Skip to main content
Top
Published in: Neural Computing and Applications 5/2023

20-10-2022 | Original Article

Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer

Authors: Jeffrey O. Agushaka, Absalom E. Ezugwu, Laith Abualigah

Published in: Neural Computing and Applications | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study proposes a novel population-based metaheuristic algorithm called the Gazelle Optimization Algorithm (GOA), inspired by the gazelles’ survival ability in their predator-dominated environment. Every day, the gazelle knows that if it does not outrun and outmaneuver its predators, it becomes meat for the day, and to survive, the gazelles have to escape from their predators consistently. This information is vital to proposing a new metaheuristic algorithm that uses the gazelle’s survival abilities to solve real-world optimization problems. The exploitation phase of the algorithm simulates the gazelles grazing peacefully in the absence of the predator or while the predator is stalking it. The GOA goes into the exploration phase once a predator is spotted. The exploration phase consists of the gazelle outrunning and outmaneuvering the predator to a safe haven. These two phases are iteratively repeated, subject to the termination criteria, and finding optimal solutions to the optimization problems. The robustness and efficiency of the developed algorithm as an optimization tool were tested using benchmark optimization test functions and selected engineering design problems (fifteen classical, ten composited functions, and four mechanical engineering design problems). The results of the GOA are compared with nine other state-of-the-art algorithms. The simulation results obtained confirm the superiority and competitiveness of the GOA algorithm over nine state-of-the-art algorithms available in the literature. Also, the standard statistical analysis test carried out on the results further confirmed the ability of GOA to find solutions to the selected optimization problems. It also showed that GOA performed better or, in some cases, was very competitive with some state-of-the-art algorithms. Also, the results show that GOA is a potent tool for optimization that can be adapted to solve problems in different optimization domains.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abed-alguni BH, Paul D (2022) Island-based Cuckoo Search with elite opposition-based learning and multiple mutation methods for solving optimization problems. Soft Comput 26(7):3293–3312CrossRef Abed-alguni BH, Paul D (2022) Island-based Cuckoo Search with elite opposition-based learning and multiple mutation methods for solving optimization problems. Soft Comput 26(7):3293–3312CrossRef
3.
go back to reference Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609MATHCrossRef Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609MATHCrossRef
4.
go back to reference Agushaka JO, Ezugwu AE (2020). Diabetes classification techniques: a brief state-of-the-art literature review. In: International Conference on Applied Informatics (pp. 313–329). Ogun: Springer, Cham Agushaka JO, Ezugwu AE (2020). Diabetes classification techniques: a brief state-of-the-art literature review. In: International Conference on Applied Informatics (pp. 313–329). Ogun: Springer, Cham
6.
go back to reference Agushaka JO, Ezugwu AE (2022) Influence of probability distribution initialization methods on the performance of advanced arithmetic optimization algorithm with application to unrelated parallel machine scheduling problem. Concurr Comput Pract Exper 34:e6871CrossRef Agushaka JO, Ezugwu AE (2022) Influence of probability distribution initialization methods on the performance of advanced arithmetic optimization algorithm with application to unrelated parallel machine scheduling problem. Concurr Comput Pract Exper 34:e6871CrossRef
7.
go back to reference Agushaka JO, Ezugwu AE, Abualigah L (2022) Dwarf Mongoose Optimization Algorithm. Comput Methods Appl Mech Eng 391:114570MATHCrossRef Agushaka JO, Ezugwu AE, Abualigah L (2022) Dwarf Mongoose Optimization Algorithm. Comput Methods Appl Mech Eng 391:114570MATHCrossRef
8.
go back to reference Agushaka J, Ezugwu A (2020) Influence of initializing krill herd algorithm with low-discrepancy sequences. IEEE Access 8:210886–210909CrossRef Agushaka J, Ezugwu A (2020) Influence of initializing krill herd algorithm with low-discrepancy sequences. IEEE Access 8:210886–210909CrossRef
9.
go back to reference Akay B, Karaboga D (2012) A modified artificial bee colony algorithm for real-parameter optimization. Inf Sci 192:120–142CrossRef Akay B, Karaboga D (2012) A modified artificial bee colony algorithm for real-parameter optimization. Inf Sci 192:120–142CrossRef
10.
go back to reference Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23(4):1001–1014CrossRef Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23(4):1001–1014CrossRef
11.
go back to reference Alatas B (2011) ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst Appl 38(10):13170–13180CrossRef Alatas B (2011) ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst Appl 38(10):13170–13180CrossRef
12.
go back to reference Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734CrossRef Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734CrossRef
13.
go back to reference Atashpaz-Gargari E, Lucas C (2007). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In 2007 IEEE congress on evolutionary computation (pp. 4661–4667). Ieee Atashpaz-Gargari E, Lucas C (2007). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In 2007 IEEE congress on evolutionary computation (pp. 4661–4667). Ieee
14.
go back to reference Biswas A, Mishra K, Tiwari S, Misra A (2013). Physics-inspired optimization algorithms: a survey. Journal of Optimization, 2013 Biswas A, Mishra K, Tiwari S, Misra A (2013). Physics-inspired optimization algorithms: a survey. Journal of Optimization, 2013
15.
go back to reference Braik MS (2021) Chameleon swarm algorithm: a bio-inspired optimizer for solving engineering design problems. Expert Syst Appl 174:114685CrossRef Braik MS (2021) Chameleon swarm algorithm: a bio-inspired optimizer for solving engineering design problems. Expert Syst Appl 174:114685CrossRef
16.
go back to reference Coello C (2000) Use of self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127CrossRef Coello C (2000) Use of self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127CrossRef
17.
go back to reference Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406) (Vol. 2) (pp. 1470–1477). IEEE Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406) (Vol. 2) (pp. 1470–1477). IEEE
18.
go back to reference Einstein A (1956) Investigations on the Theory of the Brownian Movement. Courier Corporation, USMATH Einstein A (1956) Investigations on the Theory of the Brownian Movement. Courier Corporation, USMATH
20.
go back to reference Ezugwu AE (2020) Nature-inspired metaheuristic techniques for automatic clustering: a survey and performance study. SN Applied Sciences 2(2):273CrossRef Ezugwu AE (2020) Nature-inspired metaheuristic techniques for automatic clustering: a survey and performance study. SN Applied Sciences 2(2):273CrossRef
21.
go back to reference Ezugwu AE, Adeleke OJ, Akinyelu AA, Viriri S (2020) A conceptual comparison of several metaheuristic algorithms on continuous optimization problems. Neural Comput Appl 32(10):6207–6251CrossRef Ezugwu AE, Adeleke OJ, Akinyelu AA, Viriri S (2020) A conceptual comparison of several metaheuristic algorithms on continuous optimization problems. Neural Comput Appl 32(10):6207–6251CrossRef
22.
go back to reference Ezugwu AE, Akutsah F (2018) An improved firefly algorithm for the unrelated parallel machines scheduling problem with sequence-dependent setup times. IEEE Access 6:54459–54478CrossRef Ezugwu AE, Akutsah F (2018) An improved firefly algorithm for the unrelated parallel machines scheduling problem with sequence-dependent setup times. IEEE Access 6:54459–54478CrossRef
24.
go back to reference Ezugwu AE, Shukla AK, Nath R, Akinyelu AA, Agushaka JO, Chiroma H, Muhuri PK (2021) Metaheuristics: a comprehensive overview and classification along with bibliometric analysis. Artif Intell Rev 54(6):4237–4316CrossRef Ezugwu AE, Shukla AK, Nath R, Akinyelu AA, Agushaka JO, Chiroma H, Muhuri PK (2021) Metaheuristics: a comprehensive overview and classification along with bibliometric analysis. Artif Intell Rev 54(6):4237–4316CrossRef
25.
go back to reference Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst Appl 152:113377CrossRef Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst Appl 152:113377CrossRef
26.
go back to reference FitzGibbon, C. D., & Lazarus, J. (1995). Antipredator behavior of Serengeti ungulates: individual differences and population consequences. Serengeti II: Dynamics, management, and conservation of an ecosystem, 274–296 FitzGibbon, C. D., & Lazarus, J. (1995). Antipredator behavior of Serengeti ungulates: individual differences and population consequences. Serengeti II: Dynamics, management, and conservation of an ecosystem, 274–296
27.
go back to reference Hassan BA (2021) CSCF: a chaotic sine cosine firefly algorithm for practical application problems. Neural Comput Appl 33(12):7011–7030CrossRef Hassan BA (2021) CSCF: a chaotic sine cosine firefly algorithm for practical application problems. Neural Comput Appl 33(12):7011–7030CrossRef
28.
go back to reference Holland, J. H. (1975). Adaptation in natural and artificial systems. University of Michigan Press. (Second. Michigan: University of Michigan Press. (Second edition: MIT Press, 1992) Holland, J. H. (1975). Adaptation in natural and artificial systems. University of Michigan Press. (Second. Michigan: University of Michigan Press. (Second edition: MIT Press, 1992)
29.
go back to reference Houssein EH, Saad MR, Hashim FA, Shaban H, Hassaballah M (2020) Lévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell 94:103731CrossRef Houssein EH, Saad MR, Hashim FA, Shaban H, Hassaballah M (2020) Lévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell 94:103731CrossRef
30.
go back to reference Humphries NE, Queiroz N, Dyer JR, Pade NG, Musyl MK, Schaefer KM, Sims DW (2010) Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 465(7301):1066–1069CrossRef Humphries NE, Queiroz N, Dyer JR, Pade NG, Musyl MK, Schaefer KM, Sims DW (2010) Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 465(7301):1066–1069CrossRef
31.
go back to reference Ibrahim A, Tawhid M, Ward R (2020) A binary water wave optimization for feature selection. Int J Approx Reason 120:74–91MATHCrossRef Ibrahim A, Tawhid M, Ward R (2020) A binary water wave optimization for feature selection. Int J Approx Reason 120:74–91MATHCrossRef
32.
go back to reference Kaveh A, Eslamlou A (2020) Water strider algorithm: a new metaheuristic and applications. Structures 25:520–541CrossRef Kaveh A, Eslamlou A (2020) Water strider algorithm: a new metaheuristic and applications. Structures 25:520–541CrossRef
33.
go back to reference Kaveh A, Hamedani KB, Kamalinejad M (2022) Improved slime mould algorithm with elitist strategy and its application to structural optimization with natural frequency constraints. Comput Struct 264:106760CrossRef Kaveh A, Hamedani KB, Kamalinejad M (2022) Improved slime mould algorithm with elitist strategy and its application to structural optimization with natural frequency constraints. Comput Struct 264:106760CrossRef
34.
go back to reference Kaveh A, Talatahari S, Khodadadi N (2020). Stochastic paint optimizer: theory and application in civil engineering. Engineering with Computers, 1–32 Kaveh A, Talatahari S, Khodadadi N (2020). Stochastic paint optimizer: theory and application in civil engineering. Engineering with Computers, 1–32
35.
go back to reference Kennedy J, Eberhart R (1995). Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks (Vol. 4) (pp. 1942–1948). IEEE Kennedy J, Eberhart R (1995). Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks (Vol. 4) (pp. 1942–1948). IEEE
36.
go back to reference Kirkpatrick S, Gelatt Jr CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680MATHCrossRef Kirkpatrick S, Gelatt Jr CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680MATHCrossRef
37.
go back to reference Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194(36–38):3902–3933MATHCrossRef Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194(36–38):3902–3933MATHCrossRef
38.
go back to reference Liu H, Zhang X, Liang H, Tu L (2020) Stability analysis of the human behavior-based particle swarm optimization without stagnation assumption. ExpertSystAppl 159:113638 Liu H, Zhang X, Liang H, Tu L (2020) Stability analysis of the human behavior-based particle swarm optimization without stagnation assumption. ExpertSystAppl 159:113638
39.
go back to reference Mantegna RN (1994) Fast, accurate algorithm for numerical simulation of Levy stable stochastic processes. Phys Rev E 49(5):4677CrossRef Mantegna RN (1994) Fast, accurate algorithm for numerical simulation of Levy stable stochastic processes. Phys Rev E 49(5):4677CrossRef
40.
go back to reference Mezura-Montes E, Coello CA (2005). Useful infeasible solutions in engineering optimization with evolutionary algorithms. In: Mexican international conference on artificial intelligence (pp. 652–662). Berlin, Heidelberg: Springer Mezura-Montes E, Coello CA (2005). Useful infeasible solutions in engineering optimization with evolutionary algorithms. In: Mexican international conference on artificial intelligence (pp. 652–662). Berlin, Heidelberg: Springer
41.
go back to reference Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133CrossRef Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133CrossRef
42.
go back to reference Mirjalili S, Gandomi A, Mirjalili S, Saremi S, Faris H, Mirjalili S (2017) Salp swarm algorithm: a bioinspired optimizer for engineering design problems. Adv Eng Software 124:163–191CrossRef Mirjalili S, Gandomi A, Mirjalili S, Saremi S, Faris H, Mirjalili S (2017) Salp swarm algorithm: a bioinspired optimizer for engineering design problems. Adv Eng Software 124:163–191CrossRef
43.
go back to reference Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef
44.
go back to reference Mohammadi F, Amini M, Arabnia H (2020). Evolutionary computation, optimization, and learning algorithms for data science. Optimization, Learning, and Control for Interdependent Complex Networks.Cham, Switzerland: Springer, 37–65 Mohammadi F, Amini M, Arabnia H (2020). Evolutionary computation, optimization, and learning algorithms for data science. Optimization, Learning, and Control for Interdependent Complex Networks.Cham, Switzerland: Springer, 37–65
45.
go back to reference Moosavi S, Bardsiri V (2019) Poor and rich optimization algorithm: a new human-based and multi populations algorithm. Eng Appl Artif Intel 86:165–181CrossRef Moosavi S, Bardsiri V (2019) Poor and rich optimization algorithm: a new human-based and multi populations algorithm. Eng Appl Artif Intel 86:165–181CrossRef
46.
go back to reference Nadimi-Shahraki MH, Taghian S, Mirjalili S (2021) An improved grey wolf optimizer for solving engineering problems. Expert Syst Appl 166:113917CrossRef Nadimi-Shahraki MH, Taghian S, Mirjalili S (2021) An improved grey wolf optimizer for solving engineering problems. Expert Syst Appl 166:113917CrossRef
47.
go back to reference Olson KA, Larsen EA, Mueller T, Leimgruber P, Fuller TK, Schaller GB, Fagan WF (2014) Survival probabilities of adult Mongolian gazelles. J Wildl Manag 78(1):35–41CrossRef Olson KA, Larsen EA, Mueller T, Leimgruber P, Fuller TK, Schaller GB, Fagan WF (2014) Survival probabilities of adult Mongolian gazelles. J Wildl Manag 78(1):35–41CrossRef
49.
go back to reference Oyelade ON, Ezugwu AE-S, Mohamed TI, Abualigah L (2022) Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm IEEE. Access 10:16150–16177CrossRef Oyelade ON, Ezugwu AE-S, Mohamed TI, Abualigah L (2022) Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm IEEE. Access 10:16150–16177CrossRef
50.
go back to reference Pelusi D, Mascella R, Tallini L, Nayak J, Naik B, Deng Y (2020) Improving exploration and exploitation via a hyperbolic gravitational search algorithm. Knowl-Based Syst 193:105CrossRef Pelusi D, Mascella R, Tallini L, Nayak J, Naik B, Deng Y (2020) Improving exploration and exploitation via a hyperbolic gravitational search algorithm. Knowl-Based Syst 193:105CrossRef
51.
go back to reference Rahkar Farshi T (2021) Battle royale optimization algorithm. Neural Comput Appl 33(4):1139–1157CrossRef Rahkar Farshi T (2021) Battle royale optimization algorithm. Neural Comput Appl 33(4):1139–1157CrossRef
52.
go back to reference Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248MATHCrossRef Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248MATHCrossRef
53.
go back to reference Rather S, Bala P (2019). Hybridization of constriction coefficient based particle swarm optimization and gravitational search algorithm for function optimization. In: International Conference on Advances in Electronics, Electrical, and Computational Intelligence (ICAEEC- 2019). Elsevier Rather S, Bala P (2019). Hybridization of constriction coefficient based particle swarm optimization and gravitational search algorithm for function optimization. In: International Conference on Advances in Electronics, Electrical, and Computational Intelligence (ICAEEC- 2019). Elsevier
54.
go back to reference Rechenberg I (1978). Evolutionary strategies. In simulation methods in medicine and biology, Berlin, Heidelberg, 83–114 Rechenberg I (1978). Evolutionary strategies. In simulation methods in medicine and biology, Berlin, Heidelberg, 83–114
55.
go back to reference Sarzaeim P, Bozorg-Haddad O, Chu X (2018). Teaching-learning-based optimization (TLBO) algorithm. Advanced Optimization by Nature-Inspired Algorithms. Singapore, Asia: Springer, 51–58 Sarzaeim P, Bozorg-Haddad O, Chu X (2018). Teaching-learning-based optimization (TLBO) algorithm. Advanced Optimization by Nature-Inspired Algorithms. Singapore, Asia: Springer, 51–58
56.
go back to reference Shabani A, Asgarian B, Salido M, Gharebaghi SA (2020) Search and rescue optimization algorithm: a new optimization method for solving constrained engineering optimization problems. Expert Syst Appl 161:113698CrossRef Shabani A, Asgarian B, Salido M, Gharebaghi SA (2020) Search and rescue optimization algorithm: a new optimization method for solving constrained engineering optimization problems. Expert Syst Appl 161:113698CrossRef
57.
go back to reference Simon D (2008) Biogeography based optimization. IEEE Trans Evol Comput 12(6):702–713CrossRef Simon D (2008) Biogeography based optimization. IEEE Trans Evol Comput 12(6):702–713CrossRef
58.
go back to reference Slowik A, Kwasnicka H (2020) Evolutionary algorithms and their applications to engineering problems. Neural Comput Appl 32(16):12363–12379CrossRef Slowik A, Kwasnicka H (2020) Evolutionary algorithms and their applications to engineering problems. Neural Comput Appl 32(16):12363–12379CrossRef
59.
go back to reference Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359MATHCrossRef Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359MATHCrossRef
60.
go back to reference Tzanetos A, Dounias G (2021) Nature inspired optimization algorithms or simply variations of metaheuristics? Artif Intell Rev 54(3):1841–1862MATHCrossRef Tzanetos A, Dounias G (2021) Nature inspired optimization algorithms or simply variations of metaheuristics? Artif Intell Rev 54(3):1841–1862MATHCrossRef
61.
go back to reference Uymaz SA, Tezel G, Yel E (2015) Artificial algae algorithm (AAA) for nonlinear global optimization. Appl Soft Comput 31:153–171CrossRef Uymaz SA, Tezel G, Yel E (2015) Artificial algae algorithm (AAA) for nonlinear global optimization. Appl Soft Comput 31:153–171CrossRef
62.
go back to reference Wang GG, Guo L, Gandomi AH, Hao GS, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34CrossRef Wang GG, Guo L, Gandomi AH, Hao GS, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34CrossRef
63.
go back to reference Xie Q, Cheng G, Zhang X, Peng L (2020) Feature selection using improved forest optimization algorithm. Inf Technol Control 49(2):289–301CrossRef Xie Q, Cheng G, Zhang X, Peng L (2020) Feature selection using improved forest optimization algorithm. Inf Technol Control 49(2):289–301CrossRef
64.
go back to reference Xing B, Gao W (2014). Invasive weed optimization algorithm. Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms. Cham, Switzerland:Springer, 177–181 Xing B, Gao W (2014). Invasive weed optimization algorithm. Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms. Cham, Switzerland:Springer, 177–181
65.
go back to reference Yang X S, Deb S (2009). Cuckoo search via Lévy flights. In 2009 World congress on nature & biologically inspired computing (NaBIC) (pp. 210–214). Ieee Yang X S, Deb S (2009). Cuckoo search via Lévy flights. In 2009 World congress on nature & biologically inspired computing (NaBIC) (pp. 210–214). Ieee
66.
go back to reference Yang X, Karamanoglu M (2020). Nature-inspired computation and swarm intelligence: a state-of-the-art overview. Nature-Inspired Computation and Swarm Intelligence. Cambridge, Massachusetts: Academic Press, 3–18 Yang X, Karamanoglu M (2020). Nature-inspired computation and swarm intelligence: a state-of-the-art overview. Nature-Inspired Computation and Swarm Intelligence. Cambridge, Massachusetts: Academic Press, 3–18
67.
go back to reference Zamani H, Nadimi-Shahraki MH, Gandomi AH (2022) Starling murmuration optimizer: a novel bio-inspired algorithm for global and engineering optimization. Comput Methods Appl Mech Eng 392:114616MATHCrossRef Zamani H, Nadimi-Shahraki MH, Gandomi AH (2022) Starling murmuration optimizer: a novel bio-inspired algorithm for global and engineering optimization. Comput Methods Appl Mech Eng 392:114616MATHCrossRef
68.
go back to reference Zhang P, Wang C, Qin Z, Cao H (2022) A multidomain virtual network embedding algorithm based on multiobjective optimization for Internet of Drones architecture in Industry 40. Softw Pract Exper 52(3):710–728CrossRef Zhang P, Wang C, Qin Z, Cao H (2022) A multidomain virtual network embedding algorithm based on multiobjective optimization for Internet of Drones architecture in Industry 40. Softw Pract Exper 52(3):710–728CrossRef
69.
go back to reference Zhao W, Du C, Jiang S (2018) An adaptive multiscale approach for identifying multiple flaws based on XFEM and a discrete artificial fish swarm algorithm. Comput Methods Appl Mech Eng 339:341–357MATHCrossRef Zhao W, Du C, Jiang S (2018) An adaptive multiscale approach for identifying multiple flaws based on XFEM and a discrete artificial fish swarm algorithm. Comput Methods Appl Mech Eng 339:341–357MATHCrossRef
70.
go back to reference Zhao W, Wang L, Mirjalili S (2022) Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Comput Methods Appl Mech Eng 388:114194MATHCrossRef Zhao W, Wang L, Mirjalili S (2022) Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Comput Methods Appl Mech Eng 388:114194MATHCrossRef
Metadata
Title
Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer
Authors
Jeffrey O. Agushaka
Absalom E. Ezugwu
Laith Abualigah
Publication date
20-10-2022
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 5/2023
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-022-07854-6

Other articles of this Issue 5/2023

Neural Computing and Applications 5/2023 Go to the issue

Premium Partner