Skip to main content
Top
Published in: Autonomous Robots 3-4/2020

28-01-2019

Gaussian process decentralized data fusion meets transfer learning in large-scale distributed cooperative perception

Authors: Ruofei Ouyang, Bryan Kian Hsiang Low

Published in: Autonomous Robots | Issue 3-4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents novel Gaussian process decentralized data fusion algorithms exploiting the notion of agent-centric support sets for distributed cooperative perception of large-scale environmental phenomena. To overcome the limitations of scale in existing works, our proposed algorithms allow every mobile sensing agent to utilize a different support set and dynamically switch to another during execution for encapsulating its own data into a local summary that, perhaps surprisingly, can still be assimilated with the other agents’ local summaries (i.e., based on their current support sets) into a globally consistent summary to be used for predicting the phenomenon. To achieve this, we propose a novel transfer learning mechanism for a team of agents capable of sharing and transferring information encapsulated in a summary based on a support set to that utilizing a different support set with some loss that can be theoretically bounded and analyzed. To alleviate the issue of information loss accumulating over multiple instances of transfer learning, we propose a new information sharing mechanism to be incorporated into our algorithms in order to achieve memory-efficient lazy transfer learning. Empirical evaluation on three real-world datasets for up to 128 agents show that our algorithms outperform the state-of-the-art methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
PITC generalizes the Bayesian Committee Machine (BCM) (Schwaighofer and Tresp 2002), the latter of which assumes the support set to be the set of unobserved input locations whose measurements are to be predicted (Quiñonero-Candela and Rasmussen 2005). As a result, BCM does not scale well with a large set of such unobserved input locations.
 
2
An exception is the work of Park et al. (2011) that overcomes this boundary effect by imposing continuity constraints along the boundaries in a centralized manner.
 
3
The conditional independence of \(Y_{\mathcal {D}_1},\ldots ,Y_{\mathcal {D}_N}\) given \(Y_{\mathcal {S}}\) assumed by PITC and PIC (hence, GP-DDF and GP-\(\hbox {DDF}^+\)) improves their scalability over the GP model (Sect. 2) at the cost of poorer predictive performance. To potentially reduce the degree of violation of this assumption, an informative support set can be \(\hbox {selected}^6\). Furthermore, the experimental results in Chen et al. (2015) show that GP-DDF and GP-\(\hbox {DDF}^+\) can achieve predictive performance comparable to that of the GP model while enjoying lower computational cost over it. The predictive performance of GP-DDF and GP-\(\hbox {DDF}^+\) can be improved by increasing the size of \(\mathcal {S}\) at the expense of greater time and communication overhead.
 
4
Naively, an agent can delay transfer learning by simply storing a separate local summary based on the support set for every previously visited local area, which is not memory-efficient.
 
5
Multiple backups of the local summary and support set for the same local area may exist if agents leave this area at the same time, which rarely happens. In this case, agent i should retrieve (and remove) all these backups from the agents storing them.
 
6
Alternatively, active learning can be used to select an informative support set a priori for each local area (Chen et al. 2015). Empirically, this yields little performance improvement due to a sufficiently dense (yet small) support set uniformly distributed over the local area and slightly beyond its boundary by \(10\%\) of its width.
 
7
Local GPs result from a sparse block-diagonal \(\varSigma _{\mathcal {D}\mathcal {D}}\) (2).
 
8
The predictive performance of centralized PITC corresponds to that of GP-DDF, as discussed in Sect. 2.2. Hence, the RMSE of centralized PITC coincides exactly with that of GP-DDF in Fig. 8.
 
9
The incurred time of centralized PITC is slightly less than that of GP-DDF (Fig. 8) increased by a factor of the total number of agents. This agrees with the analysis of the time complexity of PITC versus GP-DDF in Sect. 2.2. This can also be observed in Fig. 9 where the incurred time of GP-DDF increases by nearly two fold when the number of agents is halved.
 
10
If the subset sizes differ, then “virtual” locations are added to each subset to make all subsets to be of the same size as \(T\triangleq \arg \max _{s\in \mathcal {S}} |\mathcal {D}_{is}|\) (\(T'\triangleq \arg \max _{s\in \mathcal {S}} |\mathcal {S}'_{s}|\)). The virtual locations added to \(\mathcal {D}_{is}\) (\(\mathcal {S}'_{s}\)) are chosen as \(s\in \mathcal {S}\) so that they do not induce additional errors but will loosen the bound.
 
Literature
go back to reference Cao, N., Low, K. H., & Dolan, J. M. (2013). Multi-robot informative path planning for active sensing of environmental phenomena: A tale of two algorithms. In Proceedings of AAMAS. Cao, N., Low, K. H., & Dolan, J. M. (2013). Multi-robot informative path planning for active sensing of environmental phenomena: A tale of two algorithms. In Proceedings of AAMAS.
go back to reference Chen, J., Cao, N., Low, K. H., Ouyang, R., Tan, C. K. Y., & Jaillet, P. (2013a). Parallel Gaussian process regression with low-rank covariance matrix approximations. In Proceedings of UAI (pp. 152–161). Chen, J., Cao, N., Low, K. H., Ouyang, R., Tan, C. K. Y., & Jaillet, P. (2013a). Parallel Gaussian process regression with low-rank covariance matrix approximations. In Proceedings of UAI (pp. 152–161).
go back to reference Chen, J., Low, K. H., Jaillet, P., & Yao, Y. (2015). Gaussian process decentralized data fusion and active sensing for spatiotemporal traffic modeling and prediction in mobility-on-demand systems. IEEE Transactions on Automation Science and Engineering, 12, 901–921.CrossRef Chen, J., Low, K. H., Jaillet, P., & Yao, Y. (2015). Gaussian process decentralized data fusion and active sensing for spatiotemporal traffic modeling and prediction in mobility-on-demand systems. IEEE Transactions on Automation Science and Engineering, 12, 901–921.CrossRef
go back to reference Chen, J., Low, K. H., Tan, C. K. Y., Oran, A., Jaillet, P., Dolan, J. M., & Sukhatme, G. S. (2012). Decentralized data fusion and active sensing with mobile sensors for modeling and predicting spatiotemporal traffic phenomena. In Proceedings of UAI (pp. 163–173). Chen, J., Low, K. H., Tan, C. K. Y., Oran, A., Jaillet, P., Dolan, J. M., & Sukhatme, G. S. (2012). Decentralized data fusion and active sensing with mobile sensors for modeling and predicting spatiotemporal traffic phenomena. In Proceedings of UAI (pp. 163–173).
go back to reference Chen, J., Low, K. H., & Tan, C. K. Y. (2013b). Gaussian process-based decentralized data fusion and active sensing for mobility-on-demand system. In Proceedings of robotics: science and systems conference. Chen, J., Low, K. H., & Tan, C. K. Y. (2013b). Gaussian process-based decentralized data fusion and active sensing for mobility-on-demand system. In Proceedings of robotics: science and systems conference.
go back to reference Choudhury, A., Nair, P. B., & Keane, A. J. (2002). A data parallel approach for large-scale Gaussian process modeling. In Proceedings of SDM (pp. 95–111). Choudhury, A., Nair, P. B., & Keane, A. J. (2002). A data parallel approach for large-scale Gaussian process modeling. In Proceedings of SDM (pp. 95–111).
go back to reference Chung, T. H., Gupta, V., Burdick, J. W., & Murray, R. M. (2004). On a decentralized active sensing strategy using mobile sensor platforms in a network. In Proceedings of CDC (pp. 1914–1919). Chung, T. H., Gupta, V., Burdick, J. W., & Murray, R. M. (2004). On a decentralized active sensing strategy using mobile sensor platforms in a network. In Proceedings of CDC (pp. 1914–1919).
go back to reference Coates, M. (2004). Distributed particle filters for sensor networks. In Proceedings of IPSN (pp. 99–107). Coates, M. (2004). Distributed particle filters for sensor networks. In Proceedings of IPSN (pp. 99–107).
go back to reference Cortes, J. (2009). Distributed kriged Kalman filter for spatial estimation. IEEE Transactions on Automatic Control, 54(12), 2816–2827.MathSciNetCrossRef Cortes, J. (2009). Distributed kriged Kalman filter for spatial estimation. IEEE Transactions on Automatic Control, 54(12), 2816–2827.MathSciNetCrossRef
go back to reference Das, J., Harvey, J. B. J., Py, F., Vathsangam, H., Graham, R., Rajan, K., & Sukhatme, G. S. (2013). Hierarchical probabilistic regression for AUV-based adaptive sampling of marine phenomena. In Proceedings of IEEE ICRA (pp. 5571–5578). Das, J., Harvey, J. B. J., Py, F., Vathsangam, H., Graham, R., Rajan, K., & Sukhatme, G. S. (2013). Hierarchical probabilistic regression for AUV-based adaptive sampling of marine phenomena. In Proceedings of IEEE ICRA (pp. 5571–5578).
go back to reference Das, K., & Srivastava, A. N. (2010). Block-GP: Scalable Gaussian process regression for multimodal data. In Proceedings of ICDM (pp. 791–796). Das, K., & Srivastava, A. N. (2010). Block-GP: Scalable Gaussian process regression for multimodal data. In Proceedings of ICDM (pp. 791–796).
go back to reference Daxberger, E., & Low, K. H. (2017). Distributed batch Gaussian process optimization. In Proceedings of ICML (pp. 951–960). Daxberger, E., & Low, K. H. (2017). Distributed batch Gaussian process optimization. In Proceedings of ICML (pp. 951–960).
go back to reference Dolan, J. M., Podnar, G., Stancliff, S., Low, K. H., Elfes, A., Higinbotham, J., Hosler, J. C., Moisan, T. A., & Moisan, J. (2009). Cooperative aquatic sensing using the telesupervised adaptive ocean sensor fleet. In Proceedings of SPIE conference on remote sensing of the ocean, sea ice, and large water regions Vol. 7473. Dolan, J. M., Podnar, G., Stancliff, S., Low, K. H., Elfes, A., Higinbotham, J., Hosler, J. C., Moisan, T. A., & Moisan, J. (2009). Cooperative aquatic sensing using the telesupervised adaptive ocean sensor fleet. In Proceedings of SPIE conference on remote sensing of the ocean, sea ice, and large water regions Vol. 7473.
go back to reference Guestrin, C., Bodik, P., Thibaus, R., Paskin, M., & Madden, S. (2004). Distributed regression: An efficient framework for modeling sensor network data. In Proceedings of IPSN (pp. 1–10). Guestrin, C., Bodik, P., Thibaus, R., Paskin, M., & Madden, S. (2004). Distributed regression: An efficient framework for modeling sensor network data. In Proceedings of IPSN (pp. 1–10).
go back to reference Hoang, T. N., Hoang, Q. M., & Low, K. H. (2016). A distributed variational inference framework for unifying parallel sparse Gaussian process regression models. In Proceedings of ICML (pp. 382–391). Hoang, T. N., Hoang, Q. M., & Low, K. H. (2016). A distributed variational inference framework for unifying parallel sparse Gaussian process regression models. In Proceedings of ICML (pp. 382–391).
go back to reference Hoang, Q. M., Hoang, T. N., & Low, K. H. (2017). A generalized stochastic variational Bayesian hyperparameter learning framework for sparse spectrum Gaussian process regression. In Proceedings of AAAI (pp. 2007–2014). Hoang, Q. M., Hoang, T. N., & Low, K. H. (2017). A generalized stochastic variational Bayesian hyperparameter learning framework for sparse spectrum Gaussian process regression. In Proceedings of AAAI (pp. 2007–2014).
go back to reference Hoang, T. N., Hoang, Q. M., & Low, K. H. (2018). Decentralized high-dimensional Bayesian optimization with factor graphs. In Proceedings of AAAI (pp. 3231–3238). Hoang, T. N., Hoang, Q. M., & Low, K. H. (2018). Decentralized high-dimensional Bayesian optimization with factor graphs. In Proceedings of AAAI (pp. 3231–3238).
go back to reference Hoang, T. N., Hoang, Q. M., Low, K. H., & How, J. P. (2019). Collective online learning of Gaussian processes in massive multi-agent systems. In Proceedings of AAAI. Hoang, T. N., Hoang, Q. M., Low, K. H., & How, J. P. (2019). Collective online learning of Gaussian processes in massive multi-agent systems. In Proceedings of AAAI.
go back to reference Hoang, T. N., Low, K. H., Jaillet, P., & Kankanhalli, M. (2014). Nonmyopic \(\epsilon \)-Bayes-optimal active learning of Gaussian processes. In Proceedings of ICML (pp. 739–747). Hoang, T. N., Low, K. H., Jaillet, P., & Kankanhalli, M. (2014). Nonmyopic \(\epsilon \)-Bayes-optimal active learning of Gaussian processes. In Proceedings of ICML (pp. 739–747).
go back to reference Kim, Y., & Shell, D. (2014). Distributed robotic sampling of non-homogeneous spatiotemporal fields via recursive geometric sub-division. In Proceedings of IEEE ICRA (pp. 557–562). Kim, Y., & Shell, D. (2014). Distributed robotic sampling of non-homogeneous spatiotemporal fields via recursive geometric sub-division. In Proceedings of IEEE ICRA (pp. 557–562).
go back to reference Krause, A., Singh, A., & Guestrin, C. (2008). Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies. JMLR, 9, 235–284.MATH Krause, A., Singh, A., & Guestrin, C. (2008). Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies. JMLR, 9, 235–284.MATH
go back to reference Leonard, N. E., Palley, D. A., Lekien, F., Sepulchre, R., Fratantoni, D. M., & Davis, R. E. (2007). Collective motion, sensor networks, and ocean sampling. Proceedings of the IEEE, 95(1), 48–74.CrossRef Leonard, N. E., Palley, D. A., Lekien, F., Sepulchre, R., Fratantoni, D. M., & Davis, R. E. (2007). Collective motion, sensor networks, and ocean sampling. Proceedings of the IEEE, 95(1), 48–74.CrossRef
go back to reference Ling, C. K., Low, K. H., & Jaillet, P. (2016). Gaussian process planning with Lipschitz continuous reward functions: Towards unifying Bayesian optimization, active learning, and beyond. In Proceedings of AAAI (pp. 1860–1866). Ling, C. K., Low, K. H., & Jaillet, P. (2016). Gaussian process planning with Lipschitz continuous reward functions: Towards unifying Bayesian optimization, active learning, and beyond. In Proceedings of AAAI (pp. 1860–1866).
go back to reference Low, K. H., Chen, J., Dolan, J. M., Chien, S., & Thompson, D. R. (2012). Decentralized active robotic exploration and mapping for probabilistic field classification in environmental sensing. In Proceedings of AAMAS (pp. 105–112). Low, K. H., Chen, J., Dolan, J. M., Chien, S., & Thompson, D. R. (2012). Decentralized active robotic exploration and mapping for probabilistic field classification in environmental sensing. In Proceedings of AAMAS (pp. 105–112).
go back to reference Low, K. H., Chen, J., Hoang, T. N., Xu, N., & Jaillet, P. (2015a). Recent advances in scaling up Gaussian process predictive models for large spatiotemporal data. In S. Ravela, A. Sandu (Eds.), Proceedings of dynamic data-driven environmental systems science conference (DyDESS’14), LNCS 8964, Springer. Low, K. H., Chen, J., Hoang, T. N., Xu, N., & Jaillet, P. (2015a). Recent advances in scaling up Gaussian process predictive models for large spatiotemporal data. In S. Ravela, A. Sandu (Eds.), Proceedings of dynamic data-driven environmental systems science conference (DyDESS’14), LNCS 8964, Springer.
go back to reference Low, K. H., Dolan, J. M., & Khosla, P. (2008). Adaptive multi-robot wide-area exploration and mapping. In Proceedings of AAMAS (pp. 23–30). Low, K. H., Dolan, J. M., & Khosla, P. (2008). Adaptive multi-robot wide-area exploration and mapping. In Proceedings of AAMAS (pp. 23–30).
go back to reference Low, K. H., Dolan, J. M., & Khosla, P. (2009). Information-theoretic approach to efficient adaptive path planning for mobile robotic environmental sensing. In Proceedings of ICAPS. Low, K. H., Dolan, J. M., & Khosla, P. (2009). Information-theoretic approach to efficient adaptive path planning for mobile robotic environmental sensing. In Proceedings of ICAPS.
go back to reference Low, K. H., Dolan, J. M., & Khosla, P. (2011). Active Markov information-theoretic path planning for robotic environmental sensing. In Proceedings of AAMAS (pp. 753–760). Low, K. H., Dolan, J. M., & Khosla, P. (2011). Active Markov information-theoretic path planning for robotic environmental sensing. In Proceedings of AAMAS (pp. 753–760).
go back to reference Low, K. H., Gordon, G. J., Dolan, J. M., & Khosla, P. (2007). Adaptive sampling for multi-robot wide-area exploration. In Proceedings of IEEE ICRA (pp. 755–760). Low, K. H., Gordon, G. J., Dolan, J. M., & Khosla, P. (2007). Adaptive sampling for multi-robot wide-area exploration. In Proceedings of IEEE ICRA (pp. 755–760).
go back to reference Low, K. H., Yu, J., Chen, J., & Jaillet, P. (2015b). Parallel Gaussian process regression for big data: Low-rank representation meets Markov approximation. In Proceedings of AAAI (pp. 2821–2827). Low, K. H., Yu, J., Chen, J., & Jaillet, P. (2015b). Parallel Gaussian process regression for big data: Low-rank representation meets Markov approximation. In Proceedings of AAAI (pp. 2821–2827).
go back to reference Min, W., & Wynter, L. (2011). Real-time road traffic prediction with spatio-temporal correlations. Transportation Research Part C: Emerging, 19(4), 606–616.CrossRef Min, W., & Wynter, L. (2011). Real-time road traffic prediction with spatio-temporal correlations. Transportation Research Part C: Emerging, 19(4), 606–616.CrossRef
go back to reference Ouyang, R., & Low, K. H. (2018). Gaussian process decentralized data fusion meets transfer learning in large-scale distributed cooperative perception. In Proceedings of AAAI (pp. 3876–3883). Ouyang, R., & Low, K. H. (2018). Gaussian process decentralized data fusion meets transfer learning in large-scale distributed cooperative perception. In Proceedings of AAAI (pp. 3876–3883).
go back to reference Ouyang, R., Low, K. H., Chen, J., & Jaillet, P. (2014). Multi-robot active sensing of non-stationary Gaussian process-based environmental phenomena. In Proceedings of AAMAS (pp. 573–580). Ouyang, R., Low, K. H., Chen, J., & Jaillet, P. (2014). Multi-robot active sensing of non-stationary Gaussian process-based environmental phenomena. In Proceedings of AAMAS (pp. 573–580).
go back to reference Park, C., Huang, J. Z., & Ding, Y. (2011). Domain decomposition approach for fast Gaussian process regression of large spatial data sets. JMLR, 12, 1697–1728.MathSciNetMATH Park, C., Huang, J. Z., & Ding, Y. (2011). Domain decomposition approach for fast Gaussian process regression of large spatial data sets. JMLR, 12, 1697–1728.MathSciNetMATH
go back to reference Paskin, M. A., Guestrin, C. (2004). Robust probabilistic inference in distributed systems. In Proceedings of UAI (pp. 436–445). Paskin, M. A., Guestrin, C. (2004). Robust probabilistic inference in distributed systems. In Proceedings of UAI (pp. 436–445).
go back to reference Podnar, G., Dolan, J. M., Low, K. H., & Elfes, A. (2010). Telesupervised remote surface water quality sensing. In Proceedings of IEEE aerospace conference. Podnar, G., Dolan, J. M., Low, K. H., & Elfes, A. (2010). Telesupervised remote surface water quality sensing. In Proceedings of IEEE aerospace conference.
go back to reference Quiñonero-Candela, J., & Rasmussen, C. E. (2005). A unifying view of sparse approximate Gaussian process regression. JMLR, 6, 1939–1959.MathSciNetMATH Quiñonero-Candela, J., & Rasmussen, C. E. (2005). A unifying view of sparse approximate Gaussian process regression. JMLR, 6, 1939–1959.MathSciNetMATH
go back to reference Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. Cambridge: MIT Press.MATH Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. Cambridge: MIT Press.MATH
go back to reference Rosencrantz, M., Gordon, G., & Thrun, S. (2003). Decentralized sensor fusion with distributed particle filters. In Proceedings of UAI (pp. 493–500). Rosencrantz, M., Gordon, G., & Thrun, S. (2003). Decentralized sensor fusion with distributed particle filters. In Proceedings of UAI (pp. 493–500).
go back to reference Schwaighofer, A., & Tresp, V. (2002). Transductive and inductive methods for approximate Gaussian process regression. In Proceedings of NIPS (pp. 953–960). Schwaighofer, A., & Tresp, V. (2002). Transductive and inductive methods for approximate Gaussian process regression. In Proceedings of NIPS (pp. 953–960).
go back to reference Singh, A., Krause, A., Guestrin, C., & Kaiser, W. J. (2009). Efficient informative sensing using multiple robots. Journal of Artificial Intelligence Research, 34, 707–755.MathSciNetCrossRef Singh, A., Krause, A., Guestrin, C., & Kaiser, W. J. (2009). Efficient informative sensing using multiple robots. Journal of Artificial Intelligence Research, 34, 707–755.MathSciNetCrossRef
go back to reference Snelson, E. L., & Ghahramani, Z. (2007). Local and global sparse Gaussian process approximation. In Proceedings of AISTATS. Snelson, E. L., & Ghahramani, Z. (2007). Local and global sparse Gaussian process approximation. In Proceedings of AISTATS.
go back to reference Sukkarieh, S., Nettleton, E., Kim, J., Ridley, M., Goktogan, A., & Durrant-Whyte, H. (2003). The ANSER project: Data fusion across multiple uninhabited air vehicles. IJRR, 22(7–8), 505–539. Sukkarieh, S., Nettleton, E., Kim, J., Ridley, M., Goktogan, A., & Durrant-Whyte, H. (2003). The ANSER project: Data fusion across multiple uninhabited air vehicles. IJRR, 22(7–8), 505–539.
go back to reference Sun, S., Zhao, J., & Zhu, J. (2015). A review of Nyström methods for large-scale machine learning. Information Fusion, 26, 36–48.CrossRef Sun, S., Zhao, J., & Zhu, J. (2015). A review of Nyström methods for large-scale machine learning. Information Fusion, 26, 36–48.CrossRef
go back to reference Thompson, D. R., Cabrol, N., Furlong, M., Hardgrove, C., Low, K. H., Moersch, J., & Wettergreen, D. (2013). Adaptive sampling of time series with application to remote exploration. In Proceedings of IEEE ICRA (pp. 3463–3468). Thompson, D. R., Cabrol, N., Furlong, M., Hardgrove, C., Low, K. H., Moersch, J., & Wettergreen, D. (2013). Adaptive sampling of time series with application to remote exploration. In Proceedings of IEEE ICRA (pp. 3463–3468).
go back to reference Wang, Y., & Papageorgiou, M. (2005). Real-time freeway traffic state estimation based on extended Kalman filter: A general approach. Transportation Research Part B: Methodological, 39(2), 141–167.CrossRef Wang, Y., & Papageorgiou, M. (2005). Real-time freeway traffic state estimation based on extended Kalman filter: A general approach. Transportation Research Part B: Methodological, 39(2), 141–167.CrossRef
go back to reference Work, D. B., Blandin, S., Tossavainen, O., & Piccoli, B. (2010). Bayen A (2010) A traffic model for velocity data assimilation. AMRX, 1, 1–35.MATH Work, D. B., Blandin, S., Tossavainen, O., & Piccoli, B. (2010). Bayen A (2010) A traffic model for velocity data assimilation. AMRX, 1, 1–35.MATH
go back to reference Xu, N., Low, K. H., Chen, J., Lim, K. K., & Özgül, E.B. (2014). GP-Localize: Persistent mobile robot localization using online sparse Gaussian process observation model. In Proceedings of AAAI (pp. 2585–2592). Xu, N., Low, K. H., Chen, J., Lim, K. K., & Özgül, E.B. (2014). GP-Localize: Persistent mobile robot localization using online sparse Gaussian process observation model. In Proceedings of AAAI (pp. 2585–2592).
go back to reference Zhang, K., Tsang, I. W., & Kwok, J. T. (2008). Improved Nyström low-rank approximation and error analysis. In Proceedings of ICML (pp. 1232–1239). Zhang, K., Tsang, I. W., & Kwok, J. T. (2008). Improved Nyström low-rank approximation and error analysis. In Proceedings of ICML (pp. 1232–1239).
go back to reference Zhang, Y., Hoang, T. N., Low, K. H., & Kankanhalli, M. (2016). Near-optimal active learning of multi-output Gaussian processes. In Proceedings of AAAI. Zhang, Y., Hoang, T. N., Low, K. H., & Kankanhalli, M. (2016). Near-optimal active learning of multi-output Gaussian processes. In Proceedings of AAAI.
Metadata
Title
Gaussian process decentralized data fusion meets transfer learning in large-scale distributed cooperative perception
Authors
Ruofei Ouyang
Bryan Kian Hsiang Low
Publication date
28-01-2019
Publisher
Springer US
Published in
Autonomous Robots / Issue 3-4/2020
Print ISSN: 0929-5593
Electronic ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-018-09826-z

Other articles of this Issue 3-4/2020

Autonomous Robots 3-4/2020 Go to the issue