Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

Generalized nonlinear weakly singular retarded integral inequalities with maxima and their applications

Authors: Yong Yan, Derong Zhou, Jianglin Zhao

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

This paper deals with a generalized nonlinear weakly singular retarded Wendroff-type integral inequality with maxima of an unknown function of two variables. The key is that a technique of monotonization without separability and monotonicity of given functions is used for estimating the boundedness of unknown functions. Then our outcomes can be helpful to weaken conditions for some known results. By applying our results, the uniqueness of solutions for some singular integral equation with maxima may be proven.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

The Gronwall inequality [1] holds a vital place in studying qualitative properties of the solutions of integral equations and differential equations. Some linear and nonlinear generalizations (e.g. [211]) of the Gronwall inequality have been extensively discussed. With further study of fractional differential equations, integral inequalities with weakly singular kernels have attracted more and more attention (see [1220]). In [14], a new method was presented to analyze the nonlinear singular integral inequalities of Henry type:
$$ u(t)\le a(t)+b(t) \int_{t_{0}}^{t}(t-s)^{\beta-1}s^{\gamma -1}F(s)u(s) \,ds,\quad t\ge0. $$
(1.1)
In 2008, Cheung et al. [20] solved the nonlinear weakly singular inequality
$$\begin{aligned} u^{p}(x,y) \le& a(x,y)+b(x,y) \int_{0}^{x} \int _{0}^{y}\bigl(x^{\alpha}-s^{\alpha} \bigr)^{\beta-1}s^{\gamma-1} \bigl(y^{\alpha}-t^{\alpha} \bigr)^{\beta-1}t^{\gamma-1} \\ &{} \cdot f(s,t)u^{q}(s,t)\,dt\,ds. \end{aligned}$$
(1.2)
On the other hand, since differential equations with maxima of the unknown function [2126] can be applied in control theory, some significant results for integral inequalities containing the maxima of the unknown function [22, 2730] have been obtained. The integral inequality with maxima
$$\begin{aligned}& u(x,y)\leq a(x,y)+ \int_{x_{0}}^{x} \int_{y_{0}}^{y} f(s,t) u^{p}(s,t)\,dt\,ds \\& \hphantom{u(x,y)\leq{}}{} + \int_{\alpha(x_{0})}^{\alpha(x)} \int_{y_{0}}^{y} g(s,t) \Bigl(\max _{\tilde{\eta}\in[s-h,s]}u^{p}(\tilde{\eta },t) \Bigr)\,dt\,ds,\quad x \ge x_{0}, y\ge y_{0}, \\& u(x,y)\leq \psi(x,y), \quad x\in \bigl[\alpha(x_{0})-h, x_{0}\bigr], y\ge y_{0}, \end{aligned}$$
(1.3)
where f, g, and ψ are nonnegative continuous functions and \(a(x,y)>0\) is a nondecreasing continuous function, was discussed in [22].
Combining (1.2) with (1.3), we will consider the integral inequality with maxima
$$ \begin{aligned} &\varphi\bigl(u(x,y)\bigr) \leq a(x,y)+ \sum_{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} \bigl(x^{\alpha_{j}}-s^{\alpha_{j}} \bigr)^{\beta_{j}-1}s^{\gamma_{j}-1}\bigl(y^{\bar {\alpha}_{j}}-t^{\bar{\alpha}_{j}} \bigr)^{\bar{\beta}_{j}-1} t^{\bar{\gamma}_{j}-1} \\ &\hphantom{\varphi(u(x,y)) \leq{}}{}\cdot f_{j}(x,y,s,t) \omega_{j} \bigl(u(s,t)\bigr)\mu_{j} \Bigl(\max_{\tilde{\eta}\in[s-h, s]}g\bigl(u( \tilde{\eta},t)\bigr) \Bigr)\,dt\,ds, \\ &\hphantom{\varphi(u(x,y)) \leq{}}{}(x,y)\in [x_{0},x_{1}) \times[y_{0}, y_{1}), \\ &u(x,y) \leq \psi (x,y), \quad (x,y)\in\bigl[b_{*}(x_{0})-h,x_{0} \bigr]\times [y_{0}, y_{1}), \end{aligned} $$
(1.4)
where a, g, \(\omega_{j}\), \(f_{j}\), \(b_{j}\), and \(c_{j}\) are nonnegative continuous functions, \(b_{j}\) and \(c_{j}\) are increasing functions and belong to \(C^{1}\), \(b_{*}(x_{0}):=\min_{1\le j\le{m}}b_{j}(x_{0})\), \(h>0\) is a constant. Specially, the monotonicity of a, \(\omega_{j}\), \(\mu_{j}\), \(f_{j}\), and g is not required. Further, \(\omega_{j}\)’s are used to construct a sequence of stronger monotonized functions. Then the obtained result is applied for considering the uniqueness of solutions to a boundary value problem of an integral equation with maxima.

2 Main result

Let \(\mathbb {R}:=(-\infty, +\infty)\), \(\mathbb {R}_{+}:=[0,\infty)\), \(\Delta:=[x_{0},x_{1})\times[y_{0}, y_{1})\) and \(\Xi:= [b_{*}(x_{0})-h,x_{0}]\times[y_{0}, y_{1})\). Define \(\Phi_{1}, \Phi_{2}: B\subset\mathbb {R} \rightarrow \mathbb {R}\setminus\{0\}\). As in [4], if \(\Phi_{1}/\Phi _{2}\) is nondecreasing on B, then \(\Phi_{1}\varpropto\Phi_{2}\). Considering inequality (1.4), we make the following assumptions for all \(j=1,\ldots,m\):
(A1)
\(b_{j}\in C^{1}([x_{0},x_{1}),\mathbb {R}_{+})\) and \(c_{j}\in C^{1}([y_{0},y_{1}), [y_{0},y_{1}))\) are nondecreasing such that \(b_{j}(x)\leq x\) and \(c_{j}(y)\le y\), and \(c_{j}(y_{0})=y_{0}\);
(A2)
\(a\in C(\Delta,\mathbb {R}_{+}) \), \(f_{j}\in C(\Delta\times [b_{*}(x_{0}),x_{1})\times[y_{0},y_{1}), \mathbb{R}_{+})\), \(\omega_{j},\mu_{j}\in C(\mathbb{R}_{+},\mathbb {R}_{+}) \) with \(\omega_{j}(t)>0\), \(\mu _{j}(t)>0\) for \(t>0\);
(A3)
\(g, \varphi\in C(\mathbb {R}_{+},\mathbb{R}_{+})\) and \(\psi\in C(\Xi, \mathbb {R}_{+})\), and φ is strictly increasing such that \(\lim_{t\rightarrow\infty}\varphi(t)=\infty\);
(A4)
\(\alpha_{j}, \bar{\alpha}_{j}\in(0,1]\), \(\beta_{j},\bar{\beta}_{j}\in(0,1)\), \(\gamma_{j}>1-\frac{1}{p}\), \(\bar{\gamma}_{j}>1-\frac{1}{p}\) such that \(\frac{1}{p}+\alpha_{j}(\beta_{j}-1)+\gamma_{j}-1\ge0\), \(\frac {1}{p}+\bar{\alpha}_{j}(\bar{\beta}_{j}-1)+\bar{\gamma}_{j}-1\ge0\), \(p(\beta_{j}-1)+1>0\), \(p(\bar{\beta}_{j}-1)+1>0\), \(p>1\).
For those \(\omega_{j}\)’s, \(\mu_{j}\)’s given in (A4), define \(\tilde {\omega}_{j}(t)\) inductively by
$$ \tilde{\omega}_{j}(t):= \textstyle\begin{cases} \hat{\omega}_{1}(t)\max_{\tau\in[0, t] }\{\hat{\mu }_{1}(\tilde{g}(\tau))\}, & t\ge0, j=1, \\ \max_{\tau\in[0, t] }\{\frac{\hat{\omega}_{j}(\tau)\hat {\mu}_{j+1}(\tilde{g}((\tau))}{\tilde{\omega}_{i-1}(\tau)}\}\tilde{\omega}_{i-1}(t),& t\ge0, j=2,\ldots,m, \end{cases} $$
(2.1)
where \(\hat{\omega}_{j}(t):=\max_{\tau\in[0, t] }\{\bar {\omega}_{j}(\tau)\}\), \(\hat{\mu}_{j}(t):=\max_{\tau\in[0, t] }\{\bar{\mu}_{j}(\tau)\}\), \(\tilde{g}(t):=\max_{\tau\in[0, t] }\{g(\tau)\}\), \(\bar{\omega}_{j}(t):=\omega_{j}(t)+\varepsilon_{j}\), \(\bar{\mu }_{j}(t):=\mu_{j}(t)+\varepsilon_{j}\) for \(t\ge0\), \(\epsilon_{j}:= \varepsilon\) if \(\omega_{j}(0)=0\) or \(:=0\) if \(\omega_{j}(0)\neq0\) for all \(j=1,2,\ldots,m\), where \(\varepsilon>0\) is an arbitrarily given constant.
Lemma 1
([16])
Let α, β, γ, and p be positive constants. Then
$$ \int^{t}_{0}\bigl(t^{\alpha}-s^{\alpha} \bigr)^{p(\beta-1)}s^{p(\gamma -1)}\,ds=\frac{t^{\theta}}{\alpha}B\biggl( \frac{p(\gamma-1)+1}{\alpha}, p(\beta-1)+1\biggr),\quad t\in{\mathbb{R}_{+}}, $$
where \(\theta:=p[\alpha(\beta-1)+\gamma-1]+1\), \(B(\xi,\eta)=\int ^{1}_{0}s^{\xi-1}(1-s)^{\eta-1}\,ds\) (\(\operatorname{Re} \xi>0\), \(\operatorname{Re} \eta>0\)) is the beta function.
Lemma 2
Suppose that
(C1)
\(b_{j}\in C^{1}([x_{0},x_{1}),\mathbb {R}_{+})\) and \(c_{j}\in C^{1}([y_{0},y_{1}), [y_{0},y_{1}))\) are nondecreasing with \(b_{j}(x)\leq x\) on \([x_{0},x_{1})\), \(c_{j}(y)\le y\) on \([y_{0},y_{1})\) and \(c_{j}(y_{0})=y_{0}\) for all \(j=1,\ldots,m\);
 
(C2)
\(\psi\in C(\Xi,\mathbb {R}_{+})\), \(g_{j}\in C(\Delta\times\mathbb {R}^{2}_{+},\mathbb {R}_{+})\) are nondecreasing functions in x and y for all \(j=1,\ldots,m\);
 
(C3)
\(h_{j}, \bar{h}_{j}\in C(\mathbb {R}_{+},\mathbb{R}_{+})\) (\(j=1,\ldots,m\)) are all nondecreasing with \(h_{j}(t)>0\), \(\bar{h}_{j}(t)>0\) for \(t>0\), and \(h_{j}\bar{h}_{j}\propto h_{j+1}\bar{h}_{j+1}\) (\(j=1,\ldots,m-1\));
 
(C4)
\(b\in C(\Delta, \mathbb{R}_{+})\), \(b_{x}, b_{y}\in(\Delta, \mathbb{R})\), and \(\max_{s\in[b_{*}(x_{0})-h,x_{0}]}\psi(s,t)\le b(x_{0},t)\) for all \(t\in [y_{0},y_{1})\).
 
If \(u\in C([b_{*}(x_{0})-h,x_{1})\times[y_{0},y_{1}),\mathbb {R}_{+})\) satisfies the integral inequality
$$\begin{aligned}& u(x,y)\leq b(x,y)+\sum_{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} g_{j}(x,y,s,t) \\& \hphantom{u(x,y)\leq{}}{}\times h_{j}\bigl(u(s,t)\bigr)\tilde{{h}}_{j} \Bigl(\max_{\tilde{\eta }\in[s-h, s]}u(\tilde{\eta},t) \Bigr)\,dt\,ds, \quad (x,y) \in\Delta, \\& u(x,y)\leq \psi (x,y), \quad (x,y)\in\Xi, \end{aligned}$$
(2.2)
then
$$ u(x,y)\leq H_{m}^{-1} \biggl(H_{m} \bigl(\eta_{m}(x,y)\bigr)+ \int _{b_{m}(x_{0})}^{b_{m}(x)} \int_{c_{m}(y_{0})}^{c_{m}(y)} g_{m}(x,y,s,t)\,dt\,ds \biggr) $$
(2.3)
for all \((x,y)\in[x_{0}, X_{1}^{*}]\times[y_{0},Y_{1}^{*}]\), where \(H_{j}^{-1}\) is the inverse of the function
$$ H_{j}(t):= \int_{t_{j}}^{t}\frac{ds}{h_{j}(s)\bar{h}_{j}(s)}, \quad t\ge t_{j}>0, j=1,\ldots,m, $$
(2.4)
\(t_{j}\) is a given constant, and \(\eta_{j}\) is defined by
$$ \begin{aligned} &\eta_{1}(x,y):=b(x_{0},y_{0})+ \int_{x_{0}}^{x} \bigl\vert b_{x}(s,y_{0}) \bigr\vert \,ds+ \int_{y_{0}}^{y} \bigl\vert b_{x}(x,t) \bigr\vert \, dt, \\ &\eta_{j+1}(x,y):=H_{j}^{-1} \biggl(H_{j}\bigl(\eta_{j}(x,y)\bigr)+ \int_{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}g_{j}(x,y,s,t)dt \,ds \biggr) \end{aligned} $$
(2.5)
for \(j=1,\ldots,m-1\), and \(x_{0}\le X_{1}^{*}< x_{1}\), \(y_{0}\le Y_{1}^{*}< y_{1}\) are chosen such that
$$ H_{j}\bigl(\eta_{j}\bigl(X^{*}_{1},Y^{*}_{1} \bigr)\bigr)+ \int_{a_{j}(x_{0})}^{a_{j}(X^{*}_{1})} \int_{b_{j}(y_{0})}^{b_{j}(Y^{*}_{1})}g_{j}\bigl(X^{*}_{1},Y^{*}_{1},s,t \bigr)\, dt \,ds\le \int _{u_{j}}^{\infty}\frac{ds}{{h_{j}(s)}\tilde{h}(s)} $$
(2.6)
for \(j=1,\ldots,m\).
Proof
Let b be positive on Δ. It means that \(\eta_{1}(x,y)\) is positive on Δ. Under such a circumstance, \(\eta_{1}\) is nondecreasing on Δ and \(\eta_{1}(x,y)>0\),
$$ \eta_{1}(x,y)\ge b(x_{0},y_{0})+ \int_{x_{0}}^{x} b_{x}(s,y_{0}) \,ds+ \int _{y_{0}}^{y}b_{y}(x,t)\, dt=b(x,y). $$
(2.7)
From (2.2) and (2.7), we have
$$ \begin{aligned} &u(x,y)\leq \eta_{1}(x,y)+ \sum_{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} g_{j}(x,y,s,t) \\ &\hphantom{u(x,y)\leq{}}{}\cdot h_{j}\bigl(u(s,t)\bigr)\bar{h}_{j} \Bigl(\max_{\tilde{\eta}\in[s-h, s]}u(\tilde{\eta},t) \Bigr)\,dt\,ds,\quad (x,y) \in\Delta, \\ &u(x,y)\leq \psi (x,y), \quad (x,y)\in\Xi. \end{aligned} $$
(2.8)
Concerning (2.8), we consider the auxiliary inequality
$$ \begin{aligned} &u(x,y) \leq \eta_{1}(x,y)+ \sum_{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} g_{j}(\xi,\eta,s,t) \\ &\hphantom{u(x,y) \leq{}}{} \times h_{j}\bigl(u(s,t)\bigr) \bar{h}_{j} \Bigl(\max_{\tilde{\eta}\in[s-h, s]}u(\tilde{\eta},t) \Bigr)\,dt\,ds, \quad (x,y)\in[x_{0},\xi]\times[y_{0}, \eta], \\ &u(x,y) \leq \psi(x,y), \quad (x,y)\in \bigl[b_{*}(x_{0})-h, x_{0}\bigr]\times[y_{0},\eta], \end{aligned} $$
(2.9)
where \(x_{0}\leq\xi\le X^{*}_{1}\) and \(y_{0}\leq\eta\le Y^{*}_{1}\) are chosen arbitrarily. Having (2.9) we claim
$$ u(x,y)\leq H_{m}^{-1} \biggl(H_{m} \bigl(\eta_{m}(\xi,\eta,x,y)\bigr)+ \int _{b_{m}(x_{0})}^{b_{m}(x)} \int_{c_{m}(y_{0})}^{c_{m}(y)} g_{m}(\xi,\eta,s,t)\,dt \,ds \biggr) $$
(2.10)
for \(x_{0}\le x \le\min\{\xi, X^{*}_{2}\}\), \(y_{0}\le y \le\min\{\eta, Y^{*}_{2}\}\), where \(\tilde{\eta}_{j}(\xi,\eta,x,y)\) is defined inductively by \(\tilde {\eta}_{1}(\xi,\eta,x,y):=\eta_{1}(x,y)\) and
$$ \tilde{\eta}_{j}(\xi,\eta,x,y):= H_{j-1}^{-1} \biggl(H_{j-1}\bigl(\tilde{\eta }_{j-1}(\xi,\eta,x,y)\bigr)+ \int_{b_{j-1}(x_{0})}^{b_{j-1}(x)} \int _{c_{j-1}(y_{0})}^{c_{j-1}(y)} g_{j-1}(\xi,\eta,s,t)\,dt \,ds\biggr) $$
for \(j=2,\ldots, m\), and \(X^{*}_{2}\in[x_{0},x_{1})\), \(Y^{*}_{2}\in[y_{0},y_{1})\) are chosen such that
$$\begin{aligned} &H_{j}\bigl(\tilde{\eta}_{j}\bigl(\xi, \eta,X^{*}_{2},Y^{*}_{2}\bigr)\bigr)+ \int _{b_{j}(x_{0})}^{b_{j}(X^{*}_{2})} \int_{c_{j}(y_{0})}^{c_{j}(Y^{*}_{2})} g_{j}(\xi,\eta,s,t) \\ &\quad \le \int_{t_{j}}^{\infty}\frac{ds}{{h_{j}(s)}\bar{h}_{j}(s)} \end{aligned}$$
(2.11)
for \(j=1,2,\ldots,m\). Note that \(X^{*}_{2}\ge X^{*}_{1}\) and \(Y^{*}_{2}\ge Y^{*}_{1}\). In fact, both \(\tilde{\eta}_{j}(\xi,\eta,x,y)\) and \(g_{j}(\xi,\eta,x,y)\) are nondecreasing in ξ and η. Thus \(X^{*}_{2}\), \(Y^{*}_{2}\) satisfying (2.11) will get smaller as ξ, η are chosen larger.
Since \(\max_{s\in[b^{*}(x_{0})-h,x_{0}]}\psi(s,t)\le b(x_{0},t)\) and \(b(x_{0},t)\le \eta_{1}(x_{0},t)\le\eta_{1}(x,t)\), we obtain
$$ \max_{s\in[b_{*}(x_{0})-h,x_{0}]}\psi(s,t)\leq\eta _{1}(x,t), \quad (x,t)\in[x_{0},x_{1}) \times[y_{0},y_{1}). $$
(2.12)
First, (2.10) holds for \(m=1\). In fact,(2.9) for \(m=1\) is written as
$$ u(x,y)\leq z_{1}(x,y),\quad (x,y)\in \bigl[b_{*}(x_{0})-h, \xi\bigr]\times[y_{0}, \eta], $$
(2.13)
where
$$ z_{1}(x,y)= \textstyle\begin{cases} \eta_{1}(x,y)+ \int_{b_{1}(x_{0})}^{b_{1}(x)}\int_{c_{1}(y_{0})}^{c_{1}(y)} g_{1}(\xi,\eta,s,t) h_{1}(u(s,t)) \\ \quad {}\times\bar{h}_{1} (\max_{\tilde{\eta}\in[s-h, s]}u(\tilde{\eta},t) )\,dt\,ds, \quad (x,y)\in[x_{0},\xi]\times[y_{0},\eta] \\ \eta_{1}(x_{0},y), \quad (x,y)\in[b_{*}(x_{0})-h, x_{0}]\times[y_{0},\eta], \end{cases} $$
(2.14)
\(z_{1}(x,y)\) is a nondecreasing function on \([x_{0}, \xi]\times[y_{0},\eta]\). Then
$$\begin{aligned} \frac{\partial}{\partial x}z_{1}(x,y) =&\frac{\partial }{\partial x} \eta_{1}(x,y)+ \int_{c_{1}(y_{0})}^{c_{1}(y)} g_{1}\bigl(\xi, \eta,b_{1}(x),t\bigr) h_{1}\bigl(u\bigl(b_{1}(x),t \bigr)\bigr) \\ &{}\times\bar{h}_{1} \Bigl(\max_{\tilde{\eta }\in[b_{1}(x)-h, b_{1}(x)]}u(\tilde{ \eta},t) \Bigr)\, dtb'(x) \end{aligned}$$
for all \((x,y)\in[x_{0},\xi]\times[y_{0},\eta] \). We have \(0< h_{1}(u(s,t))\bar{h}_{1}(u(s,t))\le h_{1}(z_{1}(s,t))\bar{h}_{1}(z_{1}(s,t)) \le h_{1}(z_{1}(x,y))\bar{h}_{1}(z_{1}(x,y)) \) by (C3) and (2.13) \(s\le b_{1}(x)\le x\), \(t\le c_{1}(y)\le y\) and both \(z_{1}\) and \(h_{1}\tilde{h}_{1}\) are nondecreasing. Thus
$$\begin{aligned}& \frac{\frac{\partial}{\partial x}z_{1}(x,y)}{h_{1}(z_{1}(x,y))\bar{h}_{1}(z_{1}(x,y))} \\& \quad \le \frac{\frac{\partial}{\partial x}\eta _{1}(x,y)}{h_{1}(\eta_{1}(x,y))\bar{h}_{1}(\eta_{1}(x,y))}+\frac {b'(x)}{h_{1}(z_{1}(x,y))\bar{h}_{1}(z_{1}(x,y))} \\& \qquad {}\times \int_{c_{1}(y_{0})}^{c_{1}(y)} g_{1}\bigl(\xi, \eta,b_{1}(x),t\bigr) h_{1}\bigl(u\bigl(b_{1}(x),t \bigr)\bigr)\bar{h}_{1} \Bigl(\max_{\tilde{\eta}\in [b_{1}(x)-h, b_{1}(x)]}u(\tilde{ \eta},t) \Bigr)\,dt \\& \quad \le \frac{\frac{\partial}{\partial x}\eta_{1}(x,y)}{h_{1}(\eta_{1}(x,y))\bar {h}_{1}(\eta_{1}(x,y))}+b'(x) \int_{c_{1}(y_{0})}^{c_{1}(y)} g_{1}\bigl(\xi, \eta,b_{1}(x),t\bigr)\,dt. \end{aligned}$$
(2.15)
Integrating inequality (2.15) from \(x_{0}\) to x, from (2.4) we get
$$\begin{aligned} H_{1}\bigl(Z_{1}(x,y)\bigr) \le& H_{1}\bigl( \eta_{1}(x,y)\bigr)+ \int _{x_{0}}^{x}b'(s) \int_{c_{1}(y_{0})}^{c_{1}(y)} g_{1}\bigl(\xi, \eta,b_{1}(s),t\bigr)\,dt\,ds \\ =& H_{1}\bigl(\eta_{1}(x,y)\bigr)+ \int_{b_{1}(x_{0})}^{b_{1}(x)} \int _{c_{1}(y_{0})}^{c_{1}(y)} g_{1}(\xi,\eta,s,t)\,dt \,ds \end{aligned}$$
(2.16)
for all \((x,y)\in[x_{0},\xi]\times[y_{0},\eta]\). From (2.14), (2.16), and the monotonicity of \(H^{-1}_{1}\), we have
$$ u(x,y))\le H^{-1}_{1}\biggl( H_{1}\bigl(\eta_{1}(x,y)\bigr)+ \int_{b_{1}(x_{0})}^{b_{1}(x)} \int _{c_{1}(y_{0})}^{c_{1}(y)} g_{1}(\xi,\eta,s,t)\,dt \,ds\biggr) $$
(2.17)
for \(x_{0}\le x\le\xi< X^{*}_{2}\), \(Y_{0}\le y \le\eta< Y^{*}_{2}\), implying that (2.7) is true for \(m=1\).
Assume that (2.10) holds for \(m=k\). Consider
$$\begin{aligned}& u(x,y) \leq \eta_{1}(x,y)+\sum_{j=1}^{k+1} \int_{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} g_{j}(\xi,\eta,s,t) \\& \hphantom{u(x,y) \leq{}}{}\times h_{j}\bigl(u(s,t)\bigr)\bar{h}_{j} \Bigl(\max_{\tilde{\eta}\in[s-h, s]}u(\tilde{\eta},t)\Bigr)\,dt\,ds,\quad (x,y) \in[x_{0},\xi]\times[y_{0},\eta] \\& u(x,y) \leq \psi (x,y), \quad (x,y)\in\bigl[b_{*}(x_{0})-h, x_{0}\bigr]\times[y_{0},\eta] . \end{aligned}$$
(2.18)
Let
$$ z_{2}(x,y)= \textstyle\begin{cases} \eta_{1}(x,y) +\sum_{j=1}^{k+1} \int_{b_{j}(x_{0})}^{b_{j}(x)}\int _{c_{j}(y_{0})}^{c_{j}(y)} g_{j}(\xi,\eta, s,t)h_{j}(u(s,t)) \\ \quad {}\cdot\bar{h}_{j}(\max_{\tilde{\eta}\in[s-h, s]}u(\tilde {\eta},t))\,dt\,ds,\quad (x,y)\in[x_{0},\xi]\times[y_{0},\eta], \\ \eta_{1}(x_{0},y),\quad (x,y)\in [b_{*}(x_{0})-h, x_{0}]\times[y_{0},\eta]. \end{cases} $$
(2.19)
Then \(z_{2}\) is a nondecreasing function on \([x_{0}, x]\times[y_{0},\eta]\). By (2.19) and the definition of \(z_{2}\), it follows that
$$ u(x,y)\leq z_{2}(x,y),\quad (x,y)\in \bigl[b_{*}(x_{0})-h, \xi\bigr]\times [y_{0}, \eta]. $$
(2.20)
Since \(h_{j}\bar{h}_{j}\) is nondecreasing and \(z_{2}(x,y)>0\), \(b'_{j}(x)\ge 0\), and \(b_{j}(x)\le x\), we have
$$\begin{aligned}& \frac{\frac{\partial}{\partial x}z_{2}(x,y)}{h_{1}(z_{2}(x,y))\bar {h}_{1}(z_{2}(x,y))} \\& \quad \le\frac{\frac{\partial}{\partial x}\eta _{1}(x,y)}{h_{1}(z_{2}(x,y))\bar{h}_{1}(z_{2}(x,y))}+\sum_{j=1}^{k+1} \frac{b'_{j}(x)}{ h_{1}(z_{2}(x,y))\bar{h}_{1}(z_{2}(x,y))} \\& \qquad {}\cdot \int_{c_{j}(y_{0})}^{c_{j}(y)}g_{j}\bigl(X,Y,b_{j}(x),t \bigr)h_{j}\bigl(u\bigl(b_{j}(x),t\bigr)\bigr) h_{j}\Bigl(\max_{\xi\in[b_{j}(x)-h,b_{j}(x)]}u(\tilde{\eta},t)\Bigr)\,dt \\& \quad \le\frac{\frac{\partial}{\partial x}\eta_{1}(x,y)}{h_{1}(\eta _{1}(x,y))\bar{h}_{1}(\eta_{1}(x,y))}+\sum_{j=1}^{k+1} \frac{b'_{j}(x)}{ h_{j}(z_{2}(x,y))\bar{h}_{j}(z_{2}(x,y))} \\& \qquad {}\cdot \int_{c_{j}(y_{0})}^{c_{j}(y)}g_{j}\bigl(\xi, \eta,b_{j}(x),t\bigr)h_{j}\bigl(z_{2} \bigl(b_{j}(x),t\bigr)\bigr) \bar{h}_{j}\Bigl(\max _{\tilde{\eta}\in [b_{j}(x)-h,b_{j}(x)]}z_{2}(\tilde{\eta},t)\Bigr)\,dt \\& \quad \le\frac{\frac{\partial}{\partial x}\eta_{1}(x,y)}{h_{1}(\eta _{1}(x,y))\bar{h}_{1}(\eta_{1}(x,y))} +b'_{1}(x) \int_{c_{1}(y_{0})}^{c_{1}(y)}g_{1}\bigl(\xi, \eta,b_{1}(x),t\bigr)\,dt+\sum_{j=1}^{k}b'_{j+1}(x) \\& \qquad {} \cdot \int_{c_{j}(y_{0})}^{c_{j}(y)}g_{j+1}\bigl(\xi,\eta ,b_{j+1}(x),t\bigr)\tilde{h}_{j+1}\bigl(z_{2} \bigl(b_{j+1}(x),t\bigr)\bigr) \hat{h}_{j+1}\Bigl(\max _{\tilde{\eta}\in [b_{j}(x)-h,b_{j}(x)]}z_{2}(\tilde{\eta},t)\Bigr)\,dt \end{aligned}$$
for all \((x,y)\in[x_{0},X_{1}^{*}]\times[y_{0},Y_{1}^{*}]\), where \(\tilde {h}_{j+1}(u):=h_{j+1}(u)/h_{1}(u)\), \(\hat{h}_{j+1}(u):=\bar{h}_{j+1}(u)/\bar{h}_{1}(u)\), \(j=1,\ldots,k\). Integrating the above inequality from \(x_{0}\) to x, we can obtain
$$\begin{aligned} H_{1}\bigl(z_{2}(x,y)\bigr) \le& H_{1}\bigl( \eta_{1}(x,y)\bigr)+ \int_{b_{1}(x_{0})}^{b_{1}(x)} \int _{c_{1}(y_{0})}^{c_{1}(y)}g_{1}(\xi,\eta,s,t)\,dt \,ds \\ &{} +\sum_{j=1}^{k} \int_{b_{j+1}(x_{0})}^{b_{j+1}(x)} \int _{c_{j+1}(y_{0})}^{c_{j+1}(y)}g_{j+1}(\xi,\eta,s,t) \tilde{h}_{j+1}\bigl(z_{2}(s,t)\bigr) \\ &{} \cdot\hat{h}_{j+1} \Bigl(\max_{\tilde{\eta}\in [s-h,s]}z_{2}( \tilde{\eta},t) \Bigr)\,dt\,ds \end{aligned}$$
(2.21)
for all \((x,y)\in[x_{0},X]\times[y_{0},Y]\). Let
$$ \begin{aligned} &\eta(x,y):=H_{1}\bigl(z_{2}(x,y)\bigr), \\ &\varrho_{1}(x,y):=H_{1}\bigl(\eta_{1}(x,y) \bigr)+ \int_{b_{1}(x_{0})}^{b_{1}(x)} \int _{c_{1}(y_{0})}^{c_{1}(y)}g_{1}(\xi,\eta,s,t)\,dt \,ds. \end{aligned} $$
(2.22)
Then inequality (2.21) can be rewritten as
$$\begin{aligned}& \eta(x,y) \le \varrho_{1}(x,y)+\sum_{j=1}^{k} \int _{b_{j+1}(x_{0})}^{b_{j+1}(x)} \int _{c_{j+1}(y_{0})}^{c_{j+1}(y)}g_{j+1}(\xi,\eta,s,t)\tilde {h}_{j+1}\bigl(H_{1}^{-1}\bigl(z_{2}(s,t) \bigr)\bigr) \\& \hphantom{\eta(x,y) \le{}}{} \cdot\hat{h}_{j+1}\Bigl(\max_{\tilde{\eta}\in [s-h,s]}H_{1}^{-1} \bigl(z_{2}(\tilde{\eta},t)\bigr)\Bigr)\,dt\,ds, \quad (x,y)\in [x_{0},X]\times[y_{0},Y], \\& \eta(x,y) = H_{1}\bigl(\eta_{(}x_{0},y)\bigr)\le \varrho_{1}(x_{0}, y), \quad (x,y)\in\bigl[b_{*}(x_{0})-h, x_{0}\bigr]\times[y_{0},Y], \end{aligned}$$
(2.23)
the same form as (2.9) for \(m=k\). By (C3), each \((\bar {h}_{j+1}\circ H_{1}^{-1})(\tilde{h}_{j+1}\circ H_{1}^{-1})\) (\(j=1,\ldots,k\)) is a nonnegative continuous and increasing function on \(\mathbb{R}_{+}\) and positive on \((0,+\infty)\). Moreover, \((\tilde{h}_{j}\circ H_{1}^{-1})\propto(\hat{h}_{j+1}\circ H_{1}^{-1})\) for all \(j=2,\ldots, k\). By the inductive assumption, we have
$$ \eta(x,y)\le \bar{H}_{k+1}^{-1}\biggl( \bar{H}_{k+1}\bigl(\varrho _{k}(x,y)\bigr)+ \int_{b_{k+1}(x_{0})}^{b_{k+1}(x)} \int_{c_{k+1}(y_{0})}^{c_{k+1}(y)} g_{k+1}(\xi,\eta,s,t)\,dt \,ds\biggr) $$
(2.24)
for \(x_{0}\le x\le\min\{\xi, X_{3}^{*}\}\), \(y_{0}\le y\le\min\{\eta, Y_{3}^{*}\}\), where
$$ \bar{H}_{j+1}(t):= \int_{\tilde{t}_{j+1}}^{t}\frac{ds}{\tilde {h}_{j+1}(H_{1}^{-1}(s))\hat{h}_{j+1}(H_{1}^{-1}(s))},\quad t>0, $$
(2.25)
\(\tilde{t}_{j+1}=H_{1}(t_{j+1})\), \(\bar{H}^{-1}_{j+1}\) is the inverse of \(\bar{H}_{j+1}\), \(j=1,\ldots, k\),
$$ \varrho_{j+1}(x,y):=\bar{H}^{-1}_{j+1} \biggl(\bar{H}_{j+1}\bigl(\varrho _{j}(x,y)\bigr)+ \int_{b_{j+1}(x_{0})}^{b_{j+1}(x)} \int_{c_{j+1}(y_{0})}^{c_{j+1}(y)}g_{j+1}(\xi,\eta,s,t)\,dt \,ds\biggr), $$
(2.26)
\(j=1,\ldots,k-1\), and \(X^{*}_{3}\), \(Y^{*}_{3}\) are chosen such that
$$\begin{aligned}& \bar{H}_{j+1}\bigl(\varrho_{j}\bigl(X^{*}_{3},Y^{*}_{3} \bigr)\bigr)+ \int _{b_{j+1}(x_{0})}^{b_{j+1}(X^{*}_{3})} \int_{c_{j+1}(y_{0})}^{c_{j+1}(Y^{*}_{3})}g_{j+1}(\xi,\eta,t,s)\,dt \,ds \\& \quad \le \int_{\tilde{t}_{j+1}}^{H_{1}(\infty)}\frac{ds}{\tilde {h}_{j+1}(H^{-1}_{1}(s))\hat{h}_{j+1}(H_{1}^{-1}(s))},\quad j=1, \ldots,k. \end{aligned}$$
(2.27)
Note that
$$\begin{aligned} \bar{H}_{j}(t) =& \int_{\tilde{t}_{j}}^{t}\frac {ds}{\tilde{h}_{j}(H_{1}^{-1}(s))\hat{h_{j}}(H_{1}^{-1}(s))} \\ =& \int_{H_{1}(t_{j})}^{t}\frac{h_{1}(H^{-1}_{1}(s))\bar {h}_{1}(H^{-1}_{1}(s))\,ds}{h_{j}(H_{1}^{-1}(s))\bar{h}_{j}(H_{1}^{-1}(s))} \\ =& \int_{H_{1}(t_{j})}^{t}\frac{h_{1}(H^{-1}_{1}(s))\bar {h}_{1}(H^{-1}_{1}(s))\,ds}{h_{j}(H_{1}^{-1}(s))\bar{h}_{j}(H_{1}^{-1}(s))} \\ =& \int_{t_{j}}^{H^{-1}_{1}(t)}\frac{ds}{h_{j}(s)\bar{h}_{j}(s)}=H_{j}\bigl(H^{-1}_{1}(t)\bigr), \quad j=2, \ldots,k+1. \end{aligned}$$
(2.28)
Then, from (2.20), (2.24), and (2.28), we get
$$\begin{aligned} u(x,y) \le& H^{-1}_{1}\bigl(\eta(x,y)\bigr) \\ \le& H_{k+1}^{-1}\biggl(H_{k+1} \bigl(H^{-1}_{1}\bigl(\varrho_{k}(x,y)\bigr) \bigr) + \int_{b_{k+1}(x_{0})}^{b_{k+1}(x)} \int_{c_{k+1}(y_{0})}^{c_{k+1}(y)} g_{k+1}(\xi,\eta,s,t)\,dt \,ds\biggr) \end{aligned}$$
(2.29)
for \(x_{0}\le x\le\min\{X, X_{3}^{*}\}\), \(y_{0}\le y\le\min\{Y, Y_{3}^{*}\} \). Let \(\tilde{\varrho}_{j}(x,y)=H^{-1}_{1}(\varrho_{j}(x,y))\). Then
$$\begin{aligned} \tilde{\varrho}_{1}(x,y) =&H_{1}\bigl( \varrho_{1}(x,y)\bigr) \\ =&H^{-1}_{1}\biggl(H_{1}\bigl( \eta_{1}(x,y)\bigr)+ \int_{b_{1}(x_{0})}^{b_{1}(x)} \int _{c_{1}(y_{0})}^{c_{1}(y)}g_{1}(\xi,\eta,s,t)\,dt \,ds\biggr) \\ =&H^{-1}_{1}\biggl(H_{1}\bigl(\tilde{ \eta}_{1}(\xi,\eta,x,y)\bigr)+ \int _{b_{1}(x_{0})}^{b_{1}(x)} \int_{c_{1}(y_{0})}^{c_{1}(y)}g_{1}(\xi,\eta,s,t)\,dt \,ds\biggr) \\ =&\tilde{\eta}_{2}(X,Y,x,y). \end{aligned}$$
(2.30)
Moreover, with the assumption that \(\tilde{\varrho}_{k}(x,y)=\tilde {\eta}_{k+1}(\xi,\eta,x,y)\), we get
$$\begin{aligned} \tilde{\varrho}_{k+1}(x,y) =&H^{-1}_{1}\biggl( \bar {H}^{-1}_{k+1}\biggl(\bar{H}_{k+1}\bigl( \varrho_{k}(x,y)\bigr)+ \int_{b_{k+1}(x_{0})}^{b_{k+1}(x)} \int_{c_{k+1}(y_{0})}^{c_{k+1}(y)}g_{k+1}(\xi,\eta,t,s)\,dt\,ds \biggr)\biggr) \\ =&H^{-1}_{k+1}\biggl(H_{k+1}\bigl(H^{-1}_{1} \bigl(\varrho_{k}(x,y)\bigr)\bigr)+ \int _{b_{k+1}(x_{0})}^{b_{k+1}(x)} \int_{c_{k+1}(y_{0})}^{c_{k+1}(y)}g_{k+1}(\xi,\eta,t,s)\,dt\,ds \biggr) \\ =&H^{-1}_{k+1}\biggl(H_{k+1}\bigl(\tilde{ \varrho}_{k}(x,y)\bigr)+ \int _{b_{k+1}(x_{0})}^{b_{k+1}(x)} \int_{c_{k+1}(y_{0})}^{c_{k+1}(y)}g_{k+1}(\xi,\eta,t,s)\,dt\,ds \biggr) \\ =&H^{-1}_{k+1}\biggl(H_{k+1}\bigl(\tilde{ \eta}_{k+1}(\xi,\eta ,x,y)\bigr)+ \int_{b_{k+1}(x_{0})}^{b_{k+1}(x)} \int_{c_{k+1}(y_{0})}^{c_{k+1}(y)}g_{k+1}(\xi,\eta,t,s)\,dt\,ds \biggr) \\ =&\tilde{\eta}_{k+2}(\xi,\eta,x,y). \end{aligned}$$
(2.31)
This proves that
$$ \tilde{\varrho}_{j}(x,y)=\tilde{\eta}_{j+1}( \xi,\eta, x,y),\quad j=1,\ldots, k . $$
(2.32)
Therefore, (2.27) becomes
$$\begin{aligned}& H_{j+1}\bigl(\tilde{\eta}_{j+1}\bigl(\xi, \eta,X^{*}_{3},Y^{*}_{3}\bigr) \bigr)+ \int _{b_{j+1}(x_{0})}^{b_{j+1}(X^{*}_{3})} \int_{c_{j+1}(y_{0})}^{c_{j+1}(Y^{*}_{3})}g_{j+1}(\xi,\eta,t,s)\,dt \,ds \\& \quad \le \int_{\tilde{t}_{j+1}}^{H_{1}(\infty)}\frac{ds}{\tilde {h}_{j+1}(H^{-1}_{1}(s))\hat{h}_{j+1}(H_{1}^{-1}(s))} \\& \quad = \int_{t_{j+1}}^{\infty}\frac{ds}{h_{j+1}(s)\bar{h}_{j+1}(s)},\quad j=1, \ldots,k, \end{aligned}$$
(2.33)
which implies that \(X^{*}_{2}=X^{*}_{3}\), \(\xi\le X^{*}_{3}\), \(Y^{*}_{2}=Y^{*}_{3}\), \(\eta\le Y^{*}_{3}\). From (2.29) we obtain
$$ u(x,y)\le H_{k+1}^{-1}\biggl(H_{k+1}\bigl(\tilde{ \eta}_{k+1}(\xi,\eta,x,y)\bigr)+ \int _{b_{k+1}(x_{0})}^{b_{k+1}(x)} \int_{c_{k+1}(y_{0})}^{c_{k+1}(y)} g_{k+1}(\xi,\eta,s,t)\,dt \,ds\biggr) $$
for \(x_{0}\le x\le \min\{X,X_{2}^{*}\}\), \(y_{0}\le y\le \min\{Y,Y_{2}^{*}\}\). This proves (2.10) by induction.
Taking \(x=\xi,\eta\), \(y=\xi,\eta\) in (2.10), we have
$$\begin{aligned} u(\xi,\eta) \leq&H_{m}^{-1} \biggl(H_{m}\bigl( \tilde{\eta}_{m}(\xi,\eta ,\xi,\eta)\bigr)+ \int_{b_{m}(x_{0})}^{b_{m}(X)} \int _{c_{m}(y_{0})}^{c_{m}(\eta)} g_{m}(\xi,\eta,s,t)\,dt \,ds \biggr) \\ = &H_{m}^{-1} \biggl(H_{m}\bigl( \eta_{m}(\xi,\eta)\bigr)+ \int _{b_{m}(x_{0})}^{b_{m}(\xi)} \int_{c_{m}(y_{0})}^{c_{m}(\eta)} g_{m}(\xi,\eta,s,t)\,dt \,ds \biggr) \end{aligned}$$
(2.34)
for \(x_{0}\le\xi\le X^{*}_{1}\), \(y_{0}\le\eta\le Y^{*}_{1}\), since \(x^{*}_{2}\ge X^{*}_{1}\), \(Y^{*}_{2}\ge Y^{*}_{1}\) and \(\tilde{\eta}_{m}(\xi,\eta,\xi,\eta)= \eta_{m}(\xi,\eta)\). Since ξ, η are arbitrary, replacing ξ and η with x and y, respectively, we have
$$ u(x,y) \le H_{m}^{-1} \biggl(H_{m}\bigl( \eta_{m}(x,y)\bigr)+ \int _{b_{m}(x_{0})}^{b_{m}(x)} \int_{c_{m}(y_{0})}^{c_{m}(y)} g_{m}(x,y,s,t)\,dt\,ds \biggr) $$
(2.35)
for all \((x,y)\in[x_{0}, X^{*}_{1}]\times[y_{0},Y^{*}_{1}]\).
Let \(b(x,y)=0\) for some \((x,y)\in\Delta\). Let \(\eta_{1,\epsilon }(x,y):=r_{1}(x,y)+\epsilon\) for any \(\epsilon>0\). Then \(\eta_{1,\epsilon}(x,y)>0\). Using the same arguments as above, where \(\eta_{1}(x,y)\) is replaced with \(\eta_{1,\epsilon}(x,y)\), we get
$$ u(x,y)\leq H_{m}^{-1}\biggl(H_{m}\bigl( \eta_{n,\epsilon}(x,y)\bigr)+ \int _{b_{m}(x_{0})}^{b_{m}(x)} \int_{c_{m}(y_{0})}^{c_{m}(y)} g_{m}(x,y,s,t)\,dt\,ds \biggr) $$
for \(x_{0}\le x\le X^{*}_{1}\), \(y_{0}\le Y^{*}_{1}\). Then consider the continuity of \(\eta_{i,\epsilon}\) in ϵ and the continuity of \(H_{j}\) and \(H_{j}^{-1}\) for \(j=1,\ldots, m\), and let \(\epsilon\rightarrow0^{+}\). Then we obtain (2.7). This completes the proof. □
Theorem 2.1
Suppose that (A1)(A4) hold. \(\max_{s\in [b_{*}(x_{0})-h,x_{0}]}\psi(s,y)\leq\varphi^{-1}( (1+m)^{1-1/q}a(x_{0}, y))\) for \(y\in[y_{0},y_{1})\) and \(u\in C([b_{*}(x_{0})-h,x_{1})\times[y_{0},y_{1}),\mathbb {R}_{+})\) are satisfied (1.4). Then, for all \((x,y)\in[x_{0}, X_{1})\times[y_{0},Y_{1})\), we have
$$ u(x,y)\leq\varphi^{-1}\biggl(\biggl(W_{m}^{-1} \bigl(W_{m}\bigl(r_{m}(x,y)\bigr)\bigr)+ \int_{\alpha _{m}(x_{0})}^{\alpha_{m}(x)} \int_{\beta_{m}(y_{0})}^{\beta_{m}(y)} \tilde{f}_{m}(x,y,s,t)\,dt \,ds\biggr)^{1/q}\biggr), $$
(2.36)
where \(W_{j}^{-1}\)is the inverse of the function
$$ W_{j}(t):= \int_{t_{j}}^{t}\frac{ds}{\tilde{\omega}^{q}_{j}(\varphi ^{-1}(s^{1/q}))}, \quad t\ge t_{j}>0, j=1,\ldots,m. $$
(2.37)
In (2.36) and (2.37), \(t_{j}\) is a given constant, \(\frac {1}{p}+\frac{1}{q}=1\), \(\tilde{\omega}_{j}\) (\(j=1,2,\ldots,m\)) are defined by (2.1),
$$\begin{aligned}& r_{1}(x,y) := (1+m)^{q-1}\Bigl(\max_{(\tau,\xi)\in [x_{0}, x]\times[y_{0},y] } \bigl\{ a(\tau,\xi)\bigr\} \Bigr)^{q}, \\& r_{j}(x,y): = W_{j-1}^{-1} \biggl[W_{j-1} \bigl(r_{j-1}(x,y)\bigr)+ \int_{b_{i-1}(x_{0})}^{b_{i-1}(x)} \int _{c_{i-1}(y_{0})}^{c_{i-1}(y)} \tilde{f}_{i-1}(x,y,s,t) \,dt\,ds \biggr], \\& \quad j=2,\ldots, m, \end{aligned}$$
(2.38)
$$\begin{aligned}& \begin{aligned}[b] &\tilde{f}_{j}(x,y,s,t):=(1+m)^{q-1} \bigl({M_{j}} x^{\theta_{j}}{\bar{M}_{j}} y^{\bar{\theta}_{j}}\bigr)^{q/p}\Bigl(\max_{(\iota,\xi)\in[x_{0}, x ]\times[y_{0},y]}f_{j}( \iota,\xi,s,t)\Bigr)^{q}, \\ &\quad (x,y)\in [x_{0},x_{1})\times[y_{0},y_{1}), \end{aligned} \end{aligned}$$
(2.39)
$$\begin{aligned}& \begin{aligned} &M_{j}=\alpha_{j}^{-1}B \biggl(\frac{p(\gamma_{j}-1)+1}{\alpha_{j}}, p(\beta_{j}-1)+1\biggr), \\ &\bar{M}_{j}=\bar{\alpha}_{j}^{-1}B\biggl( \frac{p(\bar{\gamma }_{j}-1)+1}{\bar{\alpha}_{j}}, p(\beta_{j}-1)+1\biggr), \\ &\theta_{j}=p\bigl(\alpha_{j}(\beta_{j}-1)+ \gamma_{j}-1\bigr)+1, \\ &\bar{\theta}_{j}=p\bigl(\bar{\alpha}_{j}(\bar{ \beta}_{j}-1)+\bar{\gamma }_{j}-1\bigr)+1, \quad j=1, \ldots,m, \end{aligned} \end{aligned}$$
(2.40)
\(X_{1}\in[x_{0}, x_{1})\), \(Y_{1}\in[y_{0}, y_{1})\) are chosen such that
$$ W_{j}\bigl(r_{j}(X_{1},Y_{1}) \bigr)+ \int_{b_{j}(x_{0})}^{b_{j}(X_{1})} \int _{c_{j}(y_{0})}^{c_{j}(Y_{1})} \tilde{f}_{j}(x,y,s,t) \,dt\,ds\le \int_{t_{j}}^{\infty}\frac{ds}{\tilde {\omega}^{q}_{j}(\varphi^{-1}(s^{1/q}))} $$
(2.41)
for \(j=1,\ldots,m\).
Proof
Above all, we monotonize functions \(f_{j}\), \(\omega_{j}\), \(\mu_{j}\), g, and a in (1.4). Let
$$ \hat{a}(x,y): = \max_{(\tau,\xi)\in[x_{0}, x]\times[y_{0},y] }\bigl\{ a(\tau,\xi) \bigr\} ,\quad (x,y)\in[x_{0},x_{1})\times[y_{0},y_{1}), $$
which is increasing in x and y. The sequence \(\{\tilde{\omega}_{j}\}\), defined by \(\omega_{j}(s)\) and \(\mu_{j}(s)\) in (2.1), consists of nonnegative and nondecreasing functions on \(\mathbb{R}_{+} \) and satisfies
$$ \omega_{j}(t)\le\hat{ {\omega}}_{j}(t),\qquad \mu_{j}(t)\le\hat{\mu}_{j}(t),\qquad \hat{\omega}_{j}(t) \hat{{\mu}}_{j}\bigl(\tilde{g}(t)\bigr)\le\tilde{\omega }_{j}(t), \quad j=1,\ldots,m. $$
(2.42)
Moreover, because the ratios \({\tilde{\omega}_{j+1}}/{\tilde{\omega }_{j}}\) (\(j=1,\ldots,m-1\)) are all nondecreasing, we have
$$ \tilde{\omega}_{j}\varpropto\tilde{\omega}_{j+1}, \quad j=1,2,\ldots,m-1. $$
(2.43)
Let
$$ \hat{f}_{j}(x,y,s,t) :=\max_{(\iota,\xi)\in[x_{0}, x ]\times[y_{0},y]}f_{j}( \iota ,\xi,s,t), $$
(2.44)
which are increasing in x and y and satisfy \(\tilde {f}_{j}(x,y,s,t)\geq f_{j}(x,y,s,t)\geq0\) for \(j=1,2,\ldots,m\). Since is nondecreasing, we obtain
$$ \max_{\tilde{\eta}\in[s-h,s]} g\bigl(u(\xi,y)\bigr)\le\max _{\tilde{\eta}\in[s-h,s]} \tilde{g}\bigl(u(\xi,y)\bigr) \le\tilde{g}\Bigl(\max _{\tilde{\eta}\in[s-h,s]} u(\xi,y)\Bigr) $$
(2.45)
for all \((s,y)\in[b_{*}(x_{0}), x_{1})\times[y_{0},y_{1})\). From (1.4), (2.42), (2.45), and the definition of \(\hat{f}_{j}\), we can obtain
$$ \begin{aligned} &\varphi\bigl(u(x,y)\bigr)\leq \hat{a}(x,y)+\sum_{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} \bigl(x^{\alpha_{j}}-s^{\alpha_{j}} \bigr)^{\beta_{j}-1}s^{\gamma_{j}-1}\bigl(y^{\bar {\alpha}_{j}}-t^{\bar{\alpha}_{j}} \bigr)^{\bar{\beta}_{j}-1} t^{\bar{\gamma}_{j}-1} \\ &\hphantom{\varphi(u(x,y))\leq{}}{}\times\hat{f}_{j}(x,y,s,t) \hat{ \omega}_{j}\bigl(u(s,t)\bigr)\hat{\mu}_{j}\Bigl(\tilde{g} \Bigl(\max_{\tilde {\eta}\in[s-h,s]}u(\tilde{\eta},t)\Bigr)\Bigr)\,dt\,ds, \quad \\ &\hphantom{\varphi(u(x,y))\leq{}}{}(x,y)\in[x_{0},x_{1}) \times[y_{0}, y_{1}), \\ &u(x,y) \leq \psi (x,y),\quad (x,y)\in\bigl[b_{*}(x_{0})-h,x_{0} \bigr]\times [y_{0}, y_{1}). \end{aligned} $$
(2.46)
Let \(\frac{1}{p}+\frac{1}{q}=1\), \(p>1\), then \(q>0\). By Lemma 1, Hölder’s inequality, (A4) and (2.46), we obtain, for all \((x,y)\in[x_{0},x_{1})\times[y_{0}, y_{1})\),
$$\begin{aligned}& \varphi\bigl(u(x,y)\bigr) \\& \quad \leq \hat{a}(x,y)+\sum _{j=1}^{m} \biggl( \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} \bigl(x^{\alpha_{j}}-s^{\alpha_{j}} \bigr)^{p(\beta_{j}-1)}s^{p(\gamma_{j}-1)}\bigl(y^{\bar {\alpha}_{j}}-t^{\bar{\alpha}_{j}} \bigr)^{p(\bar{\beta}_{j}-1)} t^{(\bar{\gamma}_{j}-1)}\,dt\,ds\biggr)^{1/p} \\& \qquad {}\cdot\biggl( \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}\hat{f}^{q}_{j}(x,y,s,t) \hat{\omega}^{q}_{j}\bigl(u(s,t)\bigr) \Bigl(\hat{ \mu}_{j}\Bigl(\tilde{g}\Bigl(\max_{\tilde{\eta}\in[s-h,s]}u(\tilde{ \eta},t)\Bigr)\Bigr)\Bigr)^{q} \,dt\,ds\biggr)^{1/q} \\& \quad \leq \hat{a}(x,y)+\sum_{j=1}^{m} \biggl( \int _{0}^{x} \int_{0}^{y} \bigl(x^{\alpha_{j}}-s^{\alpha_{j}} \bigr)^{p(\beta_{j}-1)}s^{p(\gamma_{j}-1)}\bigl(y^{\bar {\alpha}_{j}}-t^{\bar{\beta}_{j}} \bigr)^{p(\bar{\gamma}_{j}-1)} t^{{p(\bar{\gamma}_{j}-1)}}\,dt\,ds\biggr)^{1/p} \\& \qquad {}\cdot\biggl( \int_{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}\hat {f}^{q}_{j}(x,y,s,t) \hat{\omega}^{q}_{j}\bigl(u(s,t)\bigr) \Bigl(\hat{ \mu}_{j}\Bigl(\tilde{g}\Bigl(\max_{\tilde{\eta}\in[s-h,s]}u(\tilde{ \eta},t)\Bigr)\Bigr)\Bigr)^{q}dtds\biggr)^{1/q} \\& \quad \leq \hat{a}(x,y)+ \sum_{j=1}^{m} \bigl(M_{j}x^{\theta_{j}}\bar{M}_{j}y^{\bar{\theta}_{j}} \bigr)^{1/p}\biggl( \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}\hat{f}^{q}_{j}(x,y,s,t) \\& \qquad {} \cdot\hat{\omega}^{q}_{j}\bigl(u(s,t)\bigr) \Bigl( \hat{\mu}_{j}\Bigl(\tilde{g}\Bigl(\max_{\tilde{\eta}\in[s-h,s]}u( \tilde{\eta},t)\Bigr)\Bigr)\Bigr)^{q} \,dt\,ds\biggr)^{1/q}, \end{aligned}$$
(2.47)
where \(0\le b_{j}(t)\le t \), \(0\le c_{j}(t)\le t\), \(M_{j}\), \(\bar {M}_{j}\), \(\theta_{j}\), and \(\bar{\theta}_{j}\) are given by (2.40) for \(j=1,\ldots,m\).
By Jensen’s inequality and (2.47), we get, for all \((x,y)\in \Delta\),
$$\begin{aligned} \varphi^{q}\bigl(u(x,y)\bigr) \leq& (1+m)^{q-1}\Biggl( \hat{a}^{q}(x,y)+ \sum_{j=1}^{m} \bigl(M_{j}x^{\theta_{j}}\bar{M}_{j}y^{\bar{\theta}_{j}} \bigr)^{q/p} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}\hat{f}^{q}_{j}(x,y,s,t) \\ &{} \times\hat{\omega}^{q}_{j}\bigl(u(s,t)\bigr) \Bigl( \hat{\mu}_{j}\Bigl(\tilde{g}\Bigl(\max_{\tilde{\eta}\in[s-h,s]}u( \tilde{\eta},t)\Bigr)\Bigr)\Bigr)\Biggr)^{q} \,dt\,ds. \end{aligned}$$
(2.48)
Then, from (2.38), \(r_{1}\) is increasing on Δ. Then, by the definition of \(r_{1}\) and \(\tilde{f}_{j}\), from (2.48) we have
$$\begin{aligned} \varphi^{q}\bigl(u(x,y)\bigr) \leq& r_{1}(x,y)+ \sum _{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}\tilde{f}_{j}(x,y,s,t) \hat{\omega}^{q}_{j}\bigl(u(s,t)\bigr) \\ &{}\cdot\Bigl(\hat{\mu}_{j}\Bigl(\tilde{g}\Bigl(\max _{\tilde{\eta}\in [s-h,s]}u(\tilde{\eta},t)\Bigr)\Bigr)\Bigr)^{q}\,dt \,ds, \quad (x,y)\in\Delta. \end{aligned}$$
(2.49)
According to (2.49), we consider the inequalities
$$ \begin{aligned} &\varphi^{q}\bigl(u(x,y)\bigr) \leq r_{1}(X,Y)+\sum_{j=1}^{m} \int_{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} \tilde{f}_{j}(X,Y,s,t) \\ &\hphantom{\varphi^{q}(u(x,y)) \leq{}}{}\cdot\hat{\omega}^{q}_{j}\bigl(u(s,t) \bigr) \Bigl(\hat{\mu}_{j}\Bigl(\hat{g}\Bigl(\max_{\tilde{\eta}\in[\tilde{\eta}-h,s]}u( \tilde{\eta },t)\Bigr)\Bigr)\Bigr)^{q} \,dt\,ds, \\ &\hphantom{\varphi^{q}(u(x,y)) \leq{}}{} (x,y) \in[x_{0},X]\times[y_{0},Y], \\ &u(x,y) \leq \psi(x,y), \quad (x,y)\in \bigl[b_{*}(x_{0})-h,x_{0} \bigr]\times[y_{0},Y], \end{aligned} $$
(2.50)
where \(x_{0}\leq X\le X_{1}\) and \(y_{0}\leq Y\le Y_{1}\) are chosen arbitrarily.
Since \(\max_{s\in[b_{*}(x_{0})-h,x_{0}]}\psi(s,y)\leq\varphi ^{-1}((1+m)^{1-1/q}a(x_{0},y)) \) for \(y\in[y_{0},y_{1})\), \(a(x_{0},y)\le\hat{ a}(x_{0},y)\), we have \(\max_{s\in[b_{*}(x_{0})-h,x_{0}]}\psi(s,y)\leq\varphi ^{-1}(r^{1/q}_{1}(X,Y))\), \(y\in[y_{0},Y]\). Define a function \(z(x,y): [b_{*}(x_{0})-h, X)\times[y_{0},Y)\rightarrow \mathbb {R}_{+}\) by
$$ z(x,y)= \textstyle\begin{cases} r_{1}(X,Y)+\sum_{j=1}^{m} \int_{b_{j}(x_{0})}^{b_{j}(x)}\int _{c_{j}(y_{0})}^{c_{j}(y)}\tilde{f}_{j}(X,Y,s,t) \hat{\omega}^{q}_{j}(u(s,t)) \\ \quad {}\times (\hat{\mu}_{j}(\hat{g}(\max_{\tilde{\eta}\in [s-h,s]}u(\tilde{\eta},t))))^{q}\,dt\,ds, \quad (x,y)\in[x_{0},X]\times [y_{0},Y], \\ r_{1}(X,Y), \quad (x,y)\in[b_{*}(x_{0})-h,x_{0}]\times [y_{0}, Y]. \end{cases} $$
Clearly, \(z(x,y)\) is increasing in x. By the definition of \(z(x,y)\) and (2.50), we have
$$ u(x,y)\leq\varphi^{-1}\bigl(z^{1/q}(x,y) \bigr), \quad (x,y)\in\bigl[b_{*}(x_{0})-h, X\bigr]\times[y_{0},Y]. $$
(2.51)
Since \(\varphi(t)\) is strictly increasing and \(z(x,y)\) is nondecreasing, from (2.51) we get, for \((s,y)\in[b_{*}(x_{0}), X]\times[y_{0},Y]\),
$$ \max_{\xi\in[s-h, s]} u(\xi,y) \leq \max _{\xi\in[s-h, s]} \varphi^{-1}\bigl(z^{1/q}(\xi,y) \bigr) \leq \varphi^{-1}\bigl(z^{1/q}(s,y)\bigr). $$
(2.52)
From the definition of \(z(x,y)\), (2.42), (2.51), and (2.52), it follows that
$$\begin{aligned}& z(x,y) \leq r_{1}(X,Y)+\sum_{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{b_{j}(y_{0})}^{b_{j}(y)} \tilde{f}_{j}(X,Y,s,t) \hat{\omega}^{q}_{j}\bigl(\varphi^{-1} \bigl(z^{1/q}(s,t)\bigr)\bigr) \\& \hphantom{z(x,y) \leq{}} {}\cdot\Bigl(\hat{\mu}_{j}\Bigl(\hat{g}\Bigl(\max _{\tilde{\eta}\in[s-h, s]} \varphi^{-1}\bigl(z^{1/q}(\tilde{ \eta},t)\bigr)\Bigr)\Bigr)\Bigr)^{q}\,dt\,ds \\& \hphantom{z(x,y) } \leq r_{1}(X,Y)+\sum_{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{b_{j}(y_{0})}^{b_{j}(y)} \tilde{f}_{j}(X,Y,s,t) \hat{\omega}^{q}_{j}\bigl(\varphi^{-1} \bigl(z^{1/q}(s,t)\bigr)\bigr) \\& \hphantom{z(x,y) \leq{}} {}\cdot\bigl(\hat{\mu}_{j}\bigl(\tilde{g}\bigl( \varphi^{-1}\bigl(z^{1/q}(s,t)\bigr)\bigr)\bigr) \bigr)^{q}\,dt\,ds \\& \hphantom{z(x,y) } \leq r_{1}(X,Y)+\sum_{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{b_{j}(y_{0})}^{b_{j}(y)} \tilde{f}_{j}(X,Y,s,t) \tilde{\omega}^{q}_{j}\bigl(\varphi^{-1} \bigl(z^{1/q}(s,t)\bigr)\bigr) \\& \hphantom{z(x,y) \leq{}} {} \cdot\vartheta_{j}\Bigl(\max_{\tilde{\eta}\in[s-h, s]} u(\tilde {\eta},t)\Bigr)\,dt\,ds, \quad (x,y)\in[x_{0}, X] \times[y_{0},Y], \\& z(x,y) \leq r_{1}(X,Y), \quad (x,y)\in\bigl[b_{*}(x_{0})-h,x_{0} \bigr]\times[y_{0}, Y], \end{aligned}$$
(2.53)
where \(\vartheta_{j}(t)\equiv1\), \(t\ge0\).
Let \(v(t):=\varphi^{-1}(t^{1/q})\), which is a continuous and increasing function on \(\mathbb {R}_{+}\). Thus \(\tilde{\omega }^{q}_{j}(h(t))\) (\(j=1,\ldots, m\)) are continuous and increasing on \(\mathbb {R}_{+}\) and satisfy \(\tilde{\omega}_{j}(v(t))>0 \) for \(t>0\). Moreover, since \(\tilde {\omega}_{j}(t)\propto\tilde{\omega}_{j+1}(t)\), \(\tilde{\omega}^{q}_{j+1}(v(t))/\tilde{\omega}^{q}_{j}(v(t))\) are continuous and increasing on \(\mathbb {R}_{+}\) and positive on \((0,\infty)\), then \((\tilde{\omega}_{j}\circ v)\vartheta_{j}\propto (\tilde{\omega}_{j+1}\circ v)\vartheta_{j+1}\) for \(j=1,2,\ldots,m-1\).
Applying Lemma 2 to specified \(g_{j}(x,y,s,t)=\tilde{f}_{j}(X,Y,s,t)\), \(h_{j}(t)=\tilde{\omega}^{q}_{j}(\varphi^{-1}(t^{1/q}))\), \(\bar{h}_{j}(t)=\vartheta_{j}(t)\equiv1\) (\(j=1,2,\ldots,m\)), and (2.53), we obtain
$$\begin{aligned} z(x,y) \le& W_{m}^{-1}\biggl[W_{n}\bigl(\tilde {r}_{m}(X,Y,x,y)\bigr) \\ &{} + \int_{b_{m}(x_{0})}^{b_{m}(x)} \int_{c_{m}(y_{0})}^{c_{m}(y)} \tilde{ f}_{m}(X,Y,s,t) \,dt\,ds\biggr] \end{aligned}$$
(2.54)
for \(x_{0}\le x \le\min\{X, X_{2}\}\), \(y_{0}\le y \le\min\{Y, Y_{2}\}\), where \(\tilde{r}_{j}\) is defined inductively by \(\tilde{r}_{1}(X,Y, x,y):=\gamma _{1}(X,Y)\) and
$$ \tilde{r}_{j}(X,Y,x,y):= W_{i-1}^{-1} \biggl(W_{i-1}\bigl(\tilde {r}_{i-1}(X,Y,x,y)\bigr)+ \int_{b_{i-1}(x_{0})}^{b_{i-1}(x)} \int _{c_{i-1}(y_{0})}^{c_{i-1}(y)} \tilde{f}_{i-1}(X,Y,s,t) \,dt\,ds\biggr) $$
for \(j=2,\ldots, m\), and \(\bar{X}_{1}\), \(\bar{Y}_{1}\) are chosen such that
$$\begin{aligned}& W_{j}\bigl(\tilde{r}_{j}(X,Y,\bar{X}_{1}, \bar{Y}_{1})\bigr)+ \int _{b_{j}(x_{0})}^{b_{j}(X_{2})} \int_{c_{j}(y_{0})}^{c_{j}(\bar{Y}_{1})} \tilde{f}_{j}(X,Y,s,t) \\& \quad \le \int_{t_{j}}^{\infty}\frac{ds}{\tilde{\omega}^{q}_{j}(\varphi ^{-1}(s^{1/q}))} \end{aligned}$$
(2.55)
for \(j=1,\ldots,m\).
Note that \(X_{2}\ge X_{1}\) and \(Y_{2}\ge Y_{1}\). In fact, both \(\tilde {r}_{j}(X,Y,x,y)\) and \(\tilde{f}_{j}(X,Y,x,y)\) are increasing in X and Y. Thus \(X_{2}\), \(Y_{2}\) satisfying (2.55) get smaller as X, Y are chosen larger.
According to (2.51) and (2.54),
$$\begin{aligned} u(x,y) \le& \varphi^{-1}\biggl(W_{m}^{-1} \biggl(W_{n}\bigl(\tilde {r}_{m}(X,Y,x,y)\bigr) \\ &{}+ \int_{\alpha_{m}(x_{0})}^{\alpha_{m}(x)} \int_{\beta _{m}(y_{0})}^{\beta_{m}(y)} \tilde{ f}_{m}(X,Y,s,t) \,dt\,ds\biggr)\biggr) \end{aligned}$$
(2.56)
for \(x_{0}\le x \le\min\{X, X_{2}\}\), \(y_{0}\le y \le\min\{Y, Y_{2}\}\).
Taking \(x=X\), \(y=Y\) in (2.56), we have
$$\begin{aligned} u(X,Y) \le& \varphi^{-1}\biggl(W_{m}^{-1} \biggl(W_{n}\bigl(\tilde {r}_{m}(X,Y,X,Y)\bigr) \\ &{}+ \int_{b_{m}(x_{0})}^{b_{m}(X)} \int_{c_{m}(y_{0})}^{c_{m}(Y)} \tilde{ f}_{m}(X,Y,s,t) \,dt\,ds\biggr)\biggr) \end{aligned}$$
(2.57)
for \(x_{0}\le X\le X_{1}\), \(y_{0}\le Y\le Y_{1}\). It is easy to verify \(\tilde {r}_{m}(X,Y,X,Y)= r_{m}(X,Y)\). Thus, (2.57) can be written as
$$\begin{aligned} u(X,Y) \le& \varphi^{-1}\biggl(W_{m}^{-1} \biggl(W_{n}\bigl(r_{m}(X,Y)\bigr) \\ &{}+ \int_{b_{m}(x_{0})}^{b_{m}(X)} \int_{c_{m}(y_{0})}^{c_{m}(Y)} \tilde{ f}_{m}(X,Y,s,t) \,dt\,ds\biggr)\biggr). \end{aligned}$$
(2.58)
Since X, Y are arbitrary, replacing Y and X with y and x, respectively, we have
$$\begin{aligned} u(x,y) \le& \varphi^{-1}\biggl(W_{m}^{-1} \biggl(W_{n}\bigl(r_{m}(x,y)\bigr) \\ &{}+ \int_{b_{m}(x_{0})}^{b_{m}(x)} \int_{c_{m}(y_{0})}^{c_{m}(y)} \tilde{ f}_{m}(x,y,s,t) \,dt\,ds\biggr)\biggr) \end{aligned}$$
(2.59)
for all \((x,y)\in[x_{0}, X^{*}_{1}]\times[y_{0},Y^{*}_{1}]\).
This completes the proof. □
Theorem 2.2
We make the following assumptions:
(S1)
\(c(x,y)\in C(\Delta, \mathbb{R}_{+}) \) and \(b_{j}\in C^{1}([x_{0},x_{1}),\mathbb {R}_{+})\), and \(c_{j}\in C^{1}([y_{0},y_{1}), [y_{0},y_{1}))\) are nondecreasing with \(b_{j}(x)\leq x\) on \([x_{0},x_{1})\) and \(c_{j}(y)\le y\) on \([y_{0},y_{1})\), and \(c_{j}(y_{0})=y_{0}\) for \(j=1,\ldots,m\);
(S2)
\(\hat{\psi}\in C(\Xi,\mathbb {R}_{+})\), \(\hat{g}_{j}\in C(\Delta\times[b_{*}(x_{0}),x_{1})\times[y_{0},y_{1}),\mathbb {R}_{+})\) (\(j=1,2,\ldots, m\));
(S3)
\(\phi_{j}, \hat{\phi}_{j}\in C(\mathbb {R}_{+},\mathbb{R}_{+})\) (\(j=1,\ldots ,m\)) are all nondecreasing with \(\{\phi_{j},\hat{\phi}_{j}\}(t)>0\) for \(t>0\), and \(\phi_{j}\hat{\phi}_{j}\propto\phi_{j+1}\hat{\phi}_{j+1}\) (\(j=1,\ldots,m-1\));
(S4)
\(k\ge1\), \(\alpha_{j}, \bar{\alpha}_{j}\in(0,1]\), \(\beta_{j},\bar{\beta }_{j}\in(0,1)\), \(\gamma_{j}>1-\frac{1}{p}\), \(\bar{\gamma}_{j}>1-\frac{1}{p}\) such that \(\frac{1}{p}+\alpha_{j}(\beta_{j}-1)+\gamma_{j}-1\ge0\), \(\frac {1}{p}+\bar{\alpha}_{j}(\bar{\beta}_{j}-1)+\bar{\gamma}_{j}-1\ge0\), \(p(\beta_{j}-1)+1>0\), \(p(\bar{\beta}_{j}-1)+1>0\), \(p>1\) for all \(j=1,\ldots,m\).
If \(u\in C([b_{*}(x_{0})-h,x_{1})\times[y_{0},y_{1}),\mathbb {R}_{+})\) satisfies the integral inequality
$$\begin{aligned}& u^{k}(x,y)\leq c(x,y)+\sum_{j=1}^{M} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} \bigl(x^{\alpha_{j}}-s^{\alpha_{j}} \bigr)^{\beta_{j}-1}s^{\gamma_{j}-1}\bigl(y^{\bar {\alpha}_{j}}-t^{\bar{\alpha}_{j}} \bigr)^{\bar{\beta}_{j}-1} \\& \hphantom{u^{k}(x,y)\leq{}}{} \times t^{\bar{\gamma}_{j}-1} \hat{g}_{j}(x,y,s,t) \phi_{j}\bigl(u(s,t)\bigr)\hat{\phi}_{j} \Bigl(\max _{\tilde{\eta}\in [s-h, s]}g\bigl(u(\tilde{\eta},t)\bigr) \Bigr) \\& \hphantom{u^{k}(x,y)\leq{}}{} +\sum_{j=M+1}^{m} \int_{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)}\hat{g}_{j}(x,y,s,t) \phi_{j}\bigl(u(s,t)\bigr)\hat{\phi }_{j} \Bigl(\max _{\tilde{\eta}\in[s-h, s]}u(\tilde{\eta },t) \Bigr), \\& \hphantom{u^{k}(x,y)\leq{}}{}(x,y)\in[x_{0},x_{1})\times [y_{0}, y_{1}), \\& u(x,y) \leq \hat{ \psi }(x,y), \quad (x,y)\in\bigl[b_{*}(x_{0})-h,x_{0} \bigr]\times [y_{0}, y_{1}), \end{aligned}$$
(2.60)
where \(\max_{s\in[b_{*}(x_{0})-h,x_{0}]}\hat{\psi}(s,y)\leq( (1+m)^{1-1/q}c(x_{0},y))^{1/k}\) for all \(y\in[y_{0},y_{1})\).
Then
$$ u(x,y) \leq \biggl(G_{m}^{-1} \bigl(G_{m}\bigl(e_{m}(x,y)\bigr)\bigr) + \int_{b_{m}(x_{0})}^{b_{m}(x)} \int_{c_{m}(y_{0})}^{c_{m}(y)} \tilde{g}_{m}(x,y,s,t)\,dt \,ds\biggr)^{1/(kq)} $$
(2.61)
for all \((x,y)\in[x_{0}, X_{2})\times[y_{0},Y_{2})\), where \(G_{j}^{-1}\)is the inverse of the function
$$ G_{j}(u):= \int_{t_{j}}^{t}\frac{ds}{\phi^{q}_{j}(s^{1/(kq)})\hat{\phi }^{q}_{j}(s^{1/(kq)})}, \quad t\ge t_{j}>0, j=1,\ldots,m. $$
(2.62)
In (2.61) and (2.62), \(t_{j}>0\) is a given constant, \(\frac{1}{p}+\frac{1}{q}=1\), \(e_{j}(x,y)\) is defined recursively by
$$\begin{aligned}& \begin{aligned}[b] &e_{1}(x,y)=(1+m)^{q-1}\Bigl( \max_{(\iota,\xi)\in[x_{0}, x ]\times [y_{0},y]}c(\iota,\xi)\Bigr)^{q},\quad \textit{and} \\ &e_{j+1}(x,y):=G_{j}^{-1}\biggl[G_{j} \bigl(e_{j}(x,y)\bigr)+ \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} \tilde{g}_{j}(x,y,s,t) \,dt\,ds\biggr], \\ &\quad j=1,\ldots, m-1, \end{aligned} \end{aligned}$$
(2.63)
$$\begin{aligned}& \begin{aligned}[b] &\tilde{g}_{j}(x,y,s,t):=(1+m)^{q-1} \bigl({M_{j}} x^{\theta_{j}}{\bar{M}_{j}} y^{\bar{\theta}_{j}}\bigr)^{q/p}\Bigl(\max_{(\iota,\xi)\in[x_{0}, x ]\times[y_{0},y]} \hat{g}_{j}(\iota,\xi,s,t)\Bigr)^{q}, \\ &\quad (x,y)\in [x_{0},x_{1})\times[y_{0},y_{1}), \end{aligned} \end{aligned}$$
(2.64)
$$\begin{aligned}& \begin{aligned} &M_{j}=\alpha_{j}^{-1}B \biggl(\frac{p(\gamma_{j}-1)+1}{\alpha_{j}}, p(\beta_{j}-1)+1\biggr), \\ &\bar{M}_{j}=\bar{\alpha}_{j}^{-1}B\biggl( \frac{p(\bar{\gamma }_{j}-1)+1}{\bar{\alpha}_{j}}, p(\beta_{j}-1)+1\biggr), \\ &\theta_{j}=p\bigl(\alpha_{j}(\beta_{j}-1)+ \gamma_{j}-1\bigr)+1, \\ &\bar{\theta}_{j}=p\bigl(\bar{\alpha}_{j}(\bar{ \beta}_{j}-1)+\bar{\gamma}_{j}-1\bigr)+1, \quad j=1, \ldots,M \\ &M_{j}=\bar{M}_{j}=1, \qquad \theta_{j}= \bar{\theta}_{j}=1, \quad j=M+1,\ldots,m, \end{aligned} \end{aligned}$$
(2.65)
\(X_{2}\in[x_{0}, x_{1})\), \(Y_{2}\in[y_{0}, y_{1})\) are chosen such that
$$\begin{aligned}& G_{j}\bigl(r_{j}(X_{2},Y_{2})\bigr)+ \int_{b_{j}(x_{0})}^{b_{j}(X_{1})} \int _{c_{j}(y_{0})}^{c_{j}(Y_{2})} \tilde{g}_{j}(X_{2},Y_{2},s,t) \,dt\,ds \\& \quad \le \int_{t_{j}}^{\infty}\frac{ds}{\phi^{q}_{j}(s^{1/q})\hat{\phi }^{q}_{j}(s^{1/q})} \end{aligned}$$
(2.66)
for \(j=1,2,\ldots,m\).
Proof
Let
$$ \begin{aligned} &\hat{c}(x,y):=\max_{(\tau,\xi)\in[x_{0}, x]\times[y_{0},y] }\bigl\{ a(\tau,\xi)\bigr\} , \quad (x,y)\in[x_{0},x_{1}) \times[y_{0},y_{1}). \\ &\bar{g}_{j}(x,y,s,t) :=\max_{(\iota,\xi)\in[x_{0}, x ]\times[y_{0},y]}g_{j}( \iota ,\xi,s,t), \end{aligned} $$
(2.67)
which are increasing in x and y and satisfy \(\bar {g}_{j}(x,y,s,t)\geq g_{j}(x,y,s,t)\geq0\) for \(j=1,2,\ldots,m\). From (2.60), (2.67), and the definition of \(\tilde {g}_{j}\), we obtain
$$\begin{aligned}& u^{k}(x,y) \leq \hat{c}(x,y)+\sum_{j=1}^{M} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} \bigl(x^{\alpha_{j}}-s^{\alpha_{j}} \bigr)^{\beta_{j}-1}s^{\gamma_{j}-1}\bigl(y^{\bar {\alpha}_{j}}-t^{\bar{\alpha}_{j}} \bigr)^{\bar{\beta}_{j}-1} \\& \hphantom{u^{k}(x,y) \leq{}}{} \times t^{\bar{\gamma}_{j}-1} \bar{g}_{j}(x,y,s,t) \phi_{j}\bigl(u(s,t)\bigr)\hat{\phi}_{j}\Bigl(\max _{\tilde{\eta}\in[s-h, s]}u(\tilde{\eta},t)\Bigr) \\& \hphantom{u^{k}(x,y) \leq{}}{} +\sum_{j=M+1}^{m} \int_{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)}\bar{g}_{j}(x,y,s,t) \phi_{j}\bigl(u(s,t)\bigr)\hat{\phi}_{j}\Bigl(\max _{\tilde{\eta}\in[s-h, s]}u(\tilde{\eta},t)\Bigr), \\& \hphantom{u^{k}(x,y) \leq{}}{} (x,y)\in[x_{0},x_{1})\times [y_{0}, y_{1}), \\& u(x,y) \leq \hat{ \psi }(x,y), \quad (x,y)\in\bigl[b_{*}(x_{0})-h,x_{0} \bigr]\times [y_{0}, y_{1}). \end{aligned}$$
(2.68)
Let \(\frac{1}{p}+\frac{1}{q}=1\), \(p>1\), then \(q>0\). By Lemma 1, Hölder’s inequality, (S4), and (2.68), we obtain, for all \((x,y)\in\Delta\),
$$\begin{aligned}& u^{k}(x,y) \\& \quad \leq \hat{c}(x,y)+\sum_{j=1}^{M} \biggl( \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} \bigl(x^{\alpha_{j}}-s^{\alpha_{j}} \bigr)^{p(\beta_{j}-1)}s^{p(\gamma_{j}-1)}\bigl(y^{\bar {\alpha}_{j}}-t^{\bar{\alpha}_{j}} \bigr)^{p(\bar{\beta}_{j}-1)}t^{(\bar{\gamma}_{j}-1)}\,dt\,ds\biggr)^{1/p} \\& \qquad {}\times\biggl( \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}\bar{g}^{q}_{j}(x,y,s,t) \phi^{q}_{j}\bigl(u(s,t)\bigr)\hat{\phi}^{q}_{j} \Bigl(\max_{\tilde{\eta}\in [s-h,s]}u(\tilde{\eta},t)\Bigr) \,dt\,ds\biggr)^{1/q} \\& \qquad {}+\sum_{j=M+1}^{m} \biggl( \int_{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)} 1^{p}\,dt\,ds \biggr)^{1/p}\biggl( \int_{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)}\bar{g}^{q}_{j}(x,y,s,t) \phi^{q}_{j}\bigl(u(s,t)\bigr) \\& \qquad {}\times\hat{\phi}^{q}_{j}\Bigl(\max_{\tilde{\eta}\in [s-h,s]}u(\tilde{ \eta},t)\Bigr) \,dt\,ds\biggr)^{1/q} \\& \quad \leq \hat{c}(x,y)+\sum_{j=1}^{M} \biggl( \int _{b_{j}(0)}^{x} \int_{0}^{y} \bigl(x^{\alpha_{j}}-s^{\alpha_{j}} \bigr)^{p(\beta_{j}-1)}s^{p(\gamma_{j}-1)}\bigl(y^{\bar {\alpha}_{j}}-t^{\bar{\alpha}_{j}} \bigr)^{p(\bar{\beta}_{j}-1)}t^{(\bar{\gamma}_{j}-1)}\,dt\,ds\biggr)^{1/p} \\& \qquad {} \times\biggl( \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}\bar{g}^{q}_{j}(x,y,s,t) \phi^{q}_{j}\bigl(u(s,t)\bigr)\hat{\phi}^{q}_{j} \Bigl(\max_{\tilde{\eta}\in [s-h,s]}u(\tilde{\eta},t)\Bigr) \,dt\,ds\biggr)^{1/q} \\& \qquad {}+\sum_{j=M+1}^{m} \biggl( \int_{0}^{x} \int_{0)}^{y} 1^{p}\,dt\,ds \biggr)^{1/p}\biggl( \int_{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)}\bar{g}^{q}_{j}(x,y,s,t) \phi^{q}_{j}\bigl(u(s,t)\bigr) \\& \qquad {}\times\hat{\phi}^{q}_{j}\Bigl(\max_{\tilde{\eta}\in [s-h,s]}u(\tilde{ \eta},t)\Bigr) \,dt\,ds\biggr)^{1/q} \\& \quad \leq \hat{c}(x,y)+ \sum_{j=1}^{m} \bigl(M_{j}x^{\theta_{j}}\bar{M}_{j}y^{\bar{\theta}_{j}} \bigr)^{1/p}\biggl( \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}\bar{g}^{q}_{j}(x,y,s,t) \\& \qquad {} \times\phi^{q}_{j}\bigl(u(s,t)\bigr) \hat{ \phi}^{q}_{j}\Bigl(\max_{\tilde {\eta}\in[s-h,s]}u(\tilde{ \eta},t)\Bigr) \,dt\,ds\biggr)^{1/q}, \end{aligned}$$
(2.69)
where \(0\le b_{j}(t)\le t \), \(0\le c_{j}(t)\le t\), \(M_{j}\), \(\bar {M}_{j}\), \(\theta_{j}\), and \(\bar{\theta}_{j}\) are given by (2.65) for \(j=1,\ldots,m\).
By Jensen’s inequality and (2.69), we get, for all \((x,y)\in \Delta\),
$$\begin{aligned} u^{kq}(x,y) \leq& (1+m)^{q-1}( \hat{c}^{q}(x,y)+ \sum_{j=1}^{m}\bigl(M_{j}x^{\theta_{j}} \bar{M}_{j}y^{\bar{\theta}_{j}}\bigr)^{q/p} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}\bar{g}^{q}_{j}(x,y,s,t) \\ &{} \times\phi^{q}_{j}\bigl(u(s,t)\bigr) \hat{ \phi}^{q}_{j}\bigl(\max_{\tilde{\eta }\in[s-h,s]}u(\tilde{\eta},t)\bigr) \,dt\,ds. \end{aligned}$$
(2.70)
By the definition of \(e_{1}\) and \(\tilde{g}_{j}\), from (2.70) we obtain
$$\begin{aligned} u^{kq}(x,y) \leq& e_{1}(x,y)+ \sum _{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}\tilde{g}_{j}(x,y,s,t) \\ &{}\times\phi^{q}_{j}\bigl(u(s,t)\bigr) \hat{ \phi}^{q}_{j}\bigl(\max_{\tilde{\eta }\in[s-h,s]}u(\tilde{\eta},t)\bigr) \,dt\,ds,\quad (x,y)\in\Delta. \end{aligned}$$
(2.71)
Concerning (2.71), we consider the auxiliary inequalities
$$\begin{aligned}& u^{kq}(x,y)\leq e_{1}(X,Y)+ \sum _{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}\tilde{g}_{j}(X,Y,s,t) \\& \hphantom{u^{kq}(x,y)\leq{}}{}\times\phi^{q}_{j}\bigl(u(s,t)\bigr) \hat{\phi}^{q}_{j}\bigl(\max_{\tilde{\eta }\in[s-h,s]}u(\tilde{ \eta},t)\bigr) \,dt\,ds, \quad (x,y)\in[x_{0},X] \times[y_{0},Y], \\& u(x,y)\leq \hat{\psi}(x,y), \quad (x,y)\in \bigl[b_{*}(x_{0})-h,x_{0} \bigr]\times[y_{0},Y], \end{aligned}$$
(2.72)
where \(x_{0}\leq X\le X_{2}\) and \(y_{0}\leq Y\le Y_{2}\) are chosen arbitrarily.
Since \(\max_{s\in[b_{*}(x_{0})-h,x_{0}]}\hat{\psi}(s,y)\leq ((1+m)^{1-1/q}a(x_{0},y))^{\frac{1}{k}}\) for \(y\in[y_{0},y_{1})\), \(a(x_{0},y)\le\hat{ c}(x_{0},y)\), we have \(\max_{s\in[b_{*}(x_{0})-h,x_{0}]}\psi(s,y)\leq (e^{1/q}_{1}(X,Y))^{\frac{1}{k}}\), \(y\in[y_{0},Y]\). Define a function \(z(x,y): [b_{*}(x_{0})-h, X)\times[y_{0},Y)\rightarrow \mathbb {R}_{+}\) by
$$ z(x,y)= \textstyle\begin{cases} e_{1}(X,Y)+ \sum_{j=1}^{m}\int_{b_{j}(x_{0})}^{b_{j}(x)}\int _{c_{j}(y_{0})}^{c_{j}(y)}\tilde{g}_{j}(X,Y,s,t) \\ \quad {}\times\phi^{q}_{j}(u(s,t))\hat{\phi}^{q}_{j}\bigl(\max_{\tilde{\eta }\in[s-h,s]}u(\tilde{\eta},t)\bigr) \,dt\,ds, \quad (x,y)\in[x_{0},X]\times [y_{0},Y], \\ e_{1}(X,Y), \quad (x,y)\in[b_{*}(x_{0})-h,x_{0}]\times [y_{0}, Y]. \end{cases} $$
Clearly, \(z(x,y)\) is increasing in x. From (2.72) and the definition of z, we have
$$ u(x,y)\leq z^{1/(kq)}(x,y),\quad (x,y)\in \bigl[b_{*}(x_{0})-h, X\bigr]\times[y_{0},Y]. $$
(2.73)
Then, noting that z is increasing, from (2.51) we get for \((s,y)\in[b_{*}(x_{0}), X]\times[y_{0},Y]\)
$$ \max_{\tilde{\eta}\in[s-h, s]} u(\tilde{\eta},y) \leq\max _{\tilde{\eta}\in[s-h, s]} z^{1/(kq)}(\tilde{\eta},y)\le\bigl( \max_{\tilde{\eta}\in[s-h, s]} z(\tilde{\eta},y)\bigr)^{1/(kq)}. $$
(2.74)
From (2.42), (2.73), (2.74), and the definition of z, we have
$$\begin{aligned}& z(x,y)\leq e_{1}(X,Y)+\sum_{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{b_{j}(y_{0})}^{b_{j}(y)} \tilde{g}_{j}(X,Y,s,t) \phi^{q}_{j}\bigl(z^{1/(kq)}(s,t)\bigr) \\& \hphantom{z(x,y)\leq{}}{}\times\hat{\phi}^{q}_{j} \Bigl(\max _{\tilde{\eta}\in[s-h, s]} \bigl(z^{1/(kq)}(\tilde{\eta},t)\bigr) \Bigr)\,dt\,ds \\& \hphantom{z(x,y)}\leq e_{1}(X,Y)+\sum_{j=1}^{m} \int_{b_{j}(x_{0})}^{b_{j}(x)} \int _{b_{j}(y_{0})}^{b_{j}(y)} \tilde{g}_{j}(X,Y,s,t) \phi^{q}_{j}\bigl(z^{1/(kq)}(s,t)\bigr) \\& \hphantom{z(x,y)\leq{}}{}\times\hat{\phi}^{q}_{j} \Bigl(\bigl(\max _{\tilde{\eta}\in[s-h, s]} z(\tilde{\eta},t)\bigr)^{1/(kq)}\Bigr) \,dt\,ds, \quad (x,y)\in[x_{0}, X] \times[y_{0},Y], \\& z(x,y) \leq e_{1}(X,Y), \quad (x,y)\in\bigl[b_{*}(x_{0})-h,x_{0} \bigr]\times[y_{0}, Y]. \end{aligned}$$
(2.75)
Let \(v(t):=t^{1/(kq)}\), which is a continuous and increasing function on \(\mathbb {R}_{+}\). Thus \(\phi^{q}_{j}(v(t)) \) and \(\hat {\phi}^{q}_{j}(v(t))\) (\(j=1,\ldots, m\)) are continuous and increasing on \(\mathbb {R}_{+}\) and positive on \((0,\infty)\). Moreover, since \(\phi_{j}\hat{\phi}_{j}\propto\phi_{j+1}\hat{\phi}_{j+1}\), we have \((\phi_{j+1}\circ v)^{q}(\hat{\phi}_{j+1}\circ v)^{q} \propto(\phi _{j}\circ v)^{q}(\hat{\phi}_{j}\circ v)^{q}\) (\(j=1,\ldots,m-1\)). Taking \(g_{j}(x,y,s,t)=\tilde{g}_{j}(X,Y,s,t)\) and \(h_{j}(t)=\phi^{q}_{j}(v(t))\), \(\bar{h}_{j}(t)=\hat{\phi}^{q}_{j}(v(t))\), \(j=1,2,\ldots,m\), in Lemma 2 and (2.75),we obtain
$$\begin{aligned} z(x,y) \le& G_{m}^{-1}\biggl(G_{m} \bigl(\tilde{e}_{m}(X,Y,x,y)\bigr) \\ &{} + \int_{b_{m}(x_{0})}^{b_{m}(x)} \int_{c_{m}(y_{0})}^{c_{m}(y)} \tilde{ g}_{m}(X,Y,s,t) \,dt\,ds\biggr) \end{aligned}$$
(2.76)
for \(x_{0}\le x \le\min\{X, X^{*}_{2}\}\), \(y_{0}\le y \le\min\{Y, Y^{*}_{2}\}\), where \(\tilde{e}_{j}(X,Y,x,y)\) is defined inductively by \(\tilde {e}_{1}(X,Y,x,y):=e_{1}(X,Y)\) and
$$ \tilde{e}_{j}(X,Y,x,y):= G_{j-1}^{-1} \biggl(G_{j-1}\bigl(\tilde {e}_{j-1}(X,Y,x,y)\bigr)+ \int_{b_{j-1}(x_{0})}^{b_{j-1}(x)} \int _{c_{j-1}(y_{0})}^{c_{j-1}(y)} \tilde{g}_{j-1}(X,Y,s,t) \,dt\,ds\biggr) $$
for \(j=2,\ldots, m\), and \(X^{*}_{2}\), \(Y^{*}_{2}\) are chosen such that
$$\begin{aligned}& G_{j}\bigl(\tilde{e}_{j}(X,Y,\bar{X}_{1}, \bar{Y}_{1})\bigr)+ \int _{b_{j}(x_{0})}^{b_{j}(X_{2})} \int_{c_{j}(y_{0})}^{c_{j}(\bar{Y}_{1})} \tilde{g}_{j}(X,Y,s,t) \\& \quad \le \int_{t_{j}}^{\infty}\frac{ds}{\tilde{\omega}^{q}_{j}(\varphi ^{-1}(s^{1/q}))} \end{aligned}$$
(2.77)
for \(j=1,\ldots,m\).
Note that \(X^{*}_{2}=X_{2}\) and \(Y^{*}_{2}=Y_{2}\). It follows from (2.73) and (2.76) that
$$\begin{aligned} u(x,y) \le& \biggl(G_{m}^{-1}\biggl(G_{n}\bigl( \tilde{g}_{m}(X,Y,x,y)\bigr) \\ &{}+ \int_{b_{m}(x_{0})}^{b_{m}(x)} \int_{c_{m}(y_{0})}^{c_{m}(y)} \tilde{ g}_{m}(X,Y,s,t) \,dt\,ds\biggr)\biggr)^{1/(kq)} \end{aligned}$$
(2.78)
for \(x_{0}\le x \le\min\{X, X^{*}_{2}\}\), \(y_{0}\le y \le\min\{Y, Y^{*}_{2}\}\).
Taking \(x=X\), \(y=Y\) in (2.56), we have
$$\begin{aligned} u(X,Y) \le& \biggl(G_{m}^{-1}\biggl(G_{m}\bigl( \tilde{e}_{m}(X,Y,X,Y)\bigr) \\ &{}+ \int_{b_{m}(x_{0})}^{b_{m}(X)} \int_{c_{m}(y_{0})}^{c_{m}(Y)} \tilde{ g}_{m}(X,Y,s,t) \,dt\,ds\biggr)\biggr)^{1/(kq)} \end{aligned}$$
(2.79)
for \(x_{0}\le X\le X_{2}\), \(y_{0}\le Y\le Y_{2}\). It is easy to verify \(\tilde {e}_{m}(X,Y,X,Y)= e_{m}(X,Y)\). Thus, (2.57) can be written as
$$\begin{aligned} u(X,Y) \le& \biggl(G_{m}^{-1}\biggl(G_{n} \bigl(r_{m}(X,Y)\bigr) \\ &{}+ \int_{b_{m}(x_{0})}^{b_{m}(X)} \int_{c_{m}(y_{0})}^{c_{m}(Y)} \tilde{ g}_{m}(X,Y,s,t) \,dt\,ds\biggr)\biggr)^{1/(kq)}. \end{aligned}$$
(2.80)
Since \(X,Y\) are arbitrary, replacing X and Y with x and y, respectively, we get
$$\begin{aligned} u(x,y) \le& \biggl(G_{m}^{-1}\biggl(G_{n} \bigl(e_{m}(x,y)\bigr) \\ &{}+ \int_{b_{m}(x_{0})}^{b_{m}(x)} \int_{c_{m}(y_{0})}^{c_{m}(y)} \tilde{ g}_{m}(x,y,s,t) \,dt\,ds\biggr)\biggr)^{1/(kq)} \end{aligned}$$
(2.81)
for all \((x,y)\in[x_{0}, X_{2}]\times[y_{0},Y_{2}]\). This completes the proof. □
Corollary 2.3
Let the following conditions be fulfilled:
(B1)
all \(b_{j}\in C^{1}([x_{0},x_{1}),\mathbb {R}_{+})\) and \(c_{j}\in C^{1}([y_{0},y_{1}), [y_{0},y_{1}))\) are nondecreasing with \(b_{j}(x)\leq x\) on \([x_{0},x_{1})\), \(c_{j}(y)\le y\) on \([y_{0},y_{1})\), and \(c_{j}(y_{0})=y_{0}\) for all \(j=1,\ldots,m\);
(B2)
\(a\in C(\Delta, \mathbb{R}_{+})\) and \(\hat{\psi}\in C(\Xi,\mathbb {R}_{+})\), \(\varphi_{1} \in C(\mathbb {R}_{+},\mathbb {R}_{+})\), and \(\varphi_{1}\) is strictly increasing such that \(\lim_{t\rightarrow\infty}\varphi(t)=\infty\),and \(f_{j}\in C(\Delta\times[b_{*}(x_{0}),x_{1})\times[y_{0},y_{1}),\mathbb{R}_{+})\) for all \(j=1,\ldots, m\);
(B3)
all \(\psi_{j}\) (\(j=1,\ldots,m\)) are continuous and increasing functions on \(\mathbb {R}_{+}\) and positive on \((0,+\infty)\) such that \(\psi_{1}\propto\psi_{2}\propto\ldots\propto\psi_{m}\);
(B4)
\(\alpha_{j}, \bar{\alpha}_{j}\in(0,1]\), \(\beta_{j},\bar{\beta}_{j}\in(0,1)\), \(\gamma_{j}>1-\frac{1}{p}\), \(\bar{\gamma}_{j}>1-\frac{1}{p}\) such that \(\frac{1}{p}+\alpha_{j}(\beta_{j}-1)+\gamma_{j}-1\ge0\), \(\frac {1}{p}+\bar{\alpha}_{j}(\bar{\beta}_{j}-1)+\bar{\gamma}_{j}-1\ge0\), \(p(\beta_{j}-1)+1>0\), \(p(\bar{\beta}_{j}-1)+1>0\), \(p>1\), \(j=1,2,\ldots,m\);
(B5)
\(u\in C([b_{*}(x_{0})-h,x_{1})\times[y_{0},y_{1}),\mathbb {R}_{+})\) satisfies the integral inequality
$$ \begin{aligned} &\varphi_{1}\bigl(u(x,y) \bigr) \leq a(x,y)+\sum_{j=1}^{M} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} \bigl(x^{\alpha_{j}}-s^{\alpha_{j}} \bigr)^{\beta_{j}-1}s^{\gamma_{j}-1}\bigl(y^{\bar {\alpha}_{j}}-t^{\bar{\alpha}_{j}} \bigr)^{\bar{\beta}_{j}-1} \\ &\hphantom{\varphi_{1}(u(x,y)) \leq{}}{} \times t^{\bar{\gamma}_{j}-1} f_{j}(x,y,s,t) \psi_{j}\bigl(u(s,t)\bigr)\,dt\,ds \\ &\hphantom{\varphi_{1}(u(x,y)) \leq{}}{} +\sum_{j=M+1}^{m} \int_{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)}\bigl(x^{\alpha_{j}}-s^{\alpha_{j}} \bigr)^{\beta_{j}-1}s^{\gamma_{j}-1} \bigl(y^{\bar{\alpha}_{j}}-t^{\bar{\alpha}_{j}} \bigr)^{\bar{\beta}_{j}-1} \\ &\hphantom{\varphi_{1}(u(x,y)) \leq{}}{} \times t^{\bar{\gamma}_{j}-1}f_{j}(x,y,s,t) \psi_{j} \Bigl(\max_{\tilde {\eta}\in[s-h,s]}u(\tilde{\eta},t) \Bigr) \,dt\,ds, \\ &\hphantom{\varphi_{1}(u(x,y)) \leq{}}{} (x,y)\in[x_{0},x_{1})\times [y_{0}, y_{1}), \\ &u(x,y) \leq \hat{\psi }(x,y), \quad (x,y)\in\bigl[b_{*}(x_{0})-h,x_{0} \bigr]\times [y_{0}, y_{1}), \end{aligned} $$
(2.82)
where \(\max_{s\in[b_{*}(x_{0})-h,x_{0}]}\hat{\psi}(s,y)\leq \varphi_{1}^{-1}( (1+m)^{1-1/q}a(x_{0},y))\) for all \(y\in[y_{0},y_{1})\).
Then
$$\begin{aligned} u(x,y) \leq& \varphi_{1}^{-1}\biggl(\check{G}_{m}^{-1} \biggl(\check{G}_{m}\bigl(r_{m}(x,y)\bigr) \\ &{} + \int_{b_{m}(x_{0})}^{b_{m}(x)} \int_{c_{m}(y_{0})}^{c_{m}(y)} \tilde{f}_{m}(x,y,s,t)\,dt \,ds\biggr)^{1/q}\biggr) \end{aligned}$$
(2.83)
for all \((x,y)\in[x_{0}, X_{2})\times[y_{0},Y_{2})\), where \(G_{j}^{-1}\) is the inverse of the function
$$ \check{G}_{j}(t):= \int_{t_{j}}^{t}\frac{ds}{\psi^{q}_{j}(\varphi _{1}^{-1}(s^{1/q}))},\quad t\ge t_{j}>0, j=1,2,\ldots,m, $$
(2.84)
\(t_{j}\) is a given constant, \(r_{j}(x,y)\) is defined recursively by
$$\begin{aligned}& r_{1}(x,y)=(1+m)^{q-1}\Bigl(\max_{(\iota,\xi)\in[x_{0}, x ]\times [y_{0},y]}a( \iota,\xi)\Bigr)^{q},\quad \textit{and} \\& r_{j+1}(x,y):= \check{G}_{j}^{-1}\biggl[ \check{G}_{j}\bigl(r_{j}(x,y)\bigr)+ \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} \tilde{f}_{j}(x,y,s,t) \,dt\,ds\biggr], \\& \quad j=1,\ldots, m-1, \end{aligned}$$
(2.85)
$$\begin{aligned}& \begin{aligned}[b] &\tilde{f}_{j}(x,y,s,t):=(1+m)^{q-1} \bigl({M_{j}} x^{\theta_{j}}{\bar{M}_{j}} y^{\bar{\theta}_{j}}\bigr)^{q/p}\Bigl(\max_{(\iota,\xi)\in[x_{0}, x ]\times[y_{0},y]} \check{f}_{j}(\iota,\xi,s,t)\Bigr)^{q}, \\ &\quad (x,y)\in [x_{0},x_{1})\times[y_{0},y_{1}), \end{aligned} \end{aligned}$$
(2.86)
\(M_{j}:=\alpha_{j}^{-1}B(\frac{p(\gamma_{j}-1)+1}{\alpha_{j}}, p(\beta_{j}-1)+1)\), \(\bar{M}_{j}:=\bar{\alpha}_{j}^{-1}B(\frac{p(\bar {\gamma}_{j}-1)+1}{\bar{\alpha}_{j}}, p(\beta_{j}-1)+1)\), \(\theta_{j}:=p(\alpha_{j}(\beta_{j}-1)+\gamma _{j}-1)+1\), \(\bar{\theta}_{j}:=p(\bar{\alpha}_{j}(\bar{\beta }_{j}-1)+\bar{\gamma}_{j}-1)+1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(X_{2}\in[x_{0}, x_{1})\), \(Y_{2}\in[y_{0}, y_{1})\) are chosen such that
$$ \check{G}_{j}\bigl(r_{j}(X_{2},Y_{2}) \bigr)+ \int_{b_{j}(x_{0})}^{b_{j}(X_{1})} \int _{c_{j}(y_{0})}^{c_{i-1}(Y_{2})} \tilde{f}_{j}(X_{2},Y_{2},s,t) \,dt\,ds\le \int_{t_{j}}^{\infty}\frac {ds}{\tilde{\omega}^{q}_{j}(\varphi^{-1}(s^{1/q}))} $$
(2.87)
for \(j=1,2,\ldots,m\).
Proof
Applying Theorem 2.1 to specified \(\omega_{j}(u)\equiv\psi _{j}(u)\) (\(j=1,\ldots,M\)), \(\mu_{j}(u)\equiv1\) (\(j=1,\ldots,M\)), \(\omega_{j}(u)\equiv1\) (\(j=M+1,\ldots,m\)), \(\mu_{j}(u)\equiv\psi_{j}(u)\) (\(j=M+1,\ldots,m\)), \(f_{j}(x,y,s,t)=\check{f}_{j}(x,y,s,t)\), \(g(t)=t\), from (2.82) we obtain estimate (2.83). The proof is complete. □

3 Applications

Consider a nonlinear weakly singular integral equation with maxima
$$ \textstyle\begin{cases} z(x,y)=a(x,y)+\int_{x_{0}}^{x}\int_{y_{0}}^{y}(x-s)^{\theta _{1}-1}s^{\gamma_{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma_{2}-1} \\ \hphantom{z(x,y)={}}{}\times F(x,y, s,t,z(s,t),\max_{ \tilde{\eta}\in [s-h,s]}z( \tilde{\eta},t))\, ds\, dt, \quad (x,y)\in\Delta, \\ z(x,y)=\psi(x,y), \quad (x,y)\in[x_{0}-h,x_{0}]\times[y_{0}, y_{1}), \end{cases} $$
(3.1)
where \(F\in C(\Delta\times\mathbb {R}^{4},\mathbb {R})\), h is a positive constant, \(\psi\in C([x_{0}-h,x_{0}]\times[y_{0},y_{1}),\mathbb{R})\), \(a\in C(\Delta, \mathbb {R})\), \(\theta_{j}\in(0,1)\), and \(p(\gamma_{j}-1)+1>0\) such that \(\frac{1}{p}+\theta_{j}+\gamma_{j}-2\ge0\) and \(p(\theta _{j}-1)+1>0\), \(p>1\), \(j=1,2\).
The following result gives an estimate for its solutions.
Corollary 3.1
Suppose that functions F in (3.1) satisfy
$$ \bigl\vert F(x,y,s,t,u,v) \bigr\vert \le h_{1}(x,y,s,t) \mu_{1}\bigl( \vert u \vert \bigr)+h_{2}(x,y,s,t) \mu_{2}\bigl( \vert v \vert \bigr), $$
(3.2)
where \(h_{j}\in C([x_{0},x_{1})\times[y_{0},y_{1})\times\mathbb {R}^{2},\mathbb {R}_{+})\), and \(h_{j}(x,y,s,t)\) is nondecreasing in x and y for each fixed s and t, and \(\mu_{j}\in C(\mathbb {R}_{+},(0,\infty))\) (\(j=1,2\)) such that \(\mu_{1}\propto\mu_{2}\), \(\max_{s\in[x_{0}-h,x_{0}]}\psi(s,y)\le3^{1-1/q}|a(x_{0}, y)|\) for all \(y\in[y_{0}, y_{1})\).
Then any solution \(z(x,y)\) of (3.1) has the estimate
$$\begin{aligned}& \bigl\vert z(x,y) \bigr\vert \\& \quad \le \biggl[ {Q_{2}}^{-1} \biggl(Q_{2}\bigl(\gamma(x,y)\bigr)+3^{q-1} \bigl(M_{1}x^{\delta _{1}}M_{2}y^{\delta_{2}} \bigr)^{q/p} \int_{x_{0}}^{x} \int_{y_{0}}^{y}h_{2}(x,y,s,t)dt \,ds \biggr) \biggr]^{1/q} \end{aligned}$$
(3.3)
for all \((x,y)\in[x_{0},X_{1})\times[y_{0},Y_{1})\), where
$$\begin{aligned}& \gamma(x,y) := Q_{1}^{-1} \biggl(Q_{1}\bigl( \eta _{1}(x,y)\bigr)+3^{q-1}\bigl(M_{1}x^{\delta_{1}}M_{2}y^{\delta_{2}} \bigr)^{q/p} \int _{x_{0}}^{x} \int_{y_{0}}^{y}h^{q}_{1}(x,y,s,t) \,dt\,ds \biggr), \\ & \eta_{1}(x,y) := 3^{q-1}\Bigl(\max_{(s,t)\in [x_{0},x]\times[y_{0},y]} \bigl\vert a(s,t) \bigr\vert \Bigr)^{q},\qquad Q_{1}(u):= \int_{u_{1}}^{u}\frac{ds}{\mu_{1}^{q}(s^{\frac{1}{q}})}, \quad u\ge u_{1}>0, \\ & Q_{2}(u) := \int_{u_{1}}^{u}\frac{ds}{\mu_{2}^{q}(s^{\frac{1}{q}})},\quad u\ge u_{2}>0, \end{aligned}$$
\(M_{j}:=B(p(\gamma_{j}-1)+1, p(\theta_{j}-1)+1)\) (\(j=1,2\)), \(\delta _{j}:=p(\theta_{j}+\gamma_{j}-2)+1\), \(j=1,2\), \(\frac{1}{p}+\frac{1}{q}=1\), and constants \(u_{1}\), \(u_{2}\) are given arbitrarily, \(X_{1}\in[x_{0}, x_{1})\), \(Y_{1}\in[y_{0}, y_{1})\) are chosen such that
$$\begin{aligned}& Q_{1}\bigl(\gamma_{1}(X_{1},Y_{1}) \bigr)+3^{q-1}\bigl(M_{1}X_{1}^{\delta_{1}}M_{2}Y_{1}^{\delta _{2}} \bigr)^{q/p} \int_{x_{0}}^{X_{1}} \int_{y_{0}}^{Y_{1}}h^{q}_{1}(X_{1},Y_{1},s,t) \,dt\,ds \le \int_{u_{1}}^{\infty}\frac{ds}{\mu_{1}^{q}(s^{\frac{1}{q}})}, \\& Q_{2}\bigl(\gamma_{2}(X_{1},Y_{1}) \bigr)+3^{q-1}\bigl(M_{1}X_{1}^{\delta_{1}}M_{2}Y_{1}^{\delta _{2}} \bigr)^{q/p} \int_{x_{0}}^{x} \int_{y_{0}}^{y}h^{q}_{2}(X_{1},Y_{1},s,t) \,dt\,ds \le \int_{u_{2}}^{\infty}\frac{ds}{\mu_{2}^{q}(s^{\frac{1}{q}})}. \end{aligned}$$
Proof
From (3.1) we obtain
$$ \begin{aligned} & \bigl\vert z(x,y) \bigr\vert \le \bigl\vert a(x,y) \bigr\vert + \int_{x_{0}}^{x} \int _{y_{0}}^{y}(x-s)^{\theta_{1}-1}s^{\gamma_{1}-1}(y-t)^{\theta _{2}-1}t^{\gamma_{2}-1} \\ &\hphantom{ \bigl\vert z(x,y) \bigr\vert \le{}}{}\cdot \Bigl\vert F\Bigl(x,y, s,t,z(s,t),\max _{ \tilde{\eta}\in[s-h,s]}z( \tilde{\eta},t)\Bigr) \Bigr\vert \,dt\,ds \\ &\hphantom{ \bigl\vert z(x,y) \bigr\vert }\le \bigl\vert a(x,y) \bigr\vert + \int_{x_{0}}^{x} \int_{y_{0}}^{y}(x-s)^{\theta _{1}-1}s^{\gamma_{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma_{2}-1} \\ &\hphantom{ \bigl\vert z(x,y) \bigr\vert \le{}}{}\cdot h_{1}(x,y,s,t) \mu _{1}\bigl( \bigl\vert z(s,t) \bigr\vert \bigr)\,dt\,ds \\ &\hphantom{ \bigl\vert z(x,y) \bigr\vert \le{}}{}+ \int_{x_{0}}^{x} \int_{y_{0}}^{y}(x-s)^{\theta_{1}-1}s^{\gamma _{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma_{2}-1} h_{2}(x,y,s,t) \\ &\hphantom{ \bigl\vert z(x,y) \bigr\vert \le{}}{}\cdot\mu_{2}\Bigl( \Bigl\vert \max _{ \tilde{\eta}\in[s-h,s]}z( \tilde {\eta},t)\Bigr) \Bigr\vert )\,dt\,ds,\quad (x,y)\in\Delta, \\ & \bigl\vert z(x,y) \bigr\vert \le \bigl\vert \psi(x,y) \bigr\vert , \quad (x,y)\in [x_{0}-h,x_{0}]\times[y_{0},y_{1}). \end{aligned} $$
(3.4)
Set \(v(x,y)=|z(x,y)|\) for all \((x,y)\in[x_{0}-h,x_{1})\times[y_{0},y_{1})\). From (3.4) we get
$$\begin{aligned}& v(x,y) \le \bigl\vert a(x,y) \bigr\vert + \int_{x_{0}}^{x} \int _{y_{0}}^{y}(x-s)^{\theta_{1}-1}s^{\gamma_{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma _{2}-1} \\& \hphantom{v(x,y) \le{}}{} \cdot h_{1}(x,y,s,t) \mu_{1}\bigl(v(s,t)\bigr)\,dt\,ds \\& \hphantom{v(x,y) \le{}}{}+ \int_{x_{0}}^{x} \int_{y_{0}}^{y}(x-s)^{\theta_{1}-1}s^{\gamma _{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma_{2}-1} h_{2}(x,y,s,t) \\& \hphantom{v(x,y) \le{}}{}\cdot\mu_{2}\Bigl(\max_{ \tilde{\eta}\in[s-h,s]} \bigl\vert v( \tilde {\eta},t) \bigr\vert \Bigr)\,dt\,ds,\quad (x,y)\in\Delta, \\& v(x,y) \le \bigl\vert \psi(x,y) \bigr\vert ,\quad (x,y) \in[x_{0}-h,x_{0}]\times[y_{0},y_{1}). \end{aligned}$$
(3.5)
Applying Corollary 2.3 to the specified \(M=1\), \(m=2\), \(\varphi_{1} (u)=u\), \(f_{j}(x,y,s,t)=h_{j}(x,y,s,t)\), \(b_{j}(t)=t\), \(c_{j}(t)=t\), \(\alpha_{j}=\bar{\alpha}_{j}=1\), \(g(t)=t\), we obtain (3.3) from (3.5). □
Corollary 3.2
Suppose that functions F and ψ in (3.1) satisfy
$$ \bigl\vert F(x,y,s_{1},t_{1})-F(x,y,s_{2},t_{2}) \bigr\vert \leq h_{1}(x,y) \vert s_{1}-s_{2} \vert +h_{2}(x,y) \vert t_{1}-t_{2} \vert $$
(3.6)
for all \((x,y)\in\Delta\) and \(s_{j},t_{j}\in\mathbb {R}\) (\(i =1,2\)), where \(h_{j}\in C(\Delta,\mathbb {R}_{+})\). Then system (3.1) has at most one solution on Δ.
Proof
Assume that equation (3.1) has two solutions \(u(x,y)\), \(v(x,y)\). By the equivalent integral equation (3.1), we have
$$\begin{aligned} \bigl\vert u(x,y)-v(x,y) \bigr\vert \le& \int_{x_{0}}^{x} \int _{y_{0}}^{y}(x-s)^{\theta_{1}-1}s^{\gamma_{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma _{2}-1} h_{1}(s,t) \bigl\vert u(s,t)-v(s,t) \bigr\vert \,dt\,ds \\ &{}+ \int_{x_{0}}^{x} \int_{y_{0}}^{y} (x-s)^{\theta _{1}-1}s^{\gamma_{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma_{2}-1}h_{2}(s,t) \\ &{} \cdot \Bigl\vert \max_{ \tilde{\eta}\in[s-h,s]}u( \tilde{\eta},t)-\max _{ \tilde{\eta}\in[s-h,s]}v( \tilde{\eta},t) \Bigr\vert \,dt\,ds \end{aligned}$$
(3.7)
for all \((x,y)\in[x_{0},x_{1})\times[y_{0},y_{1})\). Since \(u(x, y)\) is a continuous function, it implies that, for any fixed \(t \in[y_{0}, y]\) and \(s \in[x_{0}, x]\), there exists \(\tau\in [s-h, s]\) such that \(\max_{ \tilde{\eta}\in[s-h,s]}u( \tilde{\eta },t) = u(\tau,t)\) holds. Now we suppose \(\max_{ \tilde{\eta }\in[s-h,s]}u( \tilde{\eta},t)\ge\max_{ \tilde{\eta}\in [s-h,s]}v( \tilde{\eta},t)\) and have
$$\begin{aligned} \Bigl\vert \max_{ \tilde{\eta}\in[s-h,s]}u( \tilde{\eta},t)-\max _{ \tilde{\eta}\in[s-h,s]}v( \tilde{\eta},t) \Bigr\vert =& \Bigl\vert u( \tau,t)-\max_{ \tilde{\eta}\in[s-h,s]}v( \tilde{\eta},t) \Bigr\vert \\ \le& \bigl\vert u(\tau,t)-v(\tau,t) \bigr\vert \le\max_{ \tilde{\eta}\in [s-h,s]} \bigl\vert u( \tilde{\eta},t)-v( \tilde{\eta},t) \bigr\vert . \end{aligned}$$
(3.8)
It follows from (3.7) and (3.8) that
$$\begin{aligned} \bigl\vert u(x,y)-v(x,y) \bigr\vert \le& \int_{x_{0}}^{x} \int_{y_{0}}^{y} (x-s)^{\theta _{1}-1}s^{\gamma_{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma _{2}-1}h_{1}(s,t) \bigl\vert u(s,t)-v(s,t) \bigr\vert \,dt\,ds \\ &{}+ \int_{x_{0}}^{x} \int_{y_{0}}^{y} (x-s)^{\theta _{1}-1}s^{\gamma_{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma_{2}-1}h_{2}(s,t) \\ &{} \cdot\max_{ \tilde{\eta}\in[s-h,s]} \bigl\vert u( \tilde{\eta },t)-v( \tilde{\eta},t) \bigr\vert \,dt\,ds. \end{aligned}$$
(3.9)
Let
$$\phi(x,y):= \bigl\vert u(x,y)-v(x,y) \bigr\vert , \quad (x,y)\in\bigl[ \alpha(x_{0})-h, x_{0}\bigr]\times [y_{0}, y_{1}). $$
From (3.7) we obtain
$$\begin{aligned}& \phi(x,y) \le \int_{x_{0}}^{x} \int_{y_{0}}^{y} (x-s)^{\theta _{1}-1}s^{\gamma_{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma_{2}-1}h_{1}(s,t) \phi(s,t)\,dt\,ds \\& \hphantom{\phi(x,y) \le{}}{} + \int_{x_{0}}^{x} \int_{y_{0}}^{y} (x-s)^{\theta_{1}-1}s^{\gamma _{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma_{2}-1}(x-s)^{\theta_{1}-1}s^{\gamma_{1}-1} \\& \hphantom{\phi(x,y) \le{}}{} \cdot(y-t)^{\theta_{2}-1}t^{\gamma_{2}-1}h_{2}(s,t) \max_{ \tilde{\eta}\in[s-h,s]}\phi( \tilde{\eta},t)\, dt \, d\eta, \\& \hphantom{\phi(x,y) \le{}}{}(x,y)\in[x_{0},x_{1}) \times[y_{0},y_{1}), \\& \phi(x,y) \le 0, \quad (x,y)\in [x_{0}-h,x_{0}] \times[y_{0},y_{1}). \end{aligned}$$
(3.10)
Let \(\varepsilon>0\) be an arbitrary number. Then from (3.10) we have
$$ \begin{aligned} &\phi(x,y)\le \varepsilon+ \int_{x_{0}}^{x} \int_{y_{0}}^{y} (x-s)^{\theta_{1}-1}s^{\gamma_{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma _{2}-1}h_{1}(s,t) \phi(s,t)\,dt\,ds \\ &\hphantom{\phi(x,y)\le{}}{}+ \int_{x_{0}}^{x} \int_{y_{0}}^{y} (x-s)^{\theta_{1}-1}s^{\gamma _{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma_{2}-1} \\ &\hphantom{\phi(x,y)\le{}}{} \cdot h_{2}(s,t) \max_{ \tilde{\eta}\in[\alpha(s)-h,\alpha(s)]}\phi( \tilde{\eta},t)\, dt\, d\eta, \\ &\hphantom{\phi(x,y)\le{}}{} (x,y)\in[x_{0},x_{1}) \times[y_{0},y_{1}), \\ &\phi(x,y)\le 0, \quad (x,y)\in [x_{0}-h,x_{0}] \times[y_{0},y_{1}). \end{aligned} $$
(3.11)
Applying Corollary 2.3 to specified \(N=1\), \(m=2\), \(\varphi _{1}(u)=u\), \(g(t)=t\), \(b_{j}(t)=c_{j}(t)=t\), \(f_{j}(x,y,s,t)=h_{2}(s,t)\), \(j=12\), \(a(x,y)=\epsilon\), from (3.11) we obtain, for all \((x,y)\in\Delta\),
$$\begin{aligned}& \phi(x,y) \\& \quad \leq 3^{\frac{q-1}{q}}\varepsilon\exp \biggl(q^{-1}\biggl(3^{\frac {q-1}{q}}\bigl(M_{1}x^{\delta_{1}} \bar{M}_{1}y^{\delta_{2}}\bigr)^{\frac{q}{p}} \int_{x_{0}}^{x} \int_{y_{0}}^{y}\bigl(h_{1}^{q}(s,t)+h_{2}^{q}(s,t) \bigr)\,dt\,ds\biggr)\biggr), \end{aligned}$$
(3.12)
where \(\frac{1}{p}+\frac{1}{q}=1\), \(M_{j}\) and \(\delta_{j}\) (\(j=1,2\)) are defined as in Corollary 3.1. Letting \(\varepsilon\rightarrow 0\), we obtain the uniqueness of the solution of equation (3.1). The uniqueness is proved. □

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Gronwall, T.H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20, 292–296 (1919) MathSciNetCrossRef Gronwall, T.H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20, 292–296 (1919) MathSciNetCrossRef
2.
3.
go back to reference Agarwal, R.P., Deng, S., Zhang, W.: Generalization of a retarded Gronwall-like inequality and its applications. Appl. Math. Comput. 165, 599–612 (2005) MathSciNetMATH Agarwal, R.P., Deng, S., Zhang, W.: Generalization of a retarded Gronwall-like inequality and its applications. Appl. Math. Comput. 165, 599–612 (2005) MathSciNetMATH
4.
go back to reference Pinto, M.: Integral inequalities of Bihari-type and applications. Funkc. Ekvacioj 33, 387–403 (1990) MathSciNetMATH Pinto, M.: Integral inequalities of Bihari-type and applications. Funkc. Ekvacioj 33, 387–403 (1990) MathSciNetMATH
5.
go back to reference Wang, W.: A generalized retarded Gronwall-like inequality in two variables and applications to BVP. Appl. Math. Comput. 191, 144–154 (2007) MathSciNetCrossRef Wang, W.: A generalized retarded Gronwall-like inequality in two variables and applications to BVP. Appl. Math. Comput. 191, 144–154 (2007) MathSciNetCrossRef
6.
go back to reference Pachpatte, B.G.: Integral inequalities of the Bihari type. Math. Inequal. Appl. 5, 649–657 (2002) MathSciNetMATH Pachpatte, B.G.: Integral inequalities of the Bihari type. Math. Inequal. Appl. 5, 649–657 (2002) MathSciNetMATH
7.
go back to reference Kim, Y.H.: Gronwall, Bellman and Pachpatte type integral inequalities with applications. Nonlinear Anal. 71, 2641–2656 (2009) MathSciNetCrossRef Kim, Y.H.: Gronwall, Bellman and Pachpatte type integral inequalities with applications. Nonlinear Anal. 71, 2641–2656 (2009) MathSciNetCrossRef
8.
9.
go back to reference Pachpatte, B.G.: Inequalities for Differential and Integral Equations. Academic Press, London (1998) MATH Pachpatte, B.G.: Inequalities for Differential and Integral Equations. Academic Press, London (1998) MATH
10.
go back to reference Zhou, J., Shen, J., Zhang, W.: A powered Gronwall-type inequality and applications to stochastic differential equations. Discrete Contin. Dyn. Syst. 36, 7207–7234 (2016) MathSciNetCrossRef Zhou, J., Shen, J., Zhang, W.: A powered Gronwall-type inequality and applications to stochastic differential equations. Discrete Contin. Dyn. Syst. 36, 7207–7234 (2016) MathSciNetCrossRef
11.
go back to reference Boudeliou, A.: On certain new nonlinear retarded integral inequalities in two independent variables and applications. Appl. Math. Comput. 335, 103–111 (2018) MathSciNet Boudeliou, A.: On certain new nonlinear retarded integral inequalities in two independent variables and applications. Appl. Math. Comput. 335, 103–111 (2018) MathSciNet
12.
go back to reference McKee, S.: The analysis of a variable step, variable coefficient linear multistep method for solving a singular integro differential equation arising from the diffusion of discrete particles in a turbulent fluid. J. Inst. Math. Appl. 23, 373–388 (1979) MathSciNetCrossRef McKee, S.: The analysis of a variable step, variable coefficient linear multistep method for solving a singular integro differential equation arising from the diffusion of discrete particles in a turbulent fluid. J. Inst. Math. Appl. 23, 373–388 (1979) MathSciNetCrossRef
13.
go back to reference Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math., vol. 840. Springer, New York (1981) MATH Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math., vol. 840. Springer, New York (1981) MATH
14.
go back to reference Medveď, M.: A new approach to an analysis of Henry type integral inequalities and their Bihari type versions. J. Math. Anal. Appl. 214, 349–366 (1997) MathSciNetCrossRef Medveď, M.: A new approach to an analysis of Henry type integral inequalities and their Bihari type versions. J. Math. Anal. Appl. 214, 349–366 (1997) MathSciNetCrossRef
15.
go back to reference Medveď, M.: Singular integral inequalities with several nonlinearities and integral equations with singular kernels. Nonlinear Oscil. 11, 70–79 (2008) MathSciNetCrossRef Medveď, M.: Singular integral inequalities with several nonlinearities and integral equations with singular kernels. Nonlinear Oscil. 11, 70–79 (2008) MathSciNetCrossRef
16.
go back to reference Ma, Q.H., Yang, E.H.: Estimations on solutions of some weakly singular Volterra integral inequalities. Acta Math. Appl. Sin. 25(3), 505–515 (2002) MathSciNetMATH Ma, Q.H., Yang, E.H.: Estimations on solutions of some weakly singular Volterra integral inequalities. Acta Math. Appl. Sin. 25(3), 505–515 (2002) MathSciNetMATH
17.
go back to reference Ma, Q.H., Pečarić, J.: Some new explicit bounds for weakly singular integral inequalities with applications to fractional differential and integral equations. J. Math. Anal. Appl. 341, 894–905 (2008) MathSciNetCrossRef Ma, Q.H., Pečarić, J.: Some new explicit bounds for weakly singular integral inequalities with applications to fractional differential and integral equations. J. Math. Anal. Appl. 341, 894–905 (2008) MathSciNetCrossRef
18.
go back to reference Ye, H., Gao, J.: Henry–Gronwall type retarded integral inequalities and their applications to fractional differential equations with delay. Appl. Math. Comput. 218(8), 4152–4160 (2011) MathSciNetMATH Ye, H., Gao, J.: Henry–Gronwall type retarded integral inequalities and their applications to fractional differential equations with delay. Appl. Math. Comput. 218(8), 4152–4160 (2011) MathSciNetMATH
19.
go back to reference Liu, L., Meng, F.: Some new nonlinear integral inequalities with weakly singular kernel and their applications to FDEs. J. Inequal. Appl. 2015, 209 (2015) MathSciNetCrossRef Liu, L., Meng, F.: Some new nonlinear integral inequalities with weakly singular kernel and their applications to FDEs. J. Inequal. Appl. 2015, 209 (2015) MathSciNetCrossRef
20.
go back to reference Cheung, W.S., Ma, Q.H., Tseng, S.: Some new nonlinear weakly singular integral inequalities of Wendroff type with applications. J. Inequal. Appl. 2008, Article ID 909156 (2008) MathSciNetCrossRef Cheung, W.S., Ma, Q.H., Tseng, S.: Some new nonlinear weakly singular integral inequalities of Wendroff type with applications. J. Inequal. Appl. 2008, Article ID 909156 (2008) MathSciNetCrossRef
21.
go back to reference Popov, E.P.: Automatic Regulation and Control. Nauka, Moscow (1966) Popov, E.P.: Automatic Regulation and Control. Nauka, Moscow (1966)
22.
go back to reference Bainov, D., Hristova, S.: Differential Equations with Maxima. Taylor & Francis, London (2011) MATH Bainov, D., Hristova, S.: Differential Equations with Maxima. Taylor & Francis, London (2011) MATH
23.
go back to reference Bainov, D., Minchev, E.: Forced oscillations of solutions of hyperbolic equations of neutral type with maxima. Appl. Anal. 70, 259–267 (1999) MathSciNetCrossRef Bainov, D., Minchev, E.: Forced oscillations of solutions of hyperbolic equations of neutral type with maxima. Appl. Anal. 70, 259–267 (1999) MathSciNetCrossRef
24.
go back to reference Mishev, D.P., Musa, S.M.: Distribution of the zeros of the solutions of hyperbolic differential equations with maxima. Rocky Mt. J. Math. 37, 1271–1281 (2007) MathSciNetCrossRef Mishev, D.P., Musa, S.M.: Distribution of the zeros of the solutions of hyperbolic differential equations with maxima. Rocky Mt. J. Math. 37, 1271–1281 (2007) MathSciNetCrossRef
25.
go back to reference Agarwal, R.P., Hristova, S.: Quasilinearization for initial value problems involving differential equations with maxima. Math. Comput. Model. 55, 2096–2105 (2012) MathSciNetCrossRef Agarwal, R.P., Hristova, S.: Quasilinearization for initial value problems involving differential equations with maxima. Math. Comput. Model. 55, 2096–2105 (2012) MathSciNetCrossRef
26.
go back to reference Zhang, Y., Wang, J.: Existence and finite-time stability results for impulsive fractional differential equations with maxima. J. Appl. Math. Comput. 51, 67–79 (2016) MathSciNetCrossRef Zhang, Y., Wang, J.: Existence and finite-time stability results for impulsive fractional differential equations with maxima. J. Appl. Math. Comput. 51, 67–79 (2016) MathSciNetCrossRef
27.
go back to reference Bohner, M., Hristova, S., Stefanova, K.: Nonlinear integral inequalities involving maxima of the unknown scalar functions. Math. Inequal. Appl. 15, 811–825 (2012) MathSciNetMATH Bohner, M., Hristova, S., Stefanova, K.: Nonlinear integral inequalities involving maxima of the unknown scalar functions. Math. Inequal. Appl. 15, 811–825 (2012) MathSciNetMATH
28.
go back to reference Henderson, J., Hristova, S.: Nonlinear integral inequalities involving maxima of unknown scalar functions. Math. Comput. Model. 53, 871–882 (2011) MathSciNetCrossRef Henderson, J., Hristova, S.: Nonlinear integral inequalities involving maxima of unknown scalar functions. Math. Comput. Model. 53, 871–882 (2011) MathSciNetCrossRef
29.
go back to reference Hristova, S., Stefanova, K.: Some integral inequalities with maximum of the unknown functions. Adv. Dyn. Syst. Appl. 6, 57–69 (2011) MathSciNet Hristova, S., Stefanova, K.: Some integral inequalities with maximum of the unknown functions. Adv. Dyn. Syst. Appl. 6, 57–69 (2011) MathSciNet
30.
go back to reference Yan, Y.: On some new weakly singular Volterra integral inequalities with maxima and their applications. J. Inequal. Appl. 2015, 369 (2015) MathSciNetCrossRef Yan, Y.: On some new weakly singular Volterra integral inequalities with maxima and their applications. J. Inequal. Appl. 2015, 369 (2015) MathSciNetCrossRef
Metadata
Title
Generalized nonlinear weakly singular retarded integral inequalities with maxima and their applications
Authors
Yong Yan
Derong Zhou
Jianglin Zhao
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1885-6

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner