Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 10/2020

15-11-2019

Gadolinium-based olivine phosphate for upgradation of cathode material in lithium ion battery

Authors: Irslan Ullah, Abdul Majid, Muhammad Isa Khan

Published in: Journal of Materials Science: Materials in Electronics | Issue 10/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A structurally modified cathode material for Lithium ion battery is reported in this study. This study was based on first principle calculations to study the electronic, ionic, and diffusion properties of olivine phosphate family of cathode material. The attempt was made to modify the conventionally used cathode material LiFePO4 by substituting Rare earth Gd on Fe sites. The Gd-4f’s electrostatic interaction, exchange coupling, impact on lithium’s intercalation, and ability to modify the crystal structure upon doping in the crystalline environment of the host have been studied and discussed in detail. The calculations on electronic structure, charge transfer between atoms, Li intercalation voltage, electron localization function (ELF) analysis, steric interaction between Li ion and metal cation (Fe and Gd) in both LiFePO4 and LiGdPO4 were carried out using prescribed methods. This trend of intercalation is related to structural relaxation in the vicinity of Gd which expedites the Li ion mobility without compromising the structural stability of the material. The analysis of interatomic steric interactions and ELF analysis helped to visualize the interactions in the cathode material. The findings of this study revealed that LiGdPO4 could be a potential candidate for its use as cathode in lithium ion battery and relevant devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P.G. Bruce, Energy storage beyond the horizon: rechargeable lithium batteries. Solid State Ionics 179(21–26), 752–760 (2008) P.G. Bruce, Energy storage beyond the horizon: rechargeable lithium batteries. Solid State Ionics 179(21–26), 752–760 (2008)
2.
go back to reference J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013) J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013)
3.
go back to reference M.M. Thackeray, C. Wolverton, E.D. Isaacs, Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5(7), 7854–7863 (2012) M.M. Thackeray, C. Wolverton, E.D. Isaacs, Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5(7), 7854–7863 (2012)
4.
go back to reference C.A. Vincent, Lithium batteries: a 50-year perspective, 1959–2009. Solid State Ionics 134(1–2), 159–167 (2000) C.A. Vincent, Lithium batteries: a 50-year perspective, 1959–2009. Solid State Ionics 134(1–2), 159–167 (2000)
5.
go back to reference T. Nagaura, Lithium ion rechargeable battery. Prog. Batter. Solar Cells 9, 209 (1990) T. Nagaura, Lithium ion rechargeable battery. Prog. Batter. Solar Cells 9, 209 (1990)
6.
go back to reference H.J. Bang et al., Contribution of the structural changes of LiNi0.8Co0.15Al0.05O2 cathodes on the exothermic reactions in Li-ion cells. J. Electrochem. Soc. 153(4), A731–A737 (2006) H.J. Bang et al., Contribution of the structural changes of LiNi0.8Co0.15Al0.05O2 cathodes on the exothermic reactions in Li-ion cells. J. Electrochem. Soc. 153(4), A731–A737 (2006)
7.
go back to reference N. Yabuuchi, T. Ohzuku, Lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. in Meeting Abstracts. 2006. The Electrochemical Society N. Yabuuchi, T. Ohzuku, Lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. in Meeting Abstracts. 2006. The Electrochemical Society
8.
go back to reference A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144(4), 1188–1194 (1997) A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144(4), 1188–1194 (1997)
9.
go back to reference J. Li et al., A facile recycling and regeneration process for spent LiFePO4 batteries. J. Mater. Sci. 30(15), 14580–14588 (2019) J. Li et al., A facile recycling and regeneration process for spent LiFePO4 batteries. J. Mater. Sci. 30(15), 14580–14588 (2019)
10.
go back to reference A. Jena, B. Nanda, Engineering diffusivity and operating voltage in lithium iron phosphate through transition-metal doping. Phys. Rev. Appl. 7(3), 034007 (2017) A. Jena, B. Nanda, Engineering diffusivity and operating voltage in lithium iron phosphate through transition-metal doping. Phys. Rev. Appl. 7(3), 034007 (2017)
11.
go back to reference H. Raj, A. Sil, PEDOT: pss coating on pristine and carbon coated LiFePO4 by one-step process: the study of electrochemical performance. J. Mater. Sci. 30(14), 13604–13616 (2019) H. Raj, A. Sil, PEDOT: pss coating on pristine and carbon coated LiFePO4 by one-step process: the study of electrochemical performance. J. Mater. Sci. 30(14), 13604–13616 (2019)
12.
go back to reference G. Li, H. Azuma, M. Tohda, LiMnPO4 as the cathode for lithium batteries. Electrochem. Solid State Lett. 5(6), A135–A137 (2002) G. Li, H. Azuma, M. Tohda, LiMnPO4 as the cathode for lithium batteries. Electrochem. Solid State Lett. 5(6), A135–A137 (2002)
13.
go back to reference M. Yonemura et al., Comparative kinetic study of olivine Li x MPO 4 (M = Fe, Mn). J. Electrochem. Soc. 151(9), A1352–A1356 (2004) M. Yonemura et al., Comparative kinetic study of olivine Li x MPO 4 (M = Fe, Mn). J. Electrochem. Soc. 151(9), A1352–A1356 (2004)
14.
go back to reference J. Wolfenstine, J. Allen, Ni3+/Ni2+ redox potential in LiNiPO4. J. Power Sources 142(1–2), 389–390 (2005) J. Wolfenstine, J. Allen, Ni3+/Ni2+ redox potential in LiNiPO4. J. Power Sources 142(1–2), 389–390 (2005)
15.
go back to reference W. Li et al., Effect of rare earth ions doping on properties of LiFePO4/C cathode material. J. Rare Earths 32(9), 895–899 (2014) W. Li et al., Effect of rare earth ions doping on properties of LiFePO4/C cathode material. J. Rare Earths 32(9), 895–899 (2014)
16.
go back to reference P. Ghosh, S. Mahanty, R.N. Basu, Lanthanum-doped LiCoO2 cathode with high rate capability. Electrochim. Acta 54(5), 1654–1661 (2009) P. Ghosh, S. Mahanty, R.N. Basu, Lanthanum-doped LiCoO2 cathode with high rate capability. Electrochim. Acta 54(5), 1654–1661 (2009)
17.
go back to reference Y. Ding et al., Effect of rare earth elements doping on structure and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 for lithium-ion battery. Solid State Ionics 178(13–14), 967–971 (2007) Y. Ding et al., Effect of rare earth elements doping on structure and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 for lithium-ion battery. Solid State Ionics 178(13–14), 967–971 (2007)
18.
go back to reference Y. Zhang et al., Ce-doped LiNi1/3Co(1/3 − x/3)Mn1/3Cex/3O2 cathode materials for use in lithium ion batteries. Chin. Sci. Bull. 57(32), 4181–4187 (2012) Y. Zhang et al., Ce-doped LiNi1/3Co(1/3 − x/3)Mn1/3Cex/3O2 cathode materials for use in lithium ion batteries. Chin. Sci. Bull. 57(32), 4181–4187 (2012)
19.
go back to reference A.M. Khedr, M.M. Abou-Sekkina, F.G. El-Metwaly, Synthesis, structure, and electrochemistry of Sm-modified LiMn2O4 cathode materials for lithium-ion batteries. J. Electron. Mater. 42(6), 1275–1281 (2013) A.M. Khedr, M.M. Abou-Sekkina, F.G. El-Metwaly, Synthesis, structure, and electrochemistry of Sm-modified LiMn2O4 cathode materials for lithium-ion batteries. J. Electron. Mater. 42(6), 1275–1281 (2013)
20.
go back to reference M. Helan, L.J. Berchmans, Synthesis of LiSm0.01Mn1.99O4 by molten salt technique. J. Rare Earths 28(2), 255–259 (2010) M. Helan, L.J. Berchmans, Synthesis of LiSm0.01Mn1.99O4 by molten salt technique. J. Rare Earths 28(2), 255–259 (2010)
21.
go back to reference F. Ning et al., Structural, electronic, and Li migration properties of RE-doped (RE = Ce, La) LiCoO2 for Li-ion batteries: a first-principles investigation. J. Phys. Chem. C 120(33), 18428–18434 (2016) F. Ning et al., Structural, electronic, and Li migration properties of RE-doped (RE = Ce, La) LiCoO2 for Li-ion batteries: a first-principles investigation. J. Phys. Chem. C 120(33), 18428–18434 (2016)
22.
go back to reference J.-K. Park, Principles and Applications of Lithium Secondary Batteries (Wiley, New Jersey, 2012) J.-K. Park, Principles and Applications of Lithium Secondary Batteries (Wiley, New Jersey, 2012)
23.
go back to reference V.I. Anisimov, F. Aryasetiawan, A. Lichtenstein, First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J. Phys. 9(4), 767 (1997) V.I. Anisimov, F. Aryasetiawan, A. Lichtenstein, First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J. Phys. 9(4), 767 (1997)
24.
go back to reference M. Cococcioni, S. De Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B 71(3), 035105 (2005) M. Cococcioni, S. De Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B 71(3), 035105 (2005)
25.
go back to reference F. Zhou et al., The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid State Commun. 132(3), 181–186 (2004) F. Zhou et al., The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid State Commun. 132(3), 181–186 (2004)
26.
go back to reference W. Setyawan, S. Curtarolo, High-throughput electronic band structure calculations: challenges and tools. Comput. Mater. Sci. 49(2), 299–312 (2010) W. Setyawan, S. Curtarolo, High-throughput electronic band structure calculations: challenges and tools. Comput. Mater. Sci. 49(2), 299–312 (2010)
27.
go back to reference S. Hao, C. Wolverton, Lithium transport in amorphous Al2O3 and AlF3 for discovery of battery coatings. J. Phys. Chem. C 117(16), 8009–8013 (2013) S. Hao, C. Wolverton, Lithium transport in amorphous Al2O3 and AlF3 for discovery of battery coatings. J. Phys. Chem. C 117(16), 8009–8013 (2013)
28.
go back to reference P. Zhai et al., Fischer–Tropsch synthesis nanostructured catalysts: understanding structural characteristics and catalytic reaction. Nanotechnol. Rev. 2(5), 547–576 (2013) P. Zhai et al., Fischer–Tropsch synthesis nanostructured catalysts: understanding structural characteristics and catalytic reaction. Nanotechnol. Rev. 2(5), 547–576 (2013)
29.
go back to reference A. Jena, B. Nanda, Unconventional magnetism and band gap formation in LiFePO4: consequence of polyanion induced non-planarity. Scientific reports 6, 19573 (2016) A. Jena, B. Nanda, Unconventional magnetism and band gap formation in LiFePO4: consequence of polyanion induced non-planarity. Scientific reports 6, 19573 (2016)
30.
go back to reference D. Wiedemann et al., Lithium diffusion pathways in 3R-Li x TiS2: a combined neutron diffraction and computational study. J. Phys. Chem. C 119(21), 11370–11381 (2015) D. Wiedemann et al., Lithium diffusion pathways in 3R-Li x TiS2: a combined neutron diffraction and computational study. J. Phys. Chem. C 119(21), 11370–11381 (2015)
31.
go back to reference A.H. Reshak, Copper-intercalated TiS2: electrode materials for rechargeable batteries as future power resources. J. Phys. Chem. A 113(8), 1635–1645 (2009) A.H. Reshak, Copper-intercalated TiS2: electrode materials for rechargeable batteries as future power resources. J. Phys. Chem. A 113(8), 1635–1645 (2009)
32.
go back to reference A.R. Armstrong, P.G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381(6582), 499 (1996) A.R. Armstrong, P.G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381(6582), 499 (1996)
33.
go back to reference M.M. Kalantarian, S. Asgari, P. Mustarelli, A theoretical approach to evaluate the rate capability of Li-ion battery cathode materials. J. Mater. Chem. A 2(1), 107–115 (2014) M.M. Kalantarian, S. Asgari, P. Mustarelli, A theoretical approach to evaluate the rate capability of Li-ion battery cathode materials. J. Mater. Chem. A 2(1), 107–115 (2014)
34.
go back to reference Z. Liu, X. Huang, Structural, electronic and Li diffusion properties of LiFeSO4F. Solid State Ionics 181(25), 1209–1213 (2010) Z. Liu, X. Huang, Structural, electronic and Li diffusion properties of LiFeSO4F. Solid State Ionics 181(25), 1209–1213 (2010)
35.
go back to reference S. Laubach et al., Changes in the crystal and electronic structure of LiCoO2 and LiNiO2 upon Li intercalation and de-intercalation. Phys. Chem. Chem. Phys. 11(17), 3278–3289 (2009) S. Laubach et al., Changes in the crystal and electronic structure of LiCoO2 and LiNiO2 upon Li intercalation and de-intercalation. Phys. Chem. Chem. Phys. 11(17), 3278–3289 (2009)
36.
go back to reference M.S. Islam, R.A. Davies, J.D. Gale, Structural and electronic properties of the layered LiNi0.5Mn0.5O2 lithium battery material. Chem. Mater. 15(22), 4280–4286 (2003) M.S. Islam, R.A. Davies, J.D. Gale, Structural and electronic properties of the layered LiNi0.5Mn0.5O2 lithium battery material. Chem. Mater. 15(22), 4280–4286 (2003)
37.
go back to reference V. Anisimov et al., First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory. J. Phys. 9(35), 7359 (1997) V. Anisimov et al., First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory. J. Phys. 9(35), 7359 (1997)
38.
go back to reference M. Aydinol et al., Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B 56(3), 1354 (1997) M. Aydinol et al., Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B 56(3), 1354 (1997)
39.
go back to reference Y.S. Meng, M.E. Arroyo-de Dompablo, First principles computational materials design for energy storage materials in lithium ion batteries. Energy Environ. Sci. 2(6), 589–609 (2009) Y.S. Meng, M.E. Arroyo-de Dompablo, First principles computational materials design for energy storage materials in lithium ion batteries. Energy Environ. Sci. 2(6), 589–609 (2009)
40.
go back to reference J. Bréger et al., Effect of high voltage on the structure and electrochemistry of LiNi0.5Mn0.5O2: a joint experimental and theoretical study. Chem. Mater. 18(20), 4768–4781 (2006) J. Bréger et al., Effect of high voltage on the structure and electrochemistry of LiNi0.5Mn0.5O2: a joint experimental and theoretical study. Chem. Mater. 18(20), 4768–4781 (2006)
41.
go back to reference C.C. Chang, J.Y. Kim, P.N. Kumta, Synthesis and electrochemical characterization of divalent cation-incorporated lithium nickel oxide. J. Electrochem. Soc. 147(5), 1722–1729 (2000) C.C. Chang, J.Y. Kim, P.N. Kumta, Synthesis and electrochemical characterization of divalent cation-incorporated lithium nickel oxide. J. Electrochem. Soc. 147(5), 1722–1729 (2000)
42.
go back to reference C. Pouillerie et al., Effect of magnesium substitution on the cycling behavior of lithium nickel cobalt oxide. J. Power Sources 96(2), 293–302 (2001) C. Pouillerie et al., Effect of magnesium substitution on the cycling behavior of lithium nickel cobalt oxide. J. Power Sources 96(2), 293–302 (2001)
43.
go back to reference B. Chowdari, G.S. Rao, S. Chow, Cathodic behavior of (Co, Ti, Mg)-doped LiNiO2. Solid State Ionics 140(1–2), 55–62 (2001) B. Chowdari, G.S. Rao, S. Chow, Cathodic behavior of (Co, Ti, Mg)-doped LiNiO2. Solid State Ionics 140(1–2), 55–62 (2001)
44.
go back to reference M.Y. Song, R. Lee, I. Kwon, Synthesis by sol–gel method and electrochemical properties of LiNi1 − yAlyO2 cathode materials for lithium secondary battery. Solid State Ionics 156(3–4), 319–328 (2003) M.Y. Song, R. Lee, I. Kwon, Synthesis by sol–gel method and electrochemical properties of LiNi1 − yAlyO2 cathode materials for lithium secondary battery. Solid State Ionics 156(3–4), 319–328 (2003)
45.
go back to reference S.-H. Kang et al., Layered Li (Ni0.5 − xMn0.5 − xM2x′) O2 (M′ = Co, Al, Ti; x = 0, 0.025) cathode materials for Li-ion rechargeable batteries. J. Power Sources 112(1), 41–48 (2002) S.-H. Kang et al., Layered Li (Ni0.5 − xMn0.5 − xM2x′) O2 (M′ = Co, Al, Ti; x = 0, 0.025) cathode materials for Li-ion rechargeable batteries. J. Power Sources 112(1), 41–48 (2002)
46.
go back to reference H. Kondo et al., Effects of Mg-substitution in Li (Ni Co, Al) O2 positive electrode materials on the crystal structure and battery performance. J. Power Sources 174(2), 1131–1136 (2007) H. Kondo et al., Effects of Mg-substitution in Li (Ni Co, Al) O2 positive electrode materials on the crystal structure and battery performance. J. Power Sources 174(2), 1131–1136 (2007)
47.
go back to reference D. Morgan, A. Van der Ven, G. Ceder, Li conductivity in Li x MPO4 (M = Mn, Fe Co, Ni) olivine materials. Electrochem. Solid State Lett. 7(2), A30–A32 (2004) D. Morgan, A. Van der Ven, G. Ceder, Li conductivity in Li x MPO4 (M = Mn, Fe Co, Ni) olivine materials. Electrochem. Solid State Lett. 7(2), A30–A32 (2004)
48.
go back to reference K. Tatsumi et al., Local atomic and electronic structures around Mg and Al dopants in LiNiO 2 electrodes studied by XANES and ELNES and first-principles calculations. Phys. Rev. B 78(4), 045108 (2008) K. Tatsumi et al., Local atomic and electronic structures around Mg and Al dopants in LiNiO 2 electrodes studied by XANES and ELNES and first-principles calculations. Phys. Rev. B 78(4), 045108 (2008)
49.
go back to reference F. Kong et al., Ab initio study of doping effects on LiMnO 2 and Li2MnO3 cathode materials for Li-ion batteries. J. Mater. Chem. A 3(16), 8489–8500 (2015) F. Kong et al., Ab initio study of doping effects on LiMnO 2 and Li2MnO3 cathode materials for Li-ion batteries. J. Mater. Chem. A 3(16), 8489–8500 (2015)
50.
go back to reference W.-J. Zhang, Structure and performance of LiFePO4 cathode materials: a review. J. Power Sources 196(6), 2962–2970 (2011) W.-J. Zhang, Structure and performance of LiFePO4 cathode materials: a review. J. Power Sources 196(6), 2962–2970 (2011)
51.
go back to reference Y. Panayiotatos, R. Vovk, A. Chroneos, Gold and silver diffusion in germanium: a thermodynamic approach. J. Mater. Sci. 28(2), 1966–1970 (2017) Y. Panayiotatos, R. Vovk, A. Chroneos, Gold and silver diffusion in germanium: a thermodynamic approach. J. Mater. Sci. 28(2), 1966–1970 (2017)
52.
go back to reference Y. Panayiotatos et al., Tin diffusion in germanium: a thermodynamic approach. J. Mater. Sci. 28(13), 9936–9940 (2017) Y. Panayiotatos et al., Tin diffusion in germanium: a thermodynamic approach. J. Mater. Sci. 28(13), 9936–9940 (2017)
53.
go back to reference J. Jung, M. Cho, M. Zhou, Density functional theory study of the mechanism of Li diffusion in rutile RuO2. AIP Adv. 4(1), 017104 (2014) J. Jung, M. Cho, M. Zhou, Density functional theory study of the mechanism of Li diffusion in rutile RuO2. AIP Adv. 4(1), 017104 (2014)
Metadata
Title
Gadolinium-based olivine phosphate for upgradation of cathode material in lithium ion battery
Authors
Irslan Ullah
Abdul Majid
Muhammad Isa Khan
Publication date
15-11-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 10/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02471-x

Other articles of this Issue 10/2020

Journal of Materials Science: Materials in Electronics 10/2020 Go to the issue