSME A 73:1382–1387CrossRef Kubota M, Tanaka Y, Kondo Y (2007) Fretting fatigue properties of SCM435H and SUH660 in hydrogen gas environment. Trans JSME A 73:1382–1387CrossRef
31.
go back to reference Kubota M, Nishimura T, Kondo Y (2010) Effect of hydrogen concentration on fretting fatigue strength. J Solid Mech Mater Eng 4:816–829CrossRef Kubota M, Nishimura T, Kondo Y (2010) Effect of hydrogen concentration on fretting fatigue strength. J Solid Mech Mater Eng 4:816–829CrossRef
32.
go back to reference Komoda R, Kubota M, Furtado J (2015) Effect of addition of oxygen and water vapor on fretting fatigue properties of an austenitic stainless steel in hydrogen. Int J Hydrogen Energy 40:16868–16877 Komoda R, Kubota M, Furtado J (2015) Effect of addition of oxygen and water vapor on fretting fatigue properties of an austenitic stainless steel in hydrogen. Int J Hydrogen Energy 40:16868–16877
Metadata
Title
Future Perspectives
Author
Junichiro Yamabe
Copyright Year
2016
Publisher
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-56042-5_33