Skip to main content
Top

2016 | OriginalPaper | Chapter

32. Structural Design and Testing

Author : Junichiro Yamabe

Published in: Hydrogen Energy Engineering

Publisher: Springer Japan

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter describes various design methods of components in consideration for the detrimental effect of hydrogen. Based on the design method, fatigue life and leak before break assessments of Cr–Mo steel pressure vessels subjected to hydrogen-pressure cycling are performed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Murakami Y, Matsuoka S, Kondo Y, Nishimura S (2012) Mechanism of hydrogen embrittlement and guide for fatigue design. Yokendo, Tokyo Murakami Y, Matsuoka S, Kondo Y, Nishimura S (2012) Mechanism of hydrogen embrittlement and guide for fatigue design. Yokendo, Tokyo
2.
go back to reference Gangloff RP, Somerday BP (eds) (2012) Gaseous hydrogen embrittlement of materials in energy technologies. Woodhead Publishing, Cambridge Gangloff RP, Somerday BP (eds) (2012) Gaseous hydrogen embrittlement of materials in energy technologies. Woodhead Publishing, Cambridge
3.
go back to reference ASME (2010) ASME boiler & pressure vessel code, section VIII. Alternate rules high pressure vessels, division 3. Article KD-10. Special requirements for vessels in high pressure gaseous hydrogen transport and storage service. American Society of Mechanical Engineers, New York ASME (2010) ASME boiler & pressure vessel code, section VIII. Alternate rules high pressure vessels, division 3. Article KD-10. Special requirements for vessels in high pressure gaseous hydrogen transport and storage service. American Society of Mechanical Engineers, New York
4.
go back to reference ANSI/CSA, CHMC 1-2014 (2014) Test method for evaluating material compatibility in compressed hydrogen applications—Phase I—Metals. Canadian Standards Association, Mississauga, ON ANSI/CSA, CHMC 1-2014 (2014) Test method for evaluating material compatibility in compressed hydrogen applicationsPhase IMetals. Canadian Standards Association, Mississauga, ON
5.
go back to reference San Marchi C, Somerday BP, Nibur KA (2014) Development of methods for evaluating hydrogen compatibility and suitability. Int J Hydrogen Energy 39:20434–20439CrossRef San Marchi C, Somerday BP, Nibur KA (2014) Development of methods for evaluating hydrogen compatibility and suitability. Int J Hydrogen Energy 39:20434–20439CrossRef
6.
go back to reference Kobayashi H (2008) Safety factor in mechanical engineering field. J Jpn Landslide Soc 44:326–329 Kobayashi H (2008) Safety factor in mechanical engineering field. J Jpn Landslide Soc 44:326–329
7.
go back to reference JSA. JIS B 8265 (2003) Construction of pressure vessel: general principles. Japanese Standards Association, Tokyo JSA. JIS B 8265 (2003) Construction of pressure vessel: general principles. Japanese Standards Association, Tokyo
8.
go back to reference JSA. JIS B 8267 (2008) Construction of pressure vessel. Japanese Standards Association, Tokyo JSA. JIS B 8267 (2008) Construction of pressure vessel. Japanese Standards Association, Tokyo
9.
go back to reference ASME (2001) ASME boiler & pressure vessel code, section VIII. Rules for the construction of pressure vessels. Division 1. American Society of Mechanical Engineers, New York ASME (2001) ASME boiler & pressure vessel code, section VIII. Rules for the construction of pressure vessels. Division 1. American Society of Mechanical Engineers, New York
10.
go back to reference JSA (2003) JIS B 8266. Alternative standard for construction of pressure vessels. Japanese Standards Association, Tokyo JSA (2003) JIS B 8266. Alternative standard for construction of pressure vessels. Japanese Standards Association, Tokyo
11.
go back to reference ASME (2007) ASME boiler & pressure vessel code, section VIII. Construction of pressure vessels, division 2. American Society of Mechanical Engineers, New York ASME (2007) ASME boiler & pressure vessel code, section VIII. Construction of pressure vessels, division 2. American Society of Mechanical Engineers, New York
12.
go back to reference UNM. EN 13445 (2004) Unfired Pressure Vessels; Courbevoie: Union de Normalisation de la Mécanique UNM. EN 13445 (2004) Unfired Pressure Vessels; Courbevoie: Union de Normalisation de la Mécanique
13.
go back to reference KHK. KHKS 0220 (2010) KHK standard for pressure equipment containing ultrahigh pressure gas. High Pressure Gas Safety Institute of Japan, Tokyo KHK. KHKS 0220 (2010) KHK standard for pressure equipment containing ultrahigh pressure gas. High Pressure Gas Safety Institute of Japan, Tokyo
14.
go back to reference Yamabe J, Matsunaga H, Furuya Y, Hamada S, Itoga H, Yoshikawa M, Takeuchi E, Matsuoka S (2014) Qualification of chromium–molybdenum steel based on the safety factor multiplier method in CHMC1-2014. Int J Hydrogen Energy 40:719–728CrossRef Yamabe J, Matsunaga H, Furuya Y, Hamada S, Itoga H, Yoshikawa M, Takeuchi E, Matsuoka S (2014) Qualification of chromium–molybdenum steel based on the safety factor multiplier method in CHMC1-2014. Int J Hydrogen Energy 40:719–728CrossRef
15.
go back to reference Matsunaga H, Yoshikawa M, Itoga H, Yamabe J, Hamada S, Matsuoka S (2014) Tensile- and fatigue-properties of low alloy steel JIS-435 and carbon steel JIS-SM490B in 115 MPa hydrogen gas (PVP2014-28511). In: Proceedings of PVP-2014: ASME pressure vessels and piping division conference. American Society of Mechanical Engineers, Anaheim, California, New York, USA, 20–24 July 2014 Matsunaga H, Yoshikawa M, Itoga H, Yamabe J, Hamada S, Matsuoka S (2014) Tensile- and fatigue-properties of low alloy steel JIS-435 and carbon steel JIS-SM490B in 115 MPa hydrogen gas (PVP2014-28511). In: Proceedings of PVP-2014: ASME pressure vessels and piping division conference. American Society of Mechanical Engineers, Anaheim, California, New York, USA, 20–24 July 2014
16.
go back to reference Yamabe J, Itoga H, Awane T, Matsuo T, Matsunaga H, Matsuoka S (2016) Pressure cycle testing of Cr–Mo steel pressure vessels subjected to gaseous hydrogen. J Press Vess Technol ASME 183–011401:1–13 Yamabe J, Itoga H, Awane T, Matsuo T, Matsunaga H, Matsuoka S (2016) Pressure cycle testing of Cr–Mo steel pressure vessels subjected to gaseous hydrogen. J Press Vess Technol ASME 183–011401:1–13
17.
go back to reference Miyamoto T, Matsuo T, Kobayashi N, Mukaie Y, Matsuoka S (2012) Characteristics of fatigue life and fatigue crack growth of SCM435 steel in high-pressure hydrogen gas. Trans JSME A 78:531–546CrossRef Miyamoto T, Matsuo T, Kobayashi N, Mukaie Y, Matsuoka S (2012) Characteristics of fatigue life and fatigue crack growth of SCM435 steel in high-pressure hydrogen gas. Trans JSME A 78:531–546CrossRef
18.
go back to reference Takeuchi E, Furuya Y, Hirakawa H, Matsuo T, Matsuoka S (2013) Effect of hydrogen on fatigue crack growth properties of SCM435 steel used for storage cylinder in hydrogen stations. Trans JSME A 79:1030–1040CrossRef Takeuchi E, Furuya Y, Hirakawa H, Matsuo T, Matsuoka S (2013) Effect of hydrogen on fatigue crack growth properties of SCM435 steel used for storage cylinder in hydrogen stations. Trans JSME A 79:1030–1040CrossRef
19.
go back to reference Itoga H, Matsuo T, Orita A, Matsunaga H, Matsuoka S, Hirotani R (2014) SSRT and fatigue crack growth properties of high-strength austenitic stainless steels in high-pressure hydrogen gas (PVP2014-28640). In: Proceedings of PVP-2014: ASME pressure vessels and piping division conference. American Society of Mechanical Engineers, Anaheim, California, New York, USA, 20–24 July 2014 Itoga H, Matsuo T, Orita A, Matsunaga H, Matsuoka S, Hirotani R (2014) SSRT and fatigue crack growth properties of high-strength austenitic stainless steels in high-pressure hydrogen gas (PVP2014-28640). In: Proceedings of PVP-2014: ASME pressure vessels and piping division conference. American Society of Mechanical Engineers, Anaheim, California, New York, USA, 20–24 July 2014
20.
go back to reference Yamabe J, Matsumoto T, Matsuoka S, Murakami Y (2012) A new mechanism in hydrogen-enhanced fatigue crack growth behavior of a 1900-MPa-class high-strength steel. Int J Fract 177:141–162CrossRef Yamabe J, Matsumoto T, Matsuoka S, Murakami Y (2012) A new mechanism in hydrogen-enhanced fatigue crack growth behavior of a 1900-MPa-class high-strength steel. Int J Fract 177:141–162CrossRef
Metadata
Title
Structural Design and Testing
Author
Junichiro Yamabe
Copyright Year
2016
Publisher
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-56042-5_32