Skip to main content
Top

2017 | OriginalPaper | Chapter

6. GaN-Based Nanowire Transistors

Authors : Elison Matioli, Bin Lu, Daniel Piedra, Tomás Palacios

Published in: Power GaN Devices

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The outstanding electronic properties of GaN semiconductors, such as large breakdown voltage, high critical electric field, high electron mobility and saturation velocity, high-temperature operation, make them an ideal material for power switches, converters, and RF power amplifiers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lu W, Xie P, Lieber CM (2008) Nanowire transistor performance limits and applications. IEEE Trans Electron Device 55(11):2859–2876CrossRef Lu W, Xie P, Lieber CM (2008) Nanowire transistor performance limits and applications. IEEE Trans Electron Device 55(11):2859–2876CrossRef
2.
go back to reference Matioli E, Palacios T (2015) Room-temperature ballistic transport in III-nitride heterostructures. Nano Lett 15(2):1070–1075CrossRef Matioli E, Palacios T (2015) Room-temperature ballistic transport in III-nitride heterostructures. Nano Lett 15(2):1070–1075CrossRef
3.
go back to reference Mastro M, Kim HY, Ahn J, Kim J, Jennifer H, Charles E Jr (2010) Quasi-ballistic hole transport in an AlGaN/GaN nanowire. ECS Trans 28(4):47–52 Mastro M, Kim HY, Ahn J, Kim J, Jennifer H, Charles E Jr (2010) Quasi-ballistic hole transport in an AlGaN/GaN nanowire. ECS Trans 28(4):47–52
4.
go back to reference Kim J-R, Kim B-K, Lee IJ, Kim J-J, Kim J, Lyu SC, Lee CJ (2004) Temperature-dependent single-electron tunneling effect in lightly and heavily doped GaN nanowires. Phys Rev B 69:233303 Kim J-R, Kim B-K, Lee IJ, Kim J-J, Kim J, Lyu SC, Lee CJ (2004) Temperature-dependent single-electron tunneling effect in lightly and heavily doped GaN nanowires. Phys Rev B 69:233303
5.
go back to reference Polenta L, Rossi M, Cavallini A, Calarco R, Marso M, Meijers R, Richter T, Stoica T, Luth H (2008) ACS Nano 2:287CrossRef Polenta L, Rossi M, Cavallini A, Calarco R, Marso M, Meijers R, Richter T, Stoica T, Luth H (2008) ACS Nano 2:287CrossRef
6.
go back to reference Calarco R, Marso M, Richter T, Aykanat AI, Meijers R, Hart AVD, Stoica T, Luth H (2005) Nano Lett 5:981 Calarco R, Marso M, Richter T, Aykanat AI, Meijers R, Hart AVD, Stoica T, Luth H (2005) Nano Lett 5:981
7.
go back to reference Sanford NA, Blanchard PT, Bertness KA, Mansfield L, Schlager JB, Sanders AW, Roshko A, Burton BB, George SM (2010) J Appl Phys 107:034318CrossRef Sanford NA, Blanchard PT, Bertness KA, Mansfield L, Schlager JB, Sanders AW, Roshko A, Burton BB, George SM (2010) J Appl Phys 107:034318CrossRef
8.
go back to reference Simpkins BS, Mastro MA, Eddy CR Jr, Pehrsson PE (2008) J Appl Phys 103:104313CrossRef Simpkins BS, Mastro MA, Eddy CR Jr, Pehrsson PE (2008) J Appl Phys 103:104313CrossRef
9.
go back to reference Matioli E, Lu B, Palacios T (2013) Ultralow leakage current AlGaN/GaN Schottky diodes with 3-D anode structure. IEEE Trans Electron Device 60:3365CrossRef Matioli E, Lu B, Palacios T (2013) Ultralow leakage current AlGaN/GaN Schottky diodes with 3-D anode structure. IEEE Trans Electron Device 60:3365CrossRef
10.
go back to reference Azize M, Palacios T (2011) Top-down fabrication of AlGaN/GaN nanoribbons. Appl Phys Lett 98:042103CrossRef Azize M, Palacios T (2011) Top-down fabrication of AlGaN/GaN nanoribbons. Appl Phys Lett 98:042103CrossRef
11.
go back to reference Li Y, Xiang J, Qian F, Gradecak S, Wu Y, Yan H, Blom DA, Lieber CM (2006) Dopant-free GaN/AlN/AlGaN radial nanowire heterostructure as high electron mobility transistors. Nano Lett 6(7):1468–1473CrossRef Li Y, Xiang J, Qian F, Gradecak S, Wu Y, Yan H, Blom DA, Lieber CM (2006) Dopant-free GaN/AlN/AlGaN radial nanowire heterostructure as high electron mobility transistors. Nano Lett 6(7):1468–1473CrossRef
12.
go back to reference Duan X, Lieber CM (2000) Laser-assisted catalytic growth of single crystal GaN nanowires. J Am Chem Soc 122:188–189CrossRef Duan X, Lieber CM (2000) Laser-assisted catalytic growth of single crystal GaN nanowires. J Am Chem Soc 122:188–189CrossRef
13.
go back to reference Peng HY, Wang N, Zhou XT, Zheng YF, Lee CS, Lee ST (2002) Control of growth orientation of GaN nanowires. Chem Phys Lett 359:241–245 Peng HY, Wang N, Zhou XT, Zheng YF, Lee CS, Lee ST (2002) Control of growth orientation of GaN nanowires. Chem Phys Lett 359:241–245
14.
go back to reference Kim H-M, Kim DS, Park YS, Kim DY, Kang TW, Chung KS (2002) Growth of GaN nanorods by a hydride vapor phase epitaxy method. Adv Mater 14:991–993CrossRef Kim H-M, Kim DS, Park YS, Kim DY, Kang TW, Chung KS (2002) Growth of GaN nanorods by a hydride vapor phase epitaxy method. Adv Mater 14:991–993CrossRef
15.
go back to reference Bertness KA (2011) Senior member, IEEE. In: Sanford NA, Davydov AV (eds) GaN nanowires grown by molecular beam epitaxy. IEEE J Select Top Quant Electron 17(4) Bertness KA (2011) Senior member, IEEE. In: Sanford NA, Davydov AV (eds) GaN nanowires grown by molecular beam epitaxy. IEEE J Select Top Quant Electron 17(4)
16.
go back to reference Cheng GS, Zhang LD, Zhu Y, Fei GT, Li L (1999) Large-scale synthesis of single crystalline gallium nitride nanowires. Appl Phys Lett 75:16CrossRef Cheng GS, Zhang LD, Zhu Y, Fei GT, Li L (1999) Large-scale synthesis of single crystalline gallium nitride nanowires. Appl Phys Lett 75:16CrossRef
17.
go back to reference Songmuang R, Monroy E (2013) GaN-based single-nanowire devices, on III-Nitride semiconductors and their modern devices. In: B Gil (ed), 01/2013. Oxford University Press, USA, pp 289–364 Songmuang R, Monroy E (2013) GaN-based single-nanowire devices, on III-Nitride semiconductors and their modern devices. In: B Gil (ed), 01/2013. Oxford University Press, USA, pp 289–364
18.
go back to reference Fortuna SA, Li X (2010) Metal-catalyzed semiconductor nanowires: a review on the control of growth directions. Semicond Sci Technol 25:024005 Fortuna SA, Li X (2010) Metal-catalyzed semiconductor nanowires: a review on the control of growth directions. Semicond Sci Technol 25:024005
20.
go back to reference Yoshizawa M, Kikuchi A, Mori M, Fujita N, Kishino K (1997) Japan. J Appl Phys 2(36):L459CrossRef Yoshizawa M, Kikuchi A, Mori M, Fujita N, Kishino K (1997) Japan. J Appl Phys 2(36):L459CrossRef
21.
go back to reference Sekiguchi H, Nakazato T, Kikuchi A, Kishino K (2006) J Cryst Growth 300:259CrossRef Sekiguchi H, Nakazato T, Kikuchi A, Kishino K (2006) J Cryst Growth 300:259CrossRef
22.
go back to reference Calleja E, Sanchez-Garcia MA, Sanchez FJ, Calle F, Naranjo FB, Munoz E, Molina SI, Sanchez AM, Pacheco FJ, Garcia R (1999) J Cryst Growth 201/202:296 Calleja E, Sanchez-Garcia MA, Sanchez FJ, Calle F, Naranjo FB, Munoz E, Molina SI, Sanchez AM, Pacheco FJ, Garcia R (1999) J Cryst Growth 201/202:296
24.
25.
go back to reference Ohi K, Hashizume T (2009) Drain current stability and controllability of threshold voltage and subthreshold current in a multi-mesa-channel AlGaN/GaN high electron mobility transistor. Jpn J Appl Phys 48:081002CrossRef Ohi K, Hashizume T (2009) Drain current stability and controllability of threshold voltage and subthreshold current in a multi-mesa-channel AlGaN/GaN high electron mobility transistor. Jpn J Appl Phys 48:081002CrossRef
26.
go back to reference Yu H, Xiangfeng D, Yi C, Lieber CM (2002) Gallium nitride nanowire nanodevices. Nano Lett 2(2):101–104CrossRef Yu H, Xiangfeng D, Yi C, Lieber CM (2002) Gallium nitride nanowire nanodevices. Nano Lett 2(2):101–104CrossRef
27.
go back to reference Stern E et al (2005) Electrical characterization of single GaN nanowires. Nanotechnology 16:2941 Stern E et al (2005) Electrical characterization of single GaN nanowires. Nanotechnology 16:2941
28.
go back to reference Sundaram VS, Mizel A (2004) Surface effects on nanowire transport: a numerical investigation using the Boltzmann equation. J Phys Condens Matter 16:4697 Sundaram VS, Mizel A (2004) Surface effects on nanowire transport: a numerical investigation using the Boltzmann equation. J Phys Condens Matter 16:4697
29.
go back to reference Songmuang R, Katsaros G, Monroy E, Spathis P, Bougerol C, Mongillo M, De Franceschi S (2010) Quantum transport in GaN/AlN double-barrier heterostructure nanowires. Nano Lett 10(9):3545–3550CrossRef Songmuang R, Katsaros G, Monroy E, Spathis P, Bougerol C, Mongillo M, De Franceschi S (2010) Quantum transport in GaN/AlN double-barrier heterostructure nanowires. Nano Lett 10(9):3545–3550CrossRef
30.
go back to reference Vandenbrouck S, Madjour K, Théron D, Dong Y, Li Y, Lieber CM, Gaquiere C (2009) 12 GHz FMAX GaN/AlN/AlGaN Nanowire MISFET. IEEE Electron Device Lett 30:4CrossRef Vandenbrouck S, Madjour K, Théron D, Dong Y, Li Y, Lieber CM, Gaquiere C (2009) 12 GHz FMAX GaN/AlN/AlGaN Nanowire MISFET. IEEE Electron Device Lett 30:4CrossRef
31.
go back to reference Chen CP et al (2009) Label-free dual sensing of DNA molecules using GaN nanowires. Anal Chem 81(1):36–42CrossRef Chen CP et al (2009) Label-free dual sensing of DNA molecules using GaN nanowires. Anal Chem 81(1):36–42CrossRef
32.
go back to reference Huang X, Lee WC, Kuo C, Hu C et al (1999) Sub 50-nm FinFET: PMOS. In: IEDM Technical Digest, pp 67–70 Huang X, Lee WC, Kuo C, Hu C et al (1999) Sub 50-nm FinFET: PMOS. In: IEDM Technical Digest, pp 67–70
33.
go back to reference Doyle BS, Datta S, Doczy M, Hareland S, Jin B, Kavalieros J, Linton T, Murthy A, Rios R, Chau R (2003) High performance fully-depleted tri-gate CMOS transistors. IEEE Electron Device Lett 24:263–265CrossRef Doyle BS, Datta S, Doczy M, Hareland S, Jin B, Kavalieros J, Linton T, Murthy A, Rios R, Chau R (2003) High performance fully-depleted tri-gate CMOS transistors. IEEE Electron Device Lett 24:263–265CrossRef
34.
go back to reference Kato S, Satoh Y, Sasaki H, Masayuki I, Yoshida S (2007) C-doped GaN buffer layers with high breakdown voltages for high-power operation AlGaN/GaN HFETs on 4-in Si substrates by MOVPE. J Crystal Growth 298:831–834CrossRef Kato S, Satoh Y, Sasaki H, Masayuki I, Yoshida S (2007) C-doped GaN buffer layers with high breakdown voltages for high-power operation AlGaN/GaN HFETs on 4-in Si substrates by MOVPE. J Crystal Growth 298:831–834CrossRef
35.
go back to reference Zimmermann T, Cao Y, Guo J, Luo X, Jena D, Xing H (2009) Top-down AlN/GaN enhancement- and depletion-mode nanoribbon HEMTs. In: IEEE device research conference (DRC) Digest, pp 129–130 Zimmermann T, Cao Y, Guo J, Luo X, Jena D, Xing H (2009) Top-down AlN/GaN enhancement- and depletion-mode nanoribbon HEMTs. In: IEEE device research conference (DRC) Digest, pp 129–130
36.
go back to reference Lu B, Matioli E, Palacios T (2012) Tri-gate normally-off GaN power MISFET. IEEE Electron Device Lett 33(3):360–362CrossRef Lu B, Matioli E, Palacios T (2012) Tri-gate normally-off GaN power MISFET. IEEE Electron Device Lett 33(3):360–362CrossRef
37.
go back to reference Lu B, Saadat OI, Palacios T (2010) High-performance integrated dual-gate AlGaN/GaN enhancement-mode transistor. IEEE Electron Device Lett 31:990–992CrossRef Lu B, Saadat OI, Palacios T (2010) High-performance integrated dual-gate AlGaN/GaN enhancement-mode transistor. IEEE Electron Device Lett 31:990–992CrossRef
38.
go back to reference Lu B (2013) AlGaN/GaN-based power semiconductor switches. PhD Dissertation, Massachusetts Institute of Technology Lu B (2013) AlGaN/GaN-based power semiconductor switches. PhD Dissertation, Massachusetts Institute of Technology
39.
go back to reference Ambacher O, Foutz B, Smart J, Shealy JR, Weimann NG, Chu K, Murphy M, Sierakowski AJ, Schaff WJ, Eastman LF, Dimitrov R, Mitchell A, Stutzmann (2000) Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J Appl Phys 87(1), pp 334–344 Ambacher O, Foutz B, Smart J, Shealy JR, Weimann NG, Chu K, Murphy M, Sierakowski AJ, Schaff WJ, Eastman LF, Dimitrov R, Mitchell A, Stutzmann (2000) Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J Appl Phys 87(1), pp 334–344
40.
go back to reference Azize M, Hsu AL, Saadat OI, Smith MJ, Gao X, Guo S, Gradecak S, Palacios T (2011) High-electron-mobility transistors based on InAlN/GaN nanoribbons. IEEE Electron Device Lett 32(12):1680–1682CrossRef Azize M, Hsu AL, Saadat OI, Smith MJ, Gao X, Guo S, Gradecak S, Palacios T (2011) High-electron-mobility transistors based on InAlN/GaN nanoribbons. IEEE Electron Device Lett 32(12):1680–1682CrossRef
41.
go back to reference Jones EJ, Azize M, Smith MJ, Palacios T, Gradecak S (2012) Correlating stress generation and sheet resistance in InAlN/GaN nanoribbon high electron mobility transistors. Appl Phys Lett 101:113101CrossRef Jones EJ, Azize M, Smith MJ, Palacios T, Gradecak S (2012) Correlating stress generation and sheet resistance in InAlN/GaN nanoribbon high electron mobility transistors. Appl Phys Lett 101:113101CrossRef
42.
go back to reference Dreyer CE, Janotti A, Van de Walle CG (2013) Effects of strain on the electron effective mass in GaN and AlN. Appl Phys Lett 102:142105CrossRef Dreyer CE, Janotti A, Van de Walle CG (2013) Effects of strain on the electron effective mass in GaN and AlN. Appl Phys Lett 102:142105CrossRef
43.
go back to reference Dora Y, Chakraborty A, McCarthy L, Keller S, DenBaars SP, Mishra U (2006) High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates. IEEE Electron Device Letters 27(9):713–715CrossRef Dora Y, Chakraborty A, McCarthy L, Keller S, DenBaars SP, Mishra U (2006) High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates. IEEE Electron Device Letters 27(9):713–715CrossRef
44.
go back to reference Palacios T, Rajan S, Chakraborty A, Heikman S, Keller S, DenBaars SP, Mishra UK (2005) Influence of the dynamic access resistance in the gm and fT linearity of AlGaN/GaN HEMTs. IEEE Trans Electron Device 52(10):2117–2123CrossRef Palacios T, Rajan S, Chakraborty A, Heikman S, Keller S, DenBaars SP, Mishra UK (2005) Influence of the dynamic access resistance in the gm and fT linearity of AlGaN/GaN HEMTs. IEEE Trans Electron Device 52(10):2117–2123CrossRef
45.
go back to reference DiSanto DW, Bolognesi CR (2006) At-bias extraction of access parasitic resistances in AlGaN/GaN HEMTs: impact on device linearity and channel electron velocity. IEEE Trans Electron Device 53(12):2914–2919CrossRef DiSanto DW, Bolognesi CR (2006) At-bias extraction of access parasitic resistances in AlGaN/GaN HEMTs: impact on device linearity and channel electron velocity. IEEE Trans Electron Device 53(12):2914–2919CrossRef
46.
go back to reference Trew RJ, Liu Y, Bilbro GL, Kuang W, Vetury R, Shealy JB (2006) Nonlinear source resistance in high-voltage microwave AlGaN/GaN HFETs. IEEE Trans Microw Theory Tech 54(5):2061–2067CrossRef Trew RJ, Liu Y, Bilbro GL, Kuang W, Vetury R, Shealy JB (2006) Nonlinear source resistance in high-voltage microwave AlGaN/GaN HFETs. IEEE Trans Microw Theory Tech 54(5):2061–2067CrossRef
47.
go back to reference Shinohara K, Regan D, Corrion A, Brown D, Tang Y, Wong J, Candia G, Schmitz A, Fung H, Kim S, Micovic M (2012) Self-aligned-gate GaN HEMTs with heavily-doped n+-GaN ohmic contacts to 2DEG. In: Proceedings of the IEEE international electron devices meeting, pp 617–620 Shinohara K, Regan D, Corrion A, Brown D, Tang Y, Wong J, Candia G, Schmitz A, Fung H, Kim S, Micovic M (2012) Self-aligned-gate GaN HEMTs with heavily-doped n+-GaN ohmic contacts to 2DEG. In: Proceedings of the IEEE international electron devices meeting, pp 617–620
48.
go back to reference Lee DS, Wang H, Hsu A, Azize M, Laboutin O, Cao Y, Johnson W, Beam E, Ketterson A, Schuette M, Saunier P, Palacios T (2013) High linearity nanowire channel GaN HEMTs. In: Device Research Conference (DRC) 71st Annual, Notre Dame pp 195–196 Lee DS, Wang H, Hsu A, Azize M, Laboutin O, Cao Y, Johnson W, Beam E, Ketterson A, Schuette M, Saunier P, Palacios T (2013) High linearity nanowire channel GaN HEMTs. In: Device Research Conference (DRC) 71st Annual, Notre Dame pp 195–196
49.
go back to reference Greenberg DR, del Alamo JA (1996) Nonlinear source and drain resistance in recessed-gate heterostructure field-effect transistors. IEEE Trans Electron Device 43(8):1304–1306CrossRef Greenberg DR, del Alamo JA (1996) Nonlinear source and drain resistance in recessed-gate heterostructure field-effect transistors. IEEE Trans Electron Device 43(8):1304–1306CrossRef
50.
go back to reference Lee DS (2014) Deeply-scaled GaN high electron mobility transistors for RF applications. Doctoral dissertation, Massachusetts Institute of Technology Lee DS (2014) Deeply-scaled GaN high electron mobility transistors for RF applications. Doctoral dissertation, Massachusetts Institute of Technology
51.
go back to reference Motayed A, Sharma A, Jones KA, Derenge MA, Iliadis AA, Mohammad SN (2004) Electrical characteristics of AlxGa1 − xN Schottky diodes prepared by a two-step surface treatment. J Appl Phys 96(6):3286–3295CrossRef Motayed A, Sharma A, Jones KA, Derenge MA, Iliadis AA, Mohammad SN (2004) Electrical characteristics of AlxGa1 − xN Schottky diodes prepared by a two-step surface treatment. J Appl Phys 96(6):3286–3295CrossRef
52.
go back to reference Lee J-G, Park B-R, Cho C-H, Seo K-S, Cha H-Y (2013) Low turn-on voltage AlGaN/GaN-on-Si rectifier with gated ohmic anode. IEEE Electron Device Lett 34(2):214–216 Lee J-G, Park B-R, Cho C-H, Seo K-S, Cha H-Y (2013) Low turn-on voltage AlGaN/GaN-on-Si rectifier with gated ohmic anode. IEEE Electron Device Lett 34(2):214–216
53.
go back to reference Yao Y, Zhong J, Zheng Y, Yang F, Ni Y, He Z, Shen Z, Zhou G, Wang S, Zhang J, Li J, Zhou D, Zhisheng W, Zhang B, Liu Y (2015) Current transport mechanism of AlGaN/GaN Schottky barrier diode with fully recessed Schottky anode. Jpn J Appl Phys 54:011001CrossRef Yao Y, Zhong J, Zheng Y, Yang F, Ni Y, He Z, Shen Z, Zhou G, Wang S, Zhang J, Li J, Zhou D, Zhisheng W, Zhang B, Liu Y (2015) Current transport mechanism of AlGaN/GaN Schottky barrier diode with fully recessed Schottky anode. Jpn J Appl Phys 54:011001CrossRef
54.
go back to reference Hashizume T, Ootomo S, Oyama S, Konishi M, Hasegawa H (2001) Chemistry and electrical properties of surfaces of GaN and GaN/AlGaN heterostructures. J Vac Sci Technol, B 19(4):1675–1681CrossRef Hashizume T, Ootomo S, Oyama S, Konishi M, Hasegawa H (2001) Chemistry and electrical properties of surfaces of GaN and GaN/AlGaN heterostructures. J Vac Sci Technol, B 19(4):1675–1681CrossRef
55.
go back to reference Kim JH, Choi HG, Ha M-W, Song HJ, Roh CH, Lee JH, Park JH, Hahn C-K (2010) Effects of nitride-based plasma pretreatment prior to SiNx passivation in AlGaN/GaN high-electronmobility transistors on silicon substrates. Jpn J Appl Phys 49:04DF05-1–04DF05-3 Kim JH, Choi HG, Ha M-W, Song HJ, Roh CH, Lee JH, Park JH, Hahn C-K (2010) Effects of nitride-based plasma pretreatment prior to SiNx passivation in AlGaN/GaN high-electronmobility transistors on silicon substrates. Jpn J Appl Phys 49:04DF05-1–04DF05-3
56.
go back to reference Dimitrov R, Tilak V, Yeo W, Green B, Kim H, Smart J, Chumbes E, Shealy JR, Schaff W, Eastman LF, Miskys C, Ambacher O, Stutzmann M (2000) Influence of oxygen and methane plasma on the electrical properties of undoped AlGaN/GaN heterostructures for high power transistors. Solid-State Electron 44(8):1361–1365CrossRef Dimitrov R, Tilak V, Yeo W, Green B, Kim H, Smart J, Chumbes E, Shealy JR, Schaff W, Eastman LF, Miskys C, Ambacher O, Stutzmann M (2000) Influence of oxygen and methane plasma on the electrical properties of undoped AlGaN/GaN heterostructures for high power transistors. Solid-State Electron 44(8):1361–1365CrossRef
57.
go back to reference Ha WJ, Chhajed S, Oh SJ, Hwang S, Kim JK, Lee J-H, Kim K-S (2012) Analysis of the reverse leakage current in AlGaN/GaN Schottky barrier diodes treated with fluorine plasma. Appl Phys Lett 100(13):132104-1–132104-4 Ha WJ, Chhajed S, Oh SJ, Hwang S, Kim JK, Lee J-H, Kim K-S (2012) Analysis of the reverse leakage current in AlGaN/GaN Schottky barrier diodes treated with fluorine plasma. Appl Phys Lett 100(13):132104-1–132104-4
Metadata
Title
GaN-Based Nanowire Transistors
Authors
Elison Matioli
Bin Lu
Daniel Piedra
Tomás Palacios
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-43199-4_6